

Product Brief

KM4111/KM4121

200µA, Low Cost, +2.7V & +5V, 37MHz Rail-to-Rail Amplifiers

March 2000

Features

- 200µA supply current
- 37MHz bandwidth
- Power down to $I_s = 30\mu A$ (KM4121)
- Fully specified at +2.7V and +5V supplies
- Output voltage range: 0.1V to 4.9V; V_S = +5
- Input voltage range: -0.3V to +3.8V; V_S = +5
- 26V/µs slew rate
- ±7mA linear output current
- ±12mA short circuit output current
- 16nV/√Hz input voltage noise
- Competes with low power CMOS amplifiers
- Small package options (SOIC and SOT23)

Applications

- Portable/battery-powered applications
- A/D buffer
- Active filters
- Signal conditioning
- Portable test instruments

General Description

The KM4111 (single) and KM4121 (single with disable) are ultra-low power, low cost, voltage feedback amplifiers. These amplifiers use only 200μ A of supply current and are designed to operate on +2.7V, +5V, or ±2.5V supplies. The input voltage range extends 300mV below the negative rail and 1.2V below the positive rail.

The KM4111 offers high bipolar performance at a low CMOS price. The KM4111 offers superior dynamic performance with a 37MHz small signal bandwidth and $26V/\mu s$ slew rate. The combination of low power, high bandwidth, and rail-to-rail performance make the KM4111 well suited for battery-powered communication/computing systems.

SOT23-5 shown (not actual size) other packages available

Outperforms the competition in single-supply applications at a

lower cost!

Preliminary

Advertised Specifications	KM4111/ KM4121	Typical CMOS Amplifier	Units
G = 1 BW	37	1	MHz
Noise	16	30	nV/√Hz
Slew rate	26	1	V/µs
Supply current	200	50	μΑ

Typical Performance Plot

TBD		

Ordering Information

Part No.	Temperature	Package	Eval. Board*
KM4111IT5	-40°C to +85°C	5-pin SOT23	KEB002
KM4111IC8	-40°C to +85°C	8-pin SOIC	KEB003
KM4121IT6	-40°C to +85°C	6-pin SOT23	KEB002
KM4121IC8	-40°C to +85°C	8-pin SOIC	KEB003

*Evaluation boards are available to aid in the evaluation of these products. See the full data sheet or website for complete ordering information.

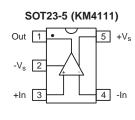
For additional information or a complete data sheet, visit us at *www.kotamicrocircuits.com* or call us at 970.667.7373 or call toll free at 1.877.667.7373.

ISO-9001 Certified

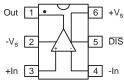
KM4111/KM4121 Typical Specifications

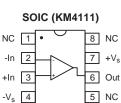
Electrical Characteristics

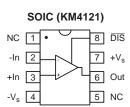
(G = +2, $R_f = 5k\Omega$, $R_I = 2k\Omega$ to $V_s/2$, $T_a = +25^{\circ}C$, unless noted)

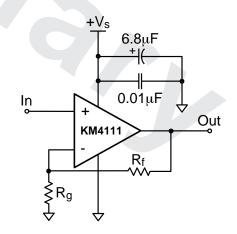

PARAMETERS	CONDITIONS	TYP	TYP	UNITS
		$V_{s} = +2.7V$	$V_s = +5V$	
Frequency Domain Response				
-3dB bandwidth	$\begin{array}{l} G = +1, V_{o} = 0.2 V_{pp} \\ G = +2, V_{o} = 0.2 V_{pp} \\ G = +2, V_{o} = 2 V_{pp} \end{array}$	x	37	MHz
	$G = +2, V_0 = 0.2V_{pp}$	x	14.5	MHz
full power bandwidth	$G = +2, V_0 = 2V_{pp}$	x	х	MHz
gain bandwidth product		х	х	MHz
Time Domain Response				
rise and fall time	2V step	у	У	ns
settling time to 0.1%	2V step	x	x	ns
overshoot	2V step	у	У	%
slew rate	2V step	х	26	V/μs
Distortion and Noise Response				
2nd harmonic distortion	2V _{pp} , 5MHz	У	У	dBc
3rd harmonic distortion	2Vpp, 5MHz	y	y	dBc
THD	2V ^{pp} , 5MHz 2V _{pp} , 5MHz	x	x	%
input voltage noise	>1MHz	x	16	nV/Hz
input current noise	>1MHz	х	х	pA/Hz
DC Performance				
input offset voltage		x	0.5	mV
average drift		x	2	μV/°C
input bias current		x	0.5	μΑ
average drift		У	0.1	nA/°C
input offset current		x	0.02	μA
power supply rejection ratio	DC	x	62	dB
open loop gain		X	65	dB
quiescent current		x	200	μA
Disable Characteristics				
turn on time		x	X	ns
turn off time		x	x	ns
off isolation	5MHz, R _L = 100Ω	x	X	dB
quiescent current		x	30	μΑ
Input Characteristics				
input resistance		x	x	Ω
input capacitance		x	х	pF
input common mode voltage range	e	x	-0.3 to 3.8	V ·
common mode rejection ratio	DC	x	69	dB
Output Characteristics				
output voltage swing	$R_{L} = 10k\Omega$ to $V_{s}/2$	x	х	V
-	$R_{L}^{-} = 2k\Omega$ to $V_{s}/2$	x	0.1 to 4.9	V
linear output current	C	x	±7	mA
short circuit output current		x	±12	mA
power supply operating range		2.5 t	o 5.5	V

*x and y = TBD


Absolute Maximum Ratings


supply voltage	0 to +6V
maximum junction temperature	+175°C
storage temperature range	-65°C to +150°C
lead temperature (10 sec)	+300°C
operating temperature range	-40° to +85°C
input voltage range	±V _s
internal power dissipation	see power derating curves in the full data sheet
θ_{ja} for 5 lead SOT23	256°C/W
θ _{ja} for 8 lead SOIC	152°C/W


Available Packages


SOT23-6 (KM4121)

Typical Circuit Configuration

For additional information or a complete data sheet, visit us at www.kotamicrocircuits.com or call us at 970.667.7373 or call toll free at 1.877.667.7373.

Life Support Policy KOTA's products are not authorized for use as critical components in life support devices or systems without the express written approval of the president of KOTA Microcircuits, Inc. As used herein: 1. Life support devices or systems are devices or systems which, a) are intended for surgical implant into the body, or b) support or sustain life, and whose failure to

perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

KOTA does not assume any responsibility for use of any circuitry described, and KOTA reserves the right at any time without notice to change said circuitry and specifications.

Preliminary