

This product is obsolete.

This information is available for your convenience only.

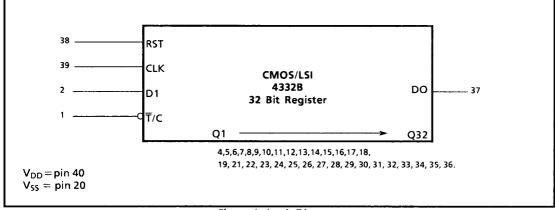
For more information on Zarlink's obsolete products and replacement product lists, please visit

http://products.zarlink.com/obsolete_products/

CMOS MD4332B 32 Segment LCD Driver

Features

- CMOS Low power.
- 3 to 18 volt operation.
- On-chip wave-shaping.
- High-speed (typ. 3 MHz) shift register.


Applications

- Telephone displays.
- Instrumentation readouts.
- Microprocessor displays.
- Digital clock, counter.

Description

The MD4332B is a CMOS 32-bit static shift register incorporating selectable true/complement outputs for each bit. This device is well suited to drive LCD readouts directly since the AC signals required for the display may be generated simply by applying a low frequency signal directly to the True-Complement input pin and to the backplane of the display. The device can drive four 7-segment displays or two 14-segment alphanumeric displays plus decimal points or two 16-segment alphanumeric displays directly.

	Feb. 1985
Pin Co	nnections
$\begin{array}{c c} \overline{T}/C & \Box & 1 \\ DI & \Box & 2 \\ NC & \Box & \Box & 3 \\ Q1 & \Box & \Box & 5 \\ Q3 & \Box & \Box & \Box & 5 \\ Q4 & \Box & \Box & \Box & 6 \\ Q4 & \Box & \Box & B \\ Q5 & \Box & B \\ Q6 & \Box & \Box & B \\ Q7 & \Box & \Box & B \\ Q7 & \Box & \Box & 10 \\ Q10 & \Box & 11 \\ Q10 & \Box & 11 \\ Q11 & \Box & 11 \\ Q12 & \Box & 11 \\ Q13 & \Box & \Box & 12 \\ Q10 & \Box & U \\ Q10 & U \\ Q1$	40 VDD 39 CLK 38 RST 37 DO 36 Q32 35 Q31 34 Q30 33 Q29 32 Q28 31 Q27 30 Q26 29 Q25 28 Q24 27 Q24 27 Q22 26 Q22 26 Q22 26 Q22 23 Q19 22 Q18 21 Q17
Ordering Inform	ation -40° to 85°C
MD4332BC MD4332BE	40 Pin Ceramic DIP 40 Pin Plastic DIP
L	·····

Figure 1. Logic Diagram

5

	Paramo	eter	Symbol	Min	Max	Units
1	DC Supply Voltage		V _{DD}	-0.5	18	V
2	Input Voltage		V _{IN}	-0.5	V _{DD} + 0.5	v
3	DC Current Drain per Pin		1		±10	mA
4	Storage Temperature		T _{STG}	-65	+ 125	°C
5	Power Dissipation	Plastic	PD		0.6	w
		Ceramic	PD		1.0	W

Absolute Maximum Ratings*- Voltages are with respect to ground (Vss) unless otherwise stated.

*Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.

Recommended Operating Conditions - Voltages are with respect to ground (V_{SS}) unless otherwise stated

	Characteristics	Sym	Min	Тур	Max	Units	Test Conditions
1	Supply Voltage	V _{DD}	3	5	18	V	
2	Input Voltage	Vi	0		V _{DD}	V	
3	Output Voltage	Vo	0		V _{DD}	V	· · · · · · · · · · · · · · · · · · ·
4	Operating Temperature	TA	-40	25	85	°C	······································

DC Electrical Characteristics' - Voltages are with respect to ground (Vss) unless otherwise stated

		Characteristics	Sym	Min	Тур	Max	Units	Test Conditions
1	I	Quiescent Device Current	լ լ		0.5 1	50 100	μ Α μ Α	$V_{DD} = 5V$ $V_{DD} = 10V$
2	N P	Input Current	١z		10		pА	
3	U T	Noise Immunity (Any Input)	V _{NL} V _{NH}	1.5 3	2.25 4.5		v v	$V_{DD} = 5V, V_{OUT} = 0.8V$ $V_{DD} = 10V, V_{OUT} = 1.0V$
4	S	Noise Immunity (Any Input)	V _{NH} V _{NH}	1.5 3	2.25 4.5		v v	$V_{DD} = 5V, V_{OUT} = 4.2V$ $V_{DD} = 10V, V_{OUT} = 9.0V$
5		Output Low Voltage	V _{OL} V _{OL}		0 0	0.01 0.01	v v	$V_{DD} = 5V$ $V_{DD} = 10V$
6	0	Output High Voltage	V _{OH} V _{OH}	4.99 9.99	5 10		V V	$V_{DD} = 5V$ $V_{DD} = 10V$
7	Ū T	Output Drive Current D _{OUT} N-Channel	I _{DN} I _{DN}	0.8 1.0	1.7 3.0		mA mA	$V_{OUT} = 0.5V, V_{DD} = 5V$ $V_{OUT} = 0.5V, V_{DD} = 10V$
8	P U T	Output Drive Current D _{OUT} P-Channel	I _{DP} I _{DP}	0.35 -0.8	-0.9 -1.9		mA mA	$V_{OUT} = 4.5V, V_{DD} = 5V$ $V_{OUT} = 9.5V, V_{DD} = 10V$
9	S	Output Drive Current Q _{OUT} N-Channel P-Channel	I _{DN} I _{DP}	50 -50	250 -250		μΑ μΑ	$V_{OUT} = 0.5V, V_{DD} = 10V$ $V_{OUT} = 9.5V, V_{DD} = 10V$

 $T_A = 25^{\circ}C$

	Characteristics	Sym	Min	Тур	Max	Units	Test Conditions
1	Propagation Delay Time	t _{PHL} t _{PLH}	-	300 300		ns ns	$V_{DD} = 10V$ $V_{DD} = 10V$
2	Transition Time	t _{тн∟} t _{т⊾н}		70 300	130	ns ns	
3	Maximum Clock Frequency	f _{CL}	1.0	3.0		MHz	V _{DD} = 10V
4	Minimum Clock Pulse Width	t _{WL} t _{WH}		200 200		ns ns	$V_{DD} = 10V$ $V_{DD} = 10V$
5	Minimum Reset Pulse Width	t _{WH(R)}		200		ns	$V_{DD} = 10V$
6	 Input Capacitance	C _I		5		рF	Any Input

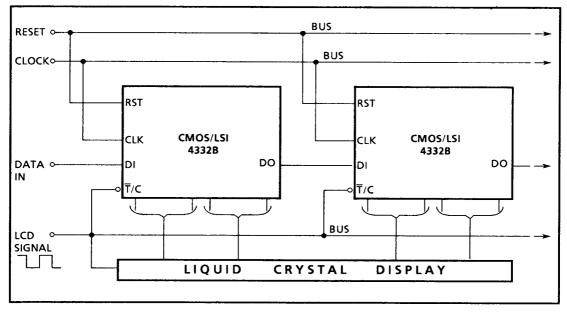
AC Electrical Characteristics' - Voltages are with respect to ground (Vss) unless otherwise stated

[†] $T_A = 25^{\circ}$ C, $C_L = 50 \text{ pF}$. Typical temperature coefficient for all values of $V_{DD} = 0.3\%$ per °C. All input rise and fall times = 20ns.

Pin Description

Pin #	Name	Description
1	T/C	True/Complement Input. This is the control input to select the form of logic (True/complementary) used by the outputs (Q1-Q32).
2	DI	Serial Data Input. This is the serial data input of the internal shift register.
3	NC	No Connection.
4-19	Q1-Q16	True/Complement Outputs. These are the parallel outputs of the internal 32-bit shift register.
20	Vss	Ground OV.
21-36	Q17-Q32	True/Complement Outputs. These are the parallel outputs of the internal 32-bit shift register.
37	DO	Serial Data Output. This can be connected to the DI input of another MD4332B to form longer shift register.
38	RST	Master Reset Input. A logic high on this input resets the device.
39	CLK	Clock Input. The clock input is positive edge-triggered.
40	VDD	Positive Power Supply . 3V-18V operation.

Functional Description


The MD4332B is a CMOS/LSI static shift register designed to drive all types of LCD readouts directly or as serial-to-parallel converter where both the true and complementary parallel outputs are available.

The circuit accepts a serial input DI which is shifted into the register on the positive transition of the clock (CLK) input. A feature of this circuit is that the clock input and the true/complement control (\overline{T}/C) input have wave-shaping circuits to ensure fast edges on-chip regardless of the shape of the incoming signals.

The 4332B has asynchronous reset (RST) inputs which are active logic-level HIGH.

The parallel outputs of the shift register are available in either true or complementary form dependent on the state of the true-complement control input. When input is logic-level LOW, the true form is available at all parallel outputs and when the input goes HIGH, the parallel outputs immediately revert to the complementary form of the data stored in the register. This action is independent of the clock input condition. A serial data (DO) output is provided for applications using longer shift registers, etc. This output is the true form of the last stage of the register.

5-46