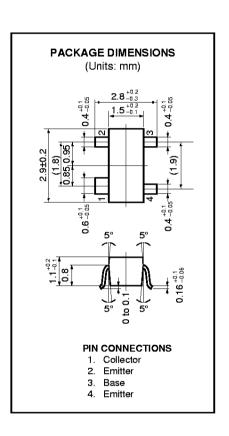


SILICON TRANSISTOR 2SC4095

MICROWAVE LOW NOISE AMPLIFIER NPN SILICON EPITAXIAL TRANSISTOR 4 PINS MINI MOLD

DESCRIPTION


The 2SC4095 is an NPN epitaxial silicon transistor designed for use in low-noise and small signal amplifiers from VHF band to UHF band. 2SC4095 features excellent power gain with very low-noise figures. 2SC4095 employs direct nitiride passivated base surface process (DNP process) which is an NEC proprietary new fabrication technique which provides excellent noise figures at high current values. This allows excellent associated gain and very wide dynamic range.

FEATURES

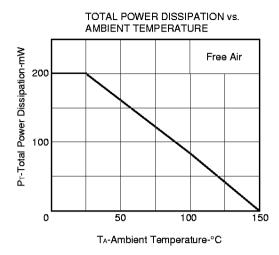
- NF = 1.8 dB TYP. @ f = 2.0 GHz, VcE = 6 V, Ic = 5 mA
- |S_{21e}|² = 9.5 dB TYP. @ f = 2.0 GHz, VcE = 6 V, lc = 10 mA

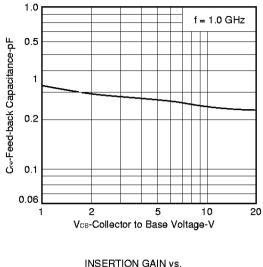
ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)

Collector to Base Voltage	VcBo	20	V
Collector to Emitter Voltage	VCEO	10	V
Emitter to Base Voltage	VEBO	1.5	V
Collector Current	lc	35	mΑ
Total Power Dissipation	PT	200	mW
Junction Temperature	Tj	150	°C
Storage Temperature	Tstg	-65 to +150	°C

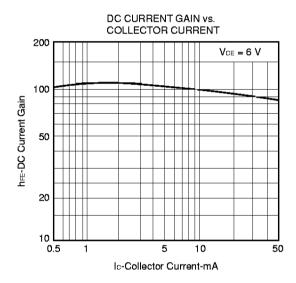
ELECTRICAL CHARACTERISTICS (TA = 25 °C)

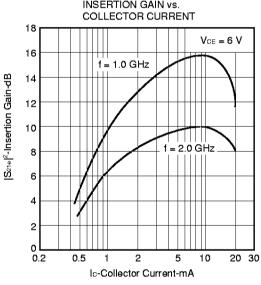
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Collector Cutoff Current	Ісво			1.0	μA	VcB = 10 V, IE = 0
Emitter Cutoff Current	Ієво			1.0	μΑ	V _{EB} = 1 V, Ic = 0
DC Current Gain	h⊧∈	50	100	250		VcE = 6 V, lc = 10 mA
Gain Bandwidth Product	f⊤		10		GHz	VcE = 6 V, lc = 10 mA f = 1.0 GHz
Feed-Back Capacitance	C _{re}		0.25	0.8	pF	VcB = 10 V, IE = 0, f = 1.0 MHz
Insertion Power Gain	S _{21e} ²	7.5	9.5		dB	VcE = 6 V, lc = 10 mA, f = 2.0 GHz
Maximum Available Gain	MAG		12		dB	Vce = 6 V, lc = 10 mA, f = 2.0 GHz
Noise Figure	NF		1.8	3.0	dB	VcE = 6 V, lc = 5 mA, f = 2.0 GHz

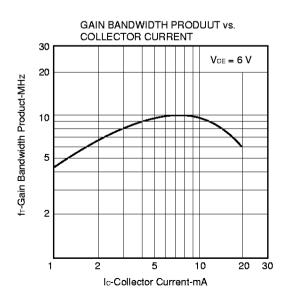

hee Classification

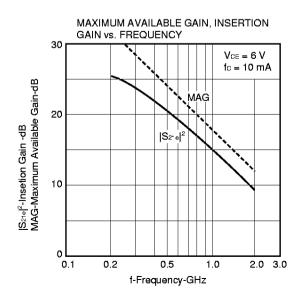

Class	R46/RDF *	R47/RDG *	R48/RDH *
Marking	R46	R47	R48
h⊧∈	50 to 100	80 to 160	125 to 250

^{*} Old Specification / New Specification

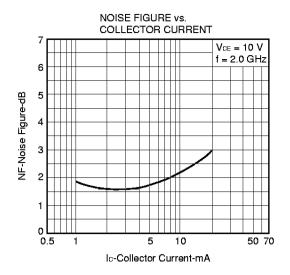

TYPICAL CHARACTERISTICS (TA = 25 °C)






FEED-BACK CAPACITANCE vs.

COLLECTOR TO BASE VOLTAGE



S-PARAMETER

1400

1600

1800

2000

0.131

0.132

0.150

0.163

-163.0

179.6

160.0

150.1

4.597

3.927

3.743

3.233

 $V_{CE} = 6.0 \text{ V}, \text{ lc} = 3.0 \text{ mA}, \text{ Zo} = 50 \Omega$

VCE = 6.0	$V_1 = 3.0 \text{ m}$	$A, ZO = 50 \Omega$						
f (MHz)	S11	∠ S 11	S ₂₁	∠ S 21	S ₁₂	∠ S 12	S22	∠ S 22
200	0.870	-24.2	9.193	155.6	0.031	53.6	0.946	-12.8
400	0.747	-44.6	7.780	136.6	0.040	66.2	0.876	-20.7
600	0.628	-59.8	7.058	122.1	0.064	54.7	0.816	-26.4
800	0.516	-75.1	5.675	109.4	0.066	56.0	0.743	-30.9
1000	0.400	-87.7	5.180	99.6	0.090	49.4	0.689	-33.0
1200	0.327	-103.4	4.269	89.8	0.084	47.9	0.654	-35.7
1400	0.262	-118.7	3.950	81.7	0.106	48.5	0.604	-37.7
1600	0.231	-135.5	3.406	74.0	0.105	42.1	0.581	-41.5
1800	0.205	-155.3	3.290	66.4	0.126	46.4	0.548	-43.9
2000	0.196	-170.6	2.867	60.8	0.124	40.9	0.529	-47.1
VCE 6.0 V,	Ic = 10.0 m/s	$A, Zo = 50 \Omega$						
f (MHz)	S ₁₁	∠ S 11	S ₂₁	∠ S 21	S ₁₂	∠ S 12	S ₂₂	∠ S 22
200	0.671	-43.5	18.685	137.9	0.023	52.1	0.832	-19.0
400	0.458	-68.7	12.702	115.2	0.029	62.2	0.710	-23.9
600	0.319	-83.7	9.895	102.8	0.046	54.4	0.649	-26.0
800	.0239	-101.9	7.275	92.3	0.049	63.1	0.600	-27.5
1000	0.172	-119.3	6.261	85.1	0.067	58.6	0.578	-28.4
1200	0.149	-141.4	5.038	77.4	0.070	57.9	0.559	-30.3

71.0

64.8

58.8

54.5

0.088

0.094

0.113

0.115

56.1

54.0

55.3

50.0

0.527

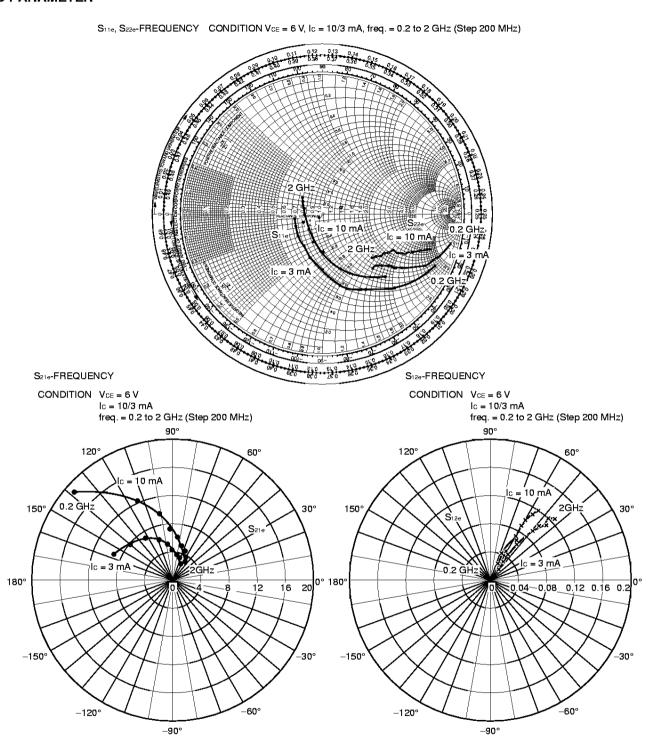
0.514

0.494

0.478

3

-32.5


-35.7

-38.1

-41.6

S-PARAMETER

RECOMMENDED SOLDERING CONDTITIONS

The following conditions (see table below) must be met then soldering this product. Please consult with our sales offices in case other soldering process is used, or in case soldering is done under different contions.

TYPES OF SURFACE MOUNT DEVICE

For more details, refer to our document "SMT MANUAL" (IEI-1207).

2SC4095

Soldering process		Symbol	
Infrared ray reflow	Peak package's surface tem Reflow time: Number of reflow process:	IR30-00-1	
VPS	Peak package's surface tem Reflow time: Number of reflow process:	perature: 215 °C or below, 40 seconds or below (200 °C or higher), 1, Exposure limit*: None	VP15-00-1
Wave soldering	Solder temperature: Flow time: Number of reflow process:	260 °C or below, 10 seconds or below, 1, Exposure limit*: None	WS60-00-1
Partial heating method	Terminal temperature: Flow time: Exposure limit*:	300 °C or below, 3 seconds or below, None	0

^{*:} Exposure limit before soldering after dry-pack package is opened.

Storage conditions: 25 °C and relative humidity at 65 % or less.

Note: Do not apply more than a single process at once, except for "Partial heating method".

5

[MEMO]

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed

for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5