DECEMBER 1983 - REVISED MARCH 1988 - Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs - Dependable Texas Instruments Quality and Reliability #### description These devices contain four independent 2-input OR gates. The SN5432, SN54LS32 and SN54S32 are characterized for operation over the full military range of $-55\,^{\circ}\text{C}$ to $125\,^{\circ}\text{C}$. The SN7432, SN74LS32 and SN74S32 are characterized for operation from $0\,^{\circ}\text{C}$ to $70\,^{\circ}\text{C}$. **FUNCTION TABLE (each gate)** | INP | UTS | OUTPUT | |-----|-----|--------| | Α | В | Y | | Н | х | н | | Х | н | H | | L | L | L | ## logic symbol† [†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D. J. N. or W packages. SN5432, SN54LS32, SN54S32 . . . J OR W PACKAGE SN7432 . . . N PACKAGE SN74LS32, SN74S32 . . . D OR N PACKAGE (TOP VIEW) 1A 1 1 14 VCC | _ | | | | |-------|---|-------------|---------------| | 1A 🗆 | 1 | U 14 | $\Box v_{cc}$ | | 1B 🗀 | 2 | 13 | □ 4B | | 1Y 🗆 | 3 | 12 | □4A | | 2A 🗌 | 4 | 11 | 4 Y | | 2B 🗖 | 5 | 10 |] 3B | | 2Y 🗖 | 6 | 9 |]-3A | | вир 🗖 | 7 | 8 | 3Y | | | _ | | 1 | SN54LS32, SN54S32 . . . FK PACKAGE (TOP VIEW) NC - No internal connection ## logic diagram ### positive logic $$Y = A + B \text{ or } Y = \overline{\overline{A \cdot B}}$$ ### schematics (each gate) Resistor values shown are nominal. #### absolute maximum ratings over operating free-air temperature range (unless otherwise noted) | Supply voltage, VCC (see Note 1) | 7 V | |---------------------------------------|------------------| | Input voltage: '32, 'S32 | 5.5 V | | 'L\$32 | 7 V | | Operating free-air temperature: SN54' | . –55°C to 125°C | | SN74′ | 0°C to 70°C | | Storage temperature range | , -65°C to 150°C | NOTE 1: Voltage values are with respect to network ground terminal. # recommended operating conditions | | | SN5432 | ? | | SN7432 | ? | UNIT | |-----------------------------------|------|--------|-------|------|--------|--------------|------| | | MIN | NOM | MAX | MIN | NOM | MAX | ONT | | VCC Supply voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V | | VIH Hgh-level input voltage | 2 | | | 2 | | | V | | VIL Low-level imput voltage | | | 8.0 | | | 8,0 | V | | OH High-level output current | | | - 0.8 | | | - 0.8 | mA | | IOL Low-level output current | | | 16 | | | 16 | mΑ | | TA Operating free-air temperature | - 55 | | 125 | 0 | | 70 | °C | ## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | 040445750 | 1 | TEST CONDIT | 1010+ | | SN5432 | | | SN7432 | | | |------------------|------------------------|----------------------------|----------------------------|------|--------|-------------|------|--------|---------------|------| | PARAMETER | i | TEST COMDIT | TONS (| MIN | TYP‡ | MAX | MIN | TYP‡ | MAX | UNIT | | VIK | VCC = MIN. | lj = - 12 mA | | | | - 1.5 | | | — 1 ,5 | V | | V _{QH} | V _{CC} = MIN, | V _{IH} = 2 V, | l _{OH} = − 0,8 mA | 2.4 | 3.4 | | 2.4 | 3.4 | | V | | VOL | V _{CC} = MIN, | _V ₁ L ≈ 0.8 V, | IOL = 16 mA | | 0,2 | 0.4 | | 0.2 | 0.4 | V | | l _l | V _{CC} = MAX, | V ₁ = 5.5 V | | | | 1 | | | 1 | mΑ | | Чн | V _{CC} = MAX, | V ₁ = 2.4 V | | | | 40 | | | 40 | μA | | lin. | V _{CC} = MAX, | V ₁ = 0.4 V | | | | 1.6 | | | - 1.6 | mΑ | | loss | V _{CC} = MAX | | | - 20 | | – 55 | - 18 | | - 55 | mΑ | | ГССН | V _{CC} = MAX, | See Note 2 | | | 15 | 22 | | 15 | 22 | mA | | CCL | V _{CC} = MAX, | V1 = 0 V | | | 23 | 38 | | 23 | 38 | mΑ | [†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. NOTE 2: One input at 4.5 V, all others at GND. # switching characteristics, VCC = 5 V, TA = 25°C (see note 3) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | TEST CON | MIN | TYP | MAX | UNIT | | |-----------|-----------------|----------------|----------------------|------------------------|-----|-----|------|----| | tPLH ! | A or B | > | B 400 O | C - 15 - 5 | | 10 | 15 | ns | | †PHL | A 01 B | <u> </u> | $R_L = 400 \Omega$, | C _L = 15 pF | | 14 | 22 | ns | NOTE 3: Load circuits and voltage waveforms are shown in Section 1. [‡] All typical values are at $V_{\rm CC}$ = 5 V, $T_{\rm A}$ = 25°C. § Not more than one output should be shorted at a time. # SN54LS32, SN74LS32 QUADRUPLE 2-INPUT POSITIVE OR GATES ## recommended operating conditions | | | SN54LS32 | | SN74LS | S32 | | |---|------|-------------|--------|--------|------|------| | | MIN | NOM MA | X MIN | NOM | MAX | UNIT | | V _{CC} Supply voltage | 4.5 | 5 5 | 5 4.75 | 5 | 5.25 | V | | V _{IH} Hgh-level input voltage | 2 | | 7 2 | | | V | | VIL Low-level input voltage | | 0. | 7 | | 8.0 | V | | IOH High-level output current | | – 0. | 4 | | D.4 | mA | | IOL Low-level output current | | | 4 | | 8 | mA | | TA Opertating free-air temperature | - 55 | 12 | 5 0 | | 70 | °C | ## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | ******** | | 7507 00ND17 | | | SN54LS | 32 | | SN74LS | 32 | | |------------------|------------------------|------------------------|----------------------------|------|--------|-------|-------------|--------|--------------|------| | PARAMETER | | TEST CONDIT | TONST | MIN | TYP‡ | MAX | MIN | TYP ‡ | MAX | UNIT | | Vικ | V _{CC} - MIN, | I ₁ = 18 mA | | | | - 1.5 | | | - 1.5 | Ÿ | | Voн | V _{CC} = MIN, | V _{IH} = 2 V, | I _{OH} = - 0.4 mA | 2.5 | 3.4 | • | 2.7 | 3.4 | | ٧ | | 1.4 | VCC = MIN, | VIL = MAX, | IOL = 4 mA | | 0.25 | 0.4 | | 0.25 | 0.4 | v | | VOL | VCC = MIN, | VIL = MAX, | IOL = 8 mA | | | | | 0.35 | 0.5 | · - | | l _l | V _{CC} = MAX, | V ₁ = 7 V | | | | 0.1 | | | 0.1 | mA | | IH | V _{CC} = MAX, | V _I = 2.7 V | | | | 20 | | | 20 | μΑ | | ^I 1L | VCC = MAX, | V1 = 0.4 V | | | | 0.4 | | | - 0.4 | mΑ | | 10s§ | VCC = MAX | | | - 20 | | - 100 | – 20 | | - 100 | mΑ | | ССН | V _{CC} = MAX, | See Note 2 | | | 3.1 | 6.2 | | 3.1 | 6.2 | mA | | ¹ CCL | V _{CC} = MAX, | V ₁ = 0 V | | | 4.9 | 9.8 | | 4.9 | 9.8 | mΑ | [†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. NOTE 2: One input at 4.5 V, all others at GND. ## switching characteristics, VCC = 5 V, TA = 25°C (see note 3) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | TEST CON | DITIONS | MIN | ТҮР | MAX | UNIT | |---------------|-----------------|----------------|---------------------|------------------------------------|-----|-----|-----|------| | tPLH | A or B | V | D - 21.0 | C = 15 == | | 14 | 22 | пѕ | | t P HL | A OF B | T | $R_L = 2 k\Omega$, | C _L = 15 p _F | | 14 | 22 | ns | NOTE 3: Load circuits and voltage waveforms are shown in Section 1. [‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. § Not more than one output should be shorted at a time and the duration of the short-circuit should not exceed one second. ### recommended operating conditions | | | | SN54S32 | | | SN74S32 | | | | |-----|--------------------------------|-------------|---------|-----|------|---------|------|------|--| | | | MIN | MOM | MAX | MIN | NOM | MAX | UNIT | | | Vcc | Supply voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | ٧ | | | ViH | High-level input voltage | 2 | | | 2 | | | V | | | VIL | Low-level input voltage | | | 8.0 | | | 0.8 | V | | | Іон | High-level output current | | | 1 | | | _ 1 | mA | | | lOL | Low-level output current | | | 20 | | | 20 | mA | | | TA | Operating free-air temperature | – 55 | | 125 | 0 | | 70 | °C | | ## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | | TEST CONDIT | HONE T | | SN54S32 | | | SN74S3 | 2 | UNIT | |------------------|------------------------|--------------------------|--------------------------|------|---------|--------------|------|--------|--------------|------| | PANAME:EN | | LEST COMDIT | IONS : | MIN | TYP \$ | MAX | MIN | TYP # | MAX | UNII | | v _{IK} | VCC = MIN, | lj = _ 18 mA | | | | - 1.2 | [| | - 1.2 | V | | VOH | V _{CC} = MIN, | V _{IH} = 2 V, | I _{OH} = - 1 mA | 2.5 | 3.4 | | 2.7 | 3.4 | | V | | Vol | VCC = MIN, | V _{IL} = 0.8 V, | I _{OL} = 20 mA | | | 0.5 | | | 0.5 | V | | Ч | V _{CC} = MAX, | V ₁ = 5.5 V | | | | 1 | | - | 1 | mA | | ЧН | VCC = MAX, | V ₁ = 2.7 V | | | | 50 | | | 50 | μА | | ΊL | VCC = MAX, | V ₁ = 0.5 V | | | | -2 | | | - 2 | mA | | los§ | V _{CC} = MAX | | | - 40 | | - 100 | - 40 | | – 100 | mA | | Гссн | V _{CC} = MAX, | See Note 2 | | | 18 | 32 | | 18 | 32 | mΑ | | ^I CCL | V _{CC} = MAX, | V ₁ = 0 V | | | 38 | 68 | 1 | 38 | 68 | mA | - † For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. - ‡ All typical values are at V_{CC} = 5 V, T_A = 25°C. § Not more than one output should be shorted at a time and the duration of the short-circuit should not exceed one second. - NOTE 2: One input at 4.5 V, all others at GND. # switching characteristics, VCC = 5 V, TA = 25°C (see note 3) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | TEST CON | MIN T | ΥP | MAX | UNIT | | |-----------|-----------------|----------------|----------------------|------------------------|----|-----|------|----| | tPLH . | АогВ | · · | D - 370 C | C ₁ = 15 pF | | 4 | 7 | ns | | tPHL | AOFB | | RL = 280 Ω, | C[= 15 pr | | 4 | 7 | ns | | tPLH | A or 8 | | $R_1 = 280 \Omega$, | C _I = 50 pF | | 5 | | пş | | tPHL | A019 | ' | 71_ 200 32, | J 30 M | | 5 | | ns | NOTE 3: Load circuits and voltage waveforms are shown in Section 1. #### IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current. TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Copyright © 1996, Texas Instruments Incorporated #### **IMPORTANT NOTICE** Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof. Copyright © 1998, Texas Instruments Incorporated Product Folder: SN5432, Quadruple 2-Input Positive-OR Gates Contact Us Buy About TI PRODUCT FOLDER | PRODUCT INFO: FEATURES | DESCRIPTION | DATASHEETS | PRICING/AVAILABILITY/PKG APPLICATION NOTES | USER GUIDES | MORE LITERATURE PRODUCT SUPPORT: TRAINING #### SN5432, Quadruple 2-Input Positive-OR Gates DEVICE STATUS: ACTIVE | PARAMETER NAME | SN5432 | <u>SN7432</u> | |-------------------|--------|---------------| | Voltage Nodes (V) | 5 | 5 | | Output Level | TTL | TTL | | Static Current | | 30 | FEATURES ▲Back to Top - Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs - Dependable Texas Instruments Quality and Reliability DESCRIPTION ▲Back to Top These devices contain four independent 2-input OR gates. The SN5432, SN54LS32 and SN54S32 are characterized for operation over the full military range of -55°C to 125°C. The SN74LS32 and SN74S32 are characterized for operation from 0°C to 70°C. TECHNICAL DOCUMENTS ▲Back to Top To view the following documents, Acrobat Reader 4.0 is required. To download a document to your hard drive, right-click on the link and choose 'Save'. DATASHEET ▲Back to Top Full datasheet in Acrobat PDF: sn5432.pdf (250 KB) (Updated: 03/01/1988) APPLICATION NOTES View Application Notes for Digital Logic - Designing With Logic (Rev. C) (SDYA009C Updated: 06/01/1997) - Evaluation of Nickel/Palladium/Gold-Finished Surface-Mount Integrated Circuits (SZZA026 Updated: 06/20/2001) - Input and Output Characteristics of Digital Integrated Circuits (SDYA010 Updated: 10/01/1996) - Live Insertion (SDYA012 Updated: 10/01/1996) - Understanding and Interpreting Texas Instruments Standard-Logic Products Data Sh (Rev. A) (SZZA036A Updated: 02/27/2003) MORE LITERATURE Back to Top - Enhanced Plastic Portfolio Brochure (SGZB004, 387 KB Updated: 08/19/2002) - Logic Reference Guide (SCYB004, 1032 KB Updated: 10/23/2001) - MicroStar Junior BGA Design Summary (SCET004, 167 KB Updated: 07/28/2000) - Military Brief (SGYN138, 803 KB Updated: 10/10/2000) Product Folder: SN5432, Quadruple 2-Input Positive-OR Gates - Overview of IEEE Std 91-1984, Explanation of Logic Symbols Training Booklet (Rev. A) (SDYZ001A, 138 KB Updated: 07/01/1996) - Palladium Lead Finish User's Manual (SDYV001, 2041 KB Updated: 11/01/1996) - QML Class V Space Products Military Brief (Rev. A) (SGZN001A, 257 KB Updated: 10/07/2002) USER GUIDES ▲Back to Top • LOGIC Pocket Data Book (SCYD013, 4837 KB - Updated: 12/05/2002) | PRICING/ | PRICING/AVAILABILITY/PKG ABack to Top | | | | | | | | | | | | | |---|--|--------------------------------|------------|---------------------|--------------------|------------------------------|--|--------------|---|-----------|---|----------|----------| | DEVICE INFORMATION Updated Daily | | | | | | | TI INVENTORY STATUS
As Of 09:00 AM GMT, 17 Apr 2003 | | REPORTED DISTRIBUTOR INVENTORY
As Of 09:00 AM GMT, 17 Apr 2003 | | | | | | ORDERABLE
DEVICE | <u>STATUS</u> | PACKAGE
TYPE PINS | TEMP (°C) | DSCC
NUMBER | PRODUCT
CONTENT | BUDGETARY PRICING QTY \$US | STD
PACK
QTY | IN STOCK | IN PROGRESS
QTY DATE | LEAD TIME | DISTRIBUTOR
COMPANY REGION | IN STOCK | PURCHASE | | 5962-
9557401QCA | ACTIVE | <u>CDIP</u>
<u>(J)</u> 14 | -55 TO 125 | | View Contents | 1KU 2.47 | 1 | <u>193</u> * | >10k 20 May | 5 WKS | <u>Avnet</u> Americas | 99 | BUY NOW | | 5962-
9557401QDA | ACTIVE | <u>CFP</u>
(W) 14 | -55 TO 125 | | View Contents | 1KU 5.41 | 1 | <u>0</u> * | >10k 20 May | 5 WKS | None Reported
<u>View Distributors</u> | | | | SN5432J | ACTIVE | <u>CDIP</u>
<u>(J)</u> 14 | -55 TO 125 | | View Contents | 1KU 2.10 | 1 | <u>25</u> * | >10k 20 May | 5 WKS | EBV Europe | 75 | BUY NOW | | | | | | | | | | | | | Avnet Americas | 55 | BUY NOW | | SNJ5432J | ACTIVE | <u>CDIP</u>
(J) 14 | -55 TO 125 | 5962-
9557401QCA | View Contents | 1KU 2.47 | 1 | <u>34</u> * | >10k 20 May | 5 WKS | <u>Avnet-SILICA</u> Europe | 65 | BUY NOW | | | · | | | | | | | | | | <u>Avnet</u> Americas | 2 | BUY NOW | | SNJ5432W | ACTIVE | <u>CFP</u>
(W) 14 | -55 TO 125 | 5962-
9557401QDA | View Contents | 1KU 5.41 | 1 | <u>79</u> * | >10k 20 May | 5 WKS | None Reported
View Distributors | | | Table Data Updated on: 4/17/2003 Products | Applications | Support | my.TI © Copyright 1995-2002 Texas Instruments Incorporated. All rights reserved. Trademarks | Privacy Policy | Terms of Use