INCH-POUND MIL-M-38510/309E <u>10 April 2003</u> SUPERSEDING MIL-M-38510/309D 21 June 1985

MILITARY SPECIFICATION

MICROCIRCUITS, DIGITAL, BIPOLAR, LOW-POWER SCHOTTKY TTL, DATA SELECTOR/MULTIPLEXER WITH THREE-STATE OUTPUTS, MONOLITHIC SILICON

Inactive for new design after 18 April 1997.

This specification is approved for use by all Departments and Agencies of the Department of Defense.

1. SCOPE

1.1 <u>Scope.</u> This specification covers the detail requirements for monolithic silicon, low-power Schottky TTL, data selector/multiplexer (three-state) logic microcircuits. Two product assurance classes and a choice of case outlines and lead finishes are provided for each type and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.3).

1.2 Part number. The part number should be in accordance with MIL-PRF-38535, and as specified herein.

1.2.1 <u>Device types.</u> The device types should be as follows:

Device type	<u>Circuit</u>
01	Eight-input data selector/multiplexer, with enable
02	Dual, four-input data selector/multiplexer, with enable
03, 04	Quad, two-input data selector/multiplexer, with enable
05	Eight-input data selector/multiplexer, 3-state outputs with enable
06, 07	Quad, two-input data selector/multiplexer, 3-state outputs with enable
08	Dual, four-input data selector/multiplexer, 3-state outputs with enable
09	Cascadable, quad, two-input data selector/multiplexer, with storage

1.2.2 Device class. The device class should be the product assurance level as defined in MIL-PRF-38535.

1.2.3 Case outlines. The case outlines should be as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
Е	GDIP1-T16 or CDIP2-T16	16	Dual-in-line
F	GDFP2-F16 or CDFP3-F16	16	Flat pack
Х	CQCC2-N20	20	Square leadless chip carrier
2	CQCC1-N20	20	Square leadless chip carrier

Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, P. O. Box 3990, Columbus, OH 43216-5000, by using the self addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

AMSC N/A

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

FSC 5962

1.3 Absolute maximum ratings.

	Supply voltage range Input voltage range Storage temperature range Maximum power dissipation (P _D) <u>1</u> /	-1.5 V at -18 mA to 7.0 V
	Device type 01, 02	55 mW
	Device type 03	
	Device type 04	
	Device type 05	
	Device type 06, 07	
	Device type 08	
	Device type 09	
	Lead temperature (soldering, 10 seconds)	300°C
	Thermal resistance, junction to case (θ_{JC}) :	
	Cases E, F, X, and 2	(See MIL-STD-1835)
	Junction temperature (T _J) <u>2</u> /	
1.4	Recommended operating conditions.	
1.4		4.5 V dc minimum to 5.5 V dc
1.4	Recommended operating conditions. Supply voltage (V _{CC})	4.5 V dc minimum to 5.5 V dc maximum
1.4	Supply voltage (V _{CC})	maximum
1.4		maximum 2.0 V
1.4	Supply voltage (V _{CC}) Minimum high level input voltage (V _{IH}) Maximum low level input voltage (V _{IL}) Normalized fanout (each output) $\underline{3}/$	maximum 2.0 V 0.7 V
1.4	Supply voltage (V _{CC}) Minimum high level input voltage (V _{IH}) Maximum low level input voltage (V _{IL}) Normalized fanout (each output) $\underline{3}/$	maximum 2.0 V 0.7 V
1.4	Supply voltage (V _{CC}) Minimum high level input voltage (V _{IH}) Maximum low level input voltage (V _{IL})	maximum 2.0 V 0.7 V 10 maximum
1.4	Supply voltage (V _{CC}) Minimum high level input voltage (V _{IH}) Maximum low level input voltage (V _{IL}) Normalized fanout (each output) <u>3</u> / Low logic level	maximum 2.0 V 0.7 V 10 maximum 20 maximum
1.4	Supply voltage (V _{CC}) Minimum high level input voltage (V _{IH}) Maximum low level input voltage (V _{IL}) Normalized fanout (each output) <u>3</u> / Low logic level High logic level	maximum 2.0 V 0.7 V 10 maximum 20 maximum -55° to +125°C
1.4	$\label{eq:supply} \begin{array}{l} \mbox{Supply voltage } (V_{CC}) & \\ \mbox{Minimum high level input voltage } (V_{IH}) & \\ \mbox{Maximum low level input voltage } (V_{IL}) & \\ \mbox{Normalized fanout (each output) } \underline{3} / & \mbox{Low logic level } \\ \mbox{Low logic level } & \\ \mbox{High logic level } & \\ \mbox{Case operating temperature range } (T_C) & \\ \mbox{Setup time } t_{(SETUP)} \mbox{ type } 09 \mbox{ data to clock } \\ \\ \mbox{Setup time } t_{(SETUP)} \mbox{ type } 09 \mbox{ word select to clock } \\ \end{array}$	maximum 2.0 V 0.7 V 10 maximum 20 maximum -55° to +125°C 15 ns 25 ns
1.4	$\label{eq:supply} \begin{array}{l} \mbox{Supply voltage (V_{CC})} \\ \mbox{Minimum high level input voltage (V_{IH})} \\ \mbox{Maximum low level input voltage (V_{IL})} \\ \mbox{Maximum low level input voltage (V_{IL})} \\ \mbox{Normalized fanout (each output) } \underline{3} \\ \mbox{Low logic level} \\ \mbox{High logic level} \\ \mbox{High logic level} \\ \mbox{Case operating temperature range (T_C)} \\ \mbox{Setup time } t_{(SETUP)} \mbox{type 09 data to clock} \\ \mbox{Setup time } t_{(HOLD)} \mbox{type 09 data to clock} \\ \mbox{Hold time } t_{(HOLD)} \mbox{type 09 data to clock} \\ \mbox{Low logic level} \\ L$	maximum 2.0 V 0.7 V 10 maximum 20 maximum -55° to +125°C 15 ns 25 ns 5 ns
1.4	$\label{eq:supply} \begin{array}{l} \mbox{Supply voltage } (V_{CC}) & \\ \mbox{Minimum high level input voltage } (V_{IH}) & \\ \mbox{Maximum low level input voltage } (V_{IL}) & \\ \mbox{Normalized fanout (each output) } \underline{3} / & \mbox{Low logic level } \\ \mbox{Low logic level } & \\ \mbox{High logic level } & \\ \mbox{Case operating temperature range } (T_C) & \\ \mbox{Setup time } t_{(SETUP)} \mbox{ type } 09 \mbox{ data to clock } \\ \\ \mbox{Setup time } t_{(SETUP)} \mbox{ type } 09 \mbox{ word select to clock } \\ \end{array}$	maximum 2.0 V 0.7 V 10 maximum 20 maximum -55° to +125°C 15 ns 25 ns 5 ns

Clock pulse width tP(CLOCK) type 09 high or low 20 ns

 $[\]overline{\underline{1/}}$ Must withstand the added P_D due to short-circuit test (e.g., I_{OS}). $\underline{2/}$ Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with MIL-PRF-38535.

^{3/} Device will fanout in both high and low levels to the specified number of data inputs on the same device type as that being tested.

2. APPLICABLE DOCUMENTS

2.1 Government documents.

2.1.1 Specifications and Standards. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents shall be those listed in the issue of the Departments of Defense Index of Specifications and Standards (DODISS) and supplement thereto, cited in the solicitation.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38535 -Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883	-	Test Method Standard for Microelectronics.
MIL-STD-1835	-	Interface Standard Electronic Component Case Outlines

(Unless otherwise indicated, copies of the above specifications and standards are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 Order of precedence. In the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 Qualification. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.4).

3.2 Item requirements. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.

3.3 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.

3.3.1 Terminal connections. The terminal connections shall be as specified on figure 1.

3.3.2 Logic diagrams. The logic diagrams shall be specified on figure 2.

3.3.3 <u>Truth tables.</u> The truth tables shall be as specified on figure 3.

3.3.4 <u>Schematic circuits</u>. The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity upon request.

3.3.5 Case outlines. The case outlines shall be as specified in 1.2.3.

3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).

3.5 <u>Electrical performance characteristics</u>. The electrical performance characteristics are as specified in table I, and apply over the full recommended case operating temperature range, unless otherwise specified.

3.6 <u>Electrical test requirements.</u> The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.

3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.

3.8 <u>Microcircuit group assignment</u>. The devices covered by this specification shall be in microcircuit group number 11 (see MIL-PRF-38535, appendix A).

4. VERIFICATION

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.

4.2 <u>Screening</u>. Screening shall be in accordance with MIL-PRF-38535 and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:

- a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
- b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
- c. Additional screening for space level product shall be as specified in MIL-PRF-38535, appendix B.

4.3 <u>Qualification inspection</u>. Qualification inspection shall be in accordance with MIL-PRF-38535.

4.4 <u>Technology Conformance inspection (TCI)</u>. Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).

4.4.1 Group A inspection. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:

- a. Tests shall be as specified in table II herein.
- b. Subgroups 4, 5, and 6 shall be omitted.

4.4.2 Group B inspection. Group B inspection shall be in accordance with table II MIL-PRF-38535.

Test	Symbol	I Conditions		Device	Limits		Unit
			$T_C \le +125^{\circ}C$ erwise specified	types	Min	Max	
High level output voltage	V _{OH}	V _{IL} = 0.7 V V _{CC} = 4.5 V	I _{OH} =4 mA	01, 02, 03, 04, 09	2.5		V
		V _{IH} = 2.0 V	I _{OH} = -1.0 mA	05, 06, 07, 08	2.4		V
Low level output voltage	V _{OL1}	V _{CC} = 4.5 V	I _{OL} = 4.0 mA	01, 02, 03, 04, 05, 08, 09		0.40	V
			I _{OL} = 12 mA	06, 07		0.40	V
Input clamp voltage	V _{IC}	$V_{CC} = 4.5 \text{ V}, I_{IN} =$ $T_{C} = +25^{\circ}\text{C}$	18 mA,	All		-1.5	V
Low level input current at data inputs	I _{IL1}	$V_{\rm CC} = 5.5 \text{ V}, \text{ V}_{\rm IN}$	= 0.4 V	01, 05	0	72	mA
Low level input current at select or strobe	I _{IL2}			01, 05	0	40	mA
Low level input current at A, B, or C	I _{IL3}	1		01, 05	0	40	mA
Low level input current	I _{IL1}			02, 08	0	40	mA
·				09	03	40	
Low level input current at A, B, or C	I _{IL1}			03, 04	0	44	mA
Low level input current at select or strobe	I _{IL2}			03, 04	0	88	mA
Low level input current at A, B, or output control	I _{IL1}			06, 07	0	44	mA
Low level input current	I _{IL2}			06	0	88	mA
at select				07	0	80	
High level input current	I _{IH1}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN}$	= 2.7 V	01, 02, 05, 08, 09		20	μΑ
	I _{IH2}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN}$	= 7.0 V	01, 02, 05, 08		100	μΑ
	I _{IH2}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 5.5 \text{ V}$		09		100	μΑ
High level input current at A or B	I _{IH1}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 2.7 \text{ V}$ $V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 7.0 \text{ V}$		03, 04		20	μA
	I _{IH2}					100	μA
High level input current at strobe or select	I _{IH3}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 2.7 \text{ V}$		03, 04		40	μA
	I _{IH4}	V_{CC} = 5.5 V, V_{IN}	= 7.0 V			200	μA
High level input current at A, B, or output control	I _{IH1}	V_{CC} = 5.5 V, V_{IN}	= 2.7 V	06, 07		20	μΑ
	I _{IH2}	V_{CC} = 5.5 V, V_{IN}	= 7.0 V	1		100	μA

Test	Symbol	Conc	litions	Device	Lir	nits	Unit
	$-55^{\circ}C \le T_{C} \le +125^{\circ}C$ unless otherwise specified		types	Min	Max		
High level input current at select	I _{IH3}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 3$	2.7 V	06, 07		40	μA
	I _{IH4}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 7$	7.0 V			200	μΑ
Off-state output current high level voltage applied	I _{OZH}	$V_{CC} = 5.5 V, V_{O} = 2$	2.7 V	05, 06, 07, 08		20	μΑ
Off-state output current low level voltage applied	I _{OZL}	$V_{\rm CC} = 5.5 \text{ V}, \text{ V}_{\rm O} = 0$).4 V	05, 06, 07, 08		-20	μΑ
Short circuit output current	I _{OS}	V _{CC} = 5.5 V, <u>1</u> / V _{OUT} = GND		01,02,03, 04, 09	-15	-100	mA
				05,06,07, 08	-15	-130	
Supply current	I _{CC1}	V _{CC} = 5.5 V	V _{IN} (data) = 5.5 V	01		10	mA
			V _{IN} (data) = GND	02		10	
				09		21	
	I _{CC1}	V_{CC} = 5.5 V, V_{IN} (da	03		16	mA	
	I _{CC1}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN}(\text{data})$	04		8	mA	
	I _{CC1}	$V_{CC} = 5.5 V, V_{IN}(da)$ $V_{IN}(strobe) = GND$	05		10	mA	
	I _{CC2}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN}(\text{dat})$ $V_{IN}(\text{strobe}) = 5.5 \text{ V}$	05		12	mA	
	I _{CC1}			06		12	mA
		V _{IN} (output control)	07		15		
	I _{CC2}	· · · · ·	$c_{\rm C} = 5.5 \text{ V}, \text{ V}_{\rm IN}(\text{data}) = \text{GND}$			18	mA
			$V_{IN}(output control) = GND$			9	
	I _{CC3}	$V_{CC} = 5.5 V,$ $V_{IN}(output control)$	06, 07		19	mA	
	I _{CC1}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN}(\text{dat})$ $V_{IN}(\text{output control})$	ata) = GND	08		12	mA
	I _{CC2}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN}(\text{dat})$ $V_{IN}(\text{output control})$	ata) = GND	08		14	mA
Propagation delay time,	t _{PLH1}	$V_{CC} = 5.0 \text{ V}, \text{ C}_{L} = 5.0 \text{ V}$		01	3	56	ns
low to high level output		R_{L} = See figure 5.	- F	02	3	30	
from data input to Y				03	3	29	
· · · · · · · · · · · ·				04	3	26	
				05	3	50	
				06, 07	3	35	
				09	3	43	
				08	3	45	

TABLE I. <u>Electrical performance characteristics</u> - Continued.

 $\underline{1}$ / Not more than one output should be shorted at one time.

Test	Symbol	Conditions	Device	Lir	nits	Unit
		$-55^{\circ}C \le T_C \le +125^{\circ}C$	types	Min	Max	
		unless otherwise specified				
Propagation delay time,	t _{PHL1}	V_{CC} = 5.0 V, C_{L} = 50 pF ±10%	01, 02	3	47	ns
high to low level output		R_L = See figure 5.	03	3	29	
from data input to Y			04	3	26	
			05	3	50	
			06, 07	3	35	
			09	3	48	
		_	08	3	38	
Propagation delay time,	t _{PLH2}		01	3	39	ns
low to high level output from data to W			05	3	30	
Propagation delay time,	t _{PHL2}		01	3	38	ns
high to low level output	-1 1162		03	3	30	
from data to W				Ū		
Propagation delay time,	t _{PLH3}		01	3	71	ns
low to high level output	1 Ento		02	3	44	
from strobe to Y			03	3	38	
			04	3	33	
Propagation delay time,	t _{PHL3}	1	01, 02	3	56	ns
high to low level output			03	3	39	
from strobe to Y			04	3	35	
Propagation delay time,	t _{PLH4}]	01	3	44	ns
low to high level output						
from strobe to W						
Propagation delay time,	t _{PHL4}		01	3	53	ns
high to low level output						
from strobe to W						
Propagation delay time,	t _{PLH5}		01	3	72	ns
high to low level output			02	3	51	
from select to Y			03	3	42	
			04	3	38	
			05, 08	3	75	
		4	06, 07	3	39	
Propagation delay time,	t _{PHL5}		01	3	53	ns
high to low level output			02	3	65	
from select to Y			03	3	48	
			04	3	44	
			05	3	75	
			06, 07	3	39	
			08	3	56	

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol	Conditions	Device	Lin	nits	Unit
		$-55^{\circ}C \leq T_C \leq +125^{\circ}C$ unless otherwise specified	types	Min	Max	
Propagation delay time,	t _{PLH6}	$V_{CC} = 5.0 \text{ V}, \text{ C}_{L} = 50 \text{ pF} \pm 10\%$	01	3	42	ns
low to high level output		R_L = See figure 5.	05	3	57	
from select to W						
Propagation delay time,	t _{PHL6}		01	3	56	ns
high to low level output			05	3	57	
from select to W		_				
Enable time to high level	t _{PZH1}		05	3	75	ns
output from strobe to Y						
Enable time to high level	t _{PZH2}		05	3	48	ns
output from strobe to W						
Enable time to high level	t _{PZH3}		06, 07	3	53	ns
output from output			08	3	69	
control to Y						
Enable time to low level	t _{PZL1}		05	3	68	ns
output from strobe to Y						
Enable time to low level	t _{PZL2}		05	3	68	ns
output from strobe to W						
Enable time to low level	t _{PZL3}		06, 07	3	53	ns
output from output			08	3	42	
control to Y						
Disable time from high	t _{PHZ1}	V_{CC} = 5.0 V, C_L = 15 pF minimum	05	3	75	ns
level output, from		R_L = See figure 5.				
strobe to Y		-				
Disable time from high	t _{PHZ2}		05	3	90	ns
level output, from						
strobe to W		-				
Disable time from high	t _{PHZ3}		06, 07	3	53	ns
level output, from output			08	3	69	
control to Y		-				
Disable time from low	t _{PLZ1}		05	3	45	ns
level output, from						
strobe to Y		-				
Disable time from low	t _{PLZ2}		05	3	45	ns
level output, from						
strobe to W		4				
Disable time from low	t _{PLZ3}		06, 07	3	45	ns
level output, from output			08	3	48	
control to Y						

TABLE I. Electrical performance characteristics - Continued.

	Subgroups (see table III			
MIL-PRF-38535	Class S	Class B		
test requirements	devices	devices		
Interim electrical parameters	1	1		
Final electrical test parameters	1*, 2, 3, 7, 9,	1*, 2, 3, 7, 9		
	10, 11			
Group A test requirements	1, 2, 3, 7, 8,	1, 2, 3, 7, 8,		
	9, 10, 11	9, 10, 11		
Group B test requirements when using	1, 2, 3, 7, 8,	N/A		
the method 5005 QCI option	9, 10, 11			
Group C end-point electrical parameters	1, 2, 3, 7, 8	1, 2, 3		
	9, 10, 11			
Group D end-point electrical parameters	1, 2, 3	1, 2, 3		

TABLE II. Electrical test requirements.

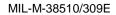
*PDA applies to subgroup 1.

4.4.3 <u>Group C inspection</u>. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:

- a. End-point electrical parameters shall be as specified in table II herein.
- b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.

4.4.4 <u>Group D inspection</u>. Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.

4.5 <u>Methods of inspection</u>. Methods of inspection shall be specified and as follows:


4.5.1 <u>Voltage and current.</u> All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.

		Terminal symbolTerminal symbolTerminal symboldevice type 01device type 02device type 03			al symbol type 04	Terminal symbol device type 05				
Terminal	Case	Case	Case	Case	Case	Case	Case	Case	Case	Case
number	X, 2	E, F	X, 2	E, F	X, 2	E, F	X, 2	E, F	X, 2	E, F
1	NC	D3	NC	1G	NC	S	NC	S	NC	D3
2	D3	D2	IG	В	S	1A	S	1A	D3	D2
3	D2	D1	В	1C3	1A	1B	1A	1B	D2	D1
4	D1	D0	1C3	1C2	1B	1Y	1B	1Y	D1	D0
5	D0	Y	1C2	1C1	1Y	2A	1Y	2A	D0	Y
6	NC	W	NC	1C0	NC	2B	NC	2B	NC	W
7	Y	S	1C1	1Y	2A	2Y	2A	2Y	Y	S
8	W	GND	1C0	GND	2B	GND	2B	GND	W	GND
9	S	С	1Y	2Y	2Y	3Y	2Y	3Y	S	С
10	GND	В	GND	2C0	GND	3B	GND	3B	GND	В
11	NC	А	NC	2C1	NC	ЗA	NC	ЗA	NC	А
12	С	D7	2Y	2C2	3Y	4Y	3Y	4Y	С	D7
13	В	D6	2C0	2C3	3B	4B	3B	4B	В	D6
14	А	D5	2C1	А	ЗA	4A	ЗA	4A	А	D5
15	D7	D4	2C2	2G	4Y	G	4Y	G	D7	D4
16	NC	Vcc	NC	Vcc	NC	Vcc	NC	Vcc	NC	Vcc
17	D6		2C3		4B		4B		D6	
18	D5		А		4A]	4A		D5	
19	D4		2G		G]	G		D4	
20	V_{CC}		V _{cc}		V _{cc}		V _{CC}		V _{CC}	

FIGURE 1. Terminal connections.

	Termina	nal symbol Terminal symbol		Termina	al symbol	Terminal symbol		
	device	type 06	device	type 07	device type 08		device type 09	
Terminal	Case	Case	Case	Case	Case	Case	Case	Case
number	X, 2	E, F	X, 2	E, F	X, 2	E, F	X, 2	E, F
1	NC	S	NC	S	NC	1G	NC	B2
2	S	1A	S	1A	1G	В	B2	A2
3	1A	1B	1A	1B	В	1C3	A2	A1
4	1B	1Y	1B	1Y	1C3	1C2	A1	B1
5	1Y	2A	1Y	2A	1C2	1C1	B1	C2
6	NC	2B	NC	2B	NC	1C0	NC	D2
7	2A	2Y	2A	2Y	1C1	1Y	C2	D1
8	2B	GND	2B	GND	1C0	GND	D2	GND
9	2Y	3Y	2Y	3Y	1Y	2Y	D1	C1
10	GND	3B	GND	3B	GND	2C0	GND	WS
11	NC	ЗA	NC	ЗA	NC	2C1	NC	CP
12	3Y	4Y	3Y	4Y	2Y	2C2	C1	QD
13	3B	4B	3B	4B	2C0	2C3	WS	QC
14	ЗA	4A	ЗA	4A	2C1	А	CP	QB
15	4Y	G	4Y	G	2C2	2G	QD	QA
16	NC	V _{cc}	NC	V _{cc}	NC	V _{CC}	NC	V _{cc}
17	4B		4B		2C3		QC	
18	4A		4A		Α		QB	
19	G		G		2G		QA	
20	Vcc		Vcc		V _{CC}		V _{CC}	

FIGURE 1. <u>Terminal connections</u> - Continued.

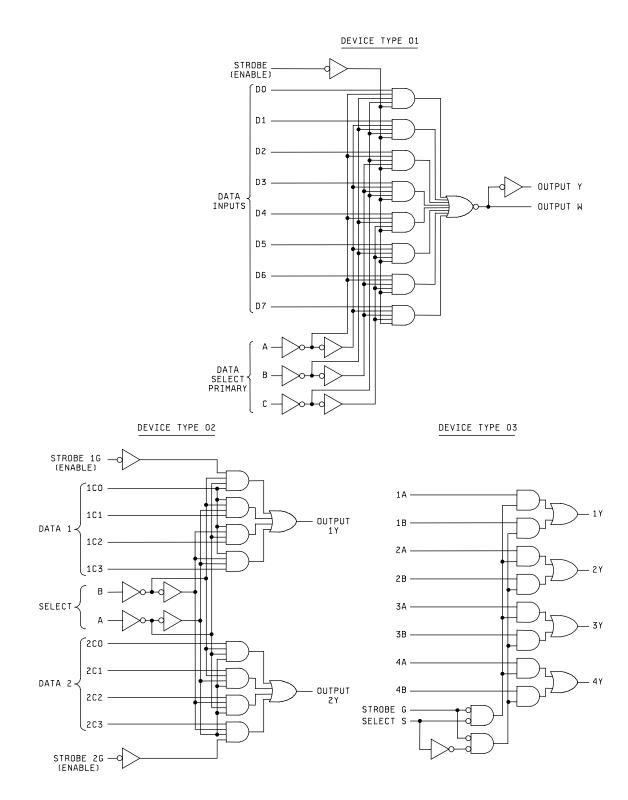
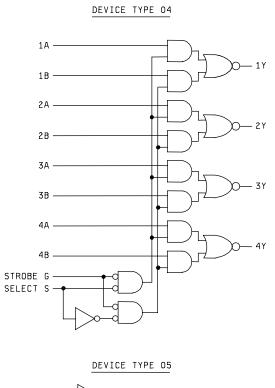



FIGURE 2. Logic diagrams.

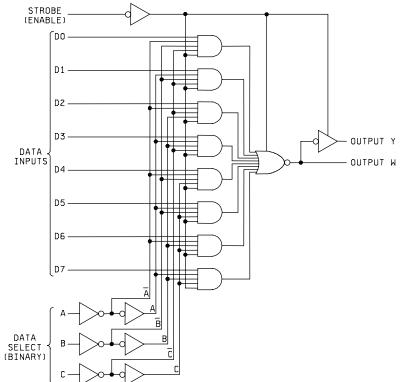


FIGURE 2. Logic diagrams - Continued.

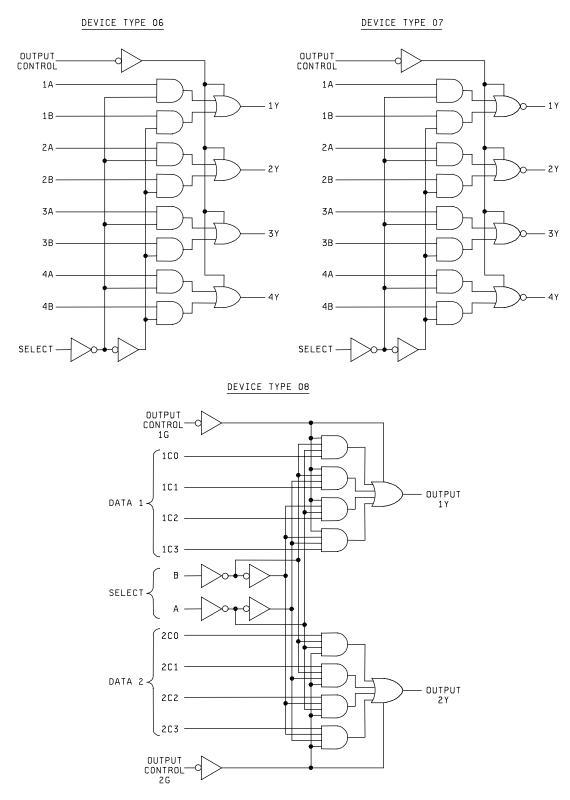
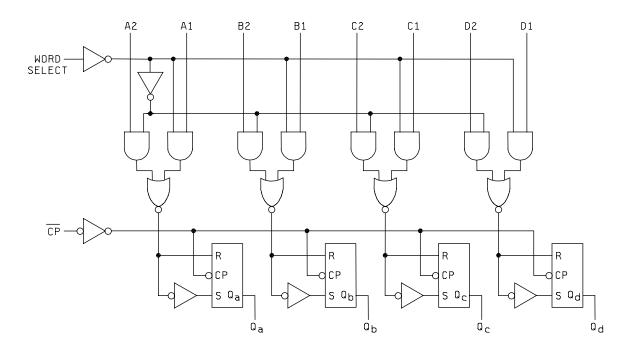



FIGURE 2. Logic diagrams - Continued.

DEVICE TYPE 09

FIGURE 2. Logic diagrams - Continued.

		Devi	ce type 01		
	IN		OUT	PUTS	
5	SELECT		-		
С	В	Α	S	Y	W
Х	Х	Х	Н	L	Н
L	L	L	L	D0	$\overline{D0}$
L	L	Н	L	D1	D1
L	Н	L	L	D2	$\overline{D2}$
L	Н	Н	L	D3	D3
Н	L	L	L	D4	$\overline{D4}$
Н	L	Н	L	D5	D5
Н	Н	L	L	D6	$\overline{D6}$
Н	Н	Н	L	D7	D7

 $\label{eq:H} \begin{array}{l} H = high \ level, \ L = low \ level, \ X = irrelevant. \\ D0, \ D1 \ \ldots \ D7 = the \ level \ of \ the \ D \ respective \ input. \end{array}$

Device	type	02

	ECT UTS	I	ΟΑΤΑ Ι	NPUTS	8	STROBE	OUTPUT
В	А	C0	C1	C2	C3	G	Y
Х	Х	Х	Х	Х	Х	Н	L
L	L	L	Х	Х	Х	L	L
L	L	Н	Х	Х	Х	L	Н
L	Н	Х	L	Х	Х	L	L
L	Н	Х	Н	Х	Х	L	Н
Н	L	Х	Х	L	Х	L	L
Н	L	Х	Х	Н	Х	Ĺ	Н
Н	Н	Х	Х	Х	L	L	L
Н	Н	Х	Х	Х	Н	L	Н

Select inputs A and B are common to both sections. H = high level, L = low level, X = irrelevant.

	Devi	ice type	es 03 a	nd 04	
	INPUTS			OUT	PUT Y
STROBE	SELECT	Α	В	TYPE 03	TYPE 04
Н	Х	Х	Х	L	Н
L	L	L	Х	L	Н
L	L	Н	Х	Н	L
Ĺ	Н	Х	L	Ĺ	Н
L	Н	Х	Н	Н	L

Device types 03 and 04

H = high level, L = low level, X = irrelevant.

FIGURE 3. Truth tables.

	IN	IPUTS		OUTP	UTS
	SELECT		STROBE		
С	В	А	S	Y	W
Х	Х	Х	Н	Z	Z
L	L	L	L	D0	$\overline{D0}$
L	L	Н	L	D1	D1
L	Н	L	L	D2	$\overline{D2}$
L	Н	Н	L	D3	$\overline{D3}$
Н	L	L	L	D4	D4
Н	L	Н	L	D5	$\overline{D5}$
Н	Н	L	L	D6	$\overline{D6}$
Н	Н	Н	L	D7	D7

Device type 05

H = high logic level, L = low logic level, X = irrelevant, Z = high impedance (off).

D0, D1....D7 = the level of the respective D input.

	INPUTS	6		OUTF	Y TU
OUTPUT				TYPE	TYPE
CONTROL	SELECT	А	В	06	07
Н	Х	Х	Х	Z	Z
L	L	L	Х	L	Н
L	L	н	Х	н	L
L	Н	Х	L	L	Н
L	Н	Х	Н	Н	L

Device types 06 and 07

H = high logic level, L = low logic level, X = irrelevant, Z = high impedance (off).

FIGURE 3. Truth tables - Continued.

Device type 08

	ECT	[DATA I	NPUTS	6	OUTPUT	OUTPUT
INP	UTS					CONTROL	
В	А	C0	C1	C2	C3	G	Y
Х	Х	Х	Х	Х	Х	Н	Z
L	L	L	Х	Х	Х	L	L
L	L	Н	Х	Х	Х	L	Н
L	Н	Х	L	Х	Х	L	L
L	Н	Х	Н	Х	Х	L	Н
Н	L	Х	Х	L	Х	L	L
Н	L	Х	Х	Н	Х	L	Н
Н	Н	Х	Х	Х	L	L	L
н	Н	Х	Х	Х	н	L	Н

Address inputs A and B are common to both sections.

H = high logic level, L = low logic level, X = irrelevant,

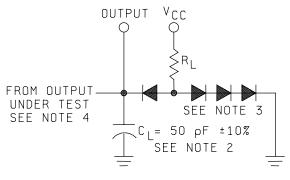
Z = high impedance (off).

INPL	JTS		OUTI	PUTS	
WORD					
SELECT	CLOCK	Q _A	Q _B	Qc	Q_D
L	\downarrow	a1	b1	c1	d1
Н	\downarrow	a2	b2	c2	d2
Х	Н	Q _{A0}	Q _{B0}	Q _{C0}	Q_{D0}

Device type 09

H = high level (steady state)

L = low level (steady state)

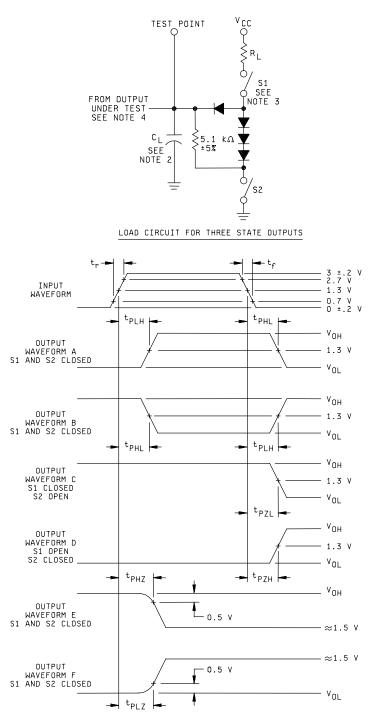

X = irrelevant (any input, including transitions)

 \downarrow = transition from high to low level

a1, a2, etc. = the level of steady state input at A1, A2, etc. Q_{A0} , Q_{B0} , etc. = the level of Q_A , Q_B etc, entered on the

most recent \downarrow transition of the clock input.

FIGURE 3. Truth tables - Continued.


LOAD FOR OUTPUT UNDER TEST

NOTES:

- 1. Input pulse characteristics: PRR \leq 1.0 MHz, $t_r \leq$ 15 ns, $t_f \leq$ 6 ns.
- 2. $C_L = 50 \text{ pF} \pm 10\%$ including probe and jig capacitance.
- 3. $R_L = 2.0 \text{ k}\Omega \pm 5\%$. All diodes are 1N3064 or 1N916.
- 4. Load circuit on a given output is only required where the specific test in table III indicates "OUT" on that output.

FIGURE 4. Switching test for device types 01, 02, 03, and 04.

NOTES:

- 1. Input pulse characteristics: PRR \leq 1.0 MHz, $t_r \leq$ 15 ns, $t_f \leq$ 6 ns.
- 2. $C_L = 50 \text{ pF} \pm 10\%$ for t_{PLH} , t_{PHL} , t_{PZL} , and t_{PZH} tests; $C_L = 15 \text{ pF}$ minimum for t_{PHZ} , and t_{PLZ} tests. C_L includes probe and jig capacitance.
- 3. All diodes are 1N3064 or 1N916. R_L = 2.0 k Ω ±5% for device types 05 and 08, and R_L = 680 Ω ±5% for device types 06 and 07.
- 4. Load circuit on a given output is only required where the specific test in table III indicates "OUT" on that output.

FIGURE 4. Switching test for device types 05, 06, 07, 08 - Continued.

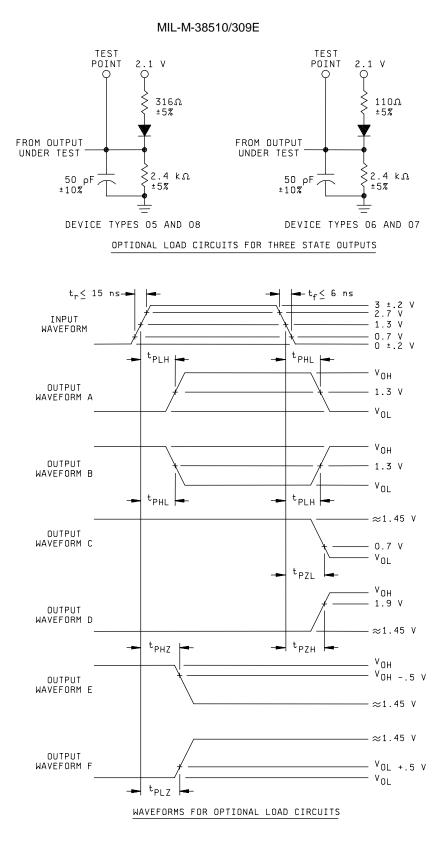
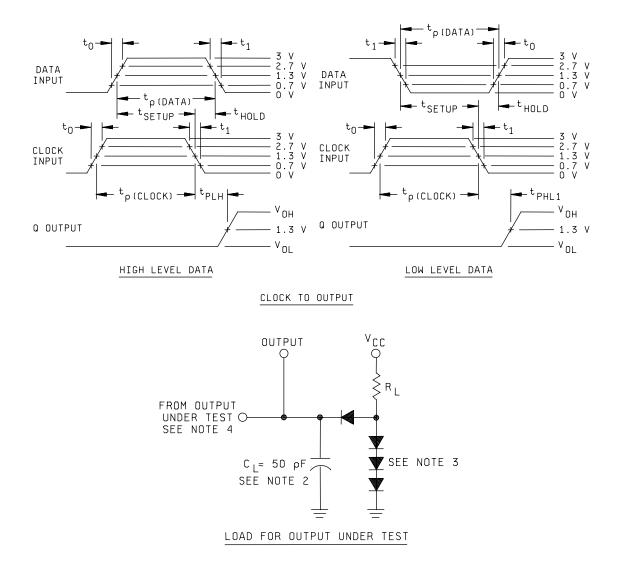



FIGURE 4. Switching test for device types 05, 06, 07, 08 - Continued.

NOTES:

- 1. Input pulse characteristics: PRR \leq 1.0 MHz, t₀ \leq 15 ns, t₁ \leq 6 ns, t_P(data) = 20 ns, t_P(clock) = 20 ns, t_{SETUP} = 15 ns, and t_{HOLD} = 5 ns.
- 2. $C_L = 50 \text{ pF} \pm 10\%$ including probe and jig capacitance.
- 3. $R_L = 2.0 \text{ k}\Omega \pm 5\%$. All diodes are 1N3064 or equivalent.
- 4. Load circuit on a given output is only required where the specific test in table III indicates "OUT" on that output.

FIGURE 4. Switching test for device type 09 - Continued.

						IE	erminal o	conditio	ns (pins	not des	signated	i may b	e high ≥	2.0 V, IC	$JW \ge 0.7$	v, or op	en).						
		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
Subgroup	Symbol	883 method	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lin	nits	Unit
			Test no.	D3	D2	D1	D0	Y	W	S	GND	С	В	Α	D7	D6	D5	D4	V _{CC}		Min	Max	
1	V _{OH}	3006	1	2.0 V	2.0 V	2.0 V	2.0 V		4 mA	2.0 V	GND	2.0 V	2.0 V	2.0 V	2.0 V	2.0 V	2.0 V	2.0 V	4.5 V	W	2.5		V
Tc = 25°C		3006	2	"	"	"	"	4 mA		0.7 V	"	0.7 V	0.7 V	0.7 V		"	"		"	Y	2.5		"
	V _{OL}	3007	3	"	"	"	"		4.0 mA	0.7 V	"	0.7 V	0.7 V	0.7 V		"	"		"	W		0.4	"
	02	3007	4	"	"	"	"	4.0 mA		2.0 V	"	2.0 V	2.0 V	2.0 V	"	"	"		"	Y		0.4	"
	VIC		5	-18 mA				-		-	"								"	D3		-1.5	
	10		6		-18 mA						"									D2		"	"
			7			-18 mA					"								"	D1		"	
			8				-18 mA				"								"	D0		"	
			9							-18 mA	"									S		"	
			10								"	-18 mA								C			"
			11								"		-18 mA							B			"
			12								"			-18 mA						Ā			
			13								"				-18 mA					D7			"
			14								"					-18 mA				D6			"
			15								"						-18 mA			D5			"
			16								"							-18 mA		D4			
1	I _{IL1}	3009	17	0.4 V	5.5 V	5.5 V	5.5 V			GND	"	GND	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	D3	2/	2/	mA
	121		18	5.5 V	0.4 V	5.5 V				"			5.5 V	GND		"	"		"	D2		"	"
			19	"	5.5 V	0.4 V							GND	5.5 V			"		"	D1	"	"	"
			20	"	"	5.5 V	0.4 V						GND	GND					"	D0		"	"
			21	"	"	"	5.5 V			"	"	5.5 V	5.5 V	5.5 V	0.4 V				"	D7		"	"
			22	"	"	"	"			"	"	"	5.5 V	GND	5.5 V	0.4 V			"	D6	"	"	"
			23	"	"	"	"			"	"		GND	5.5 V	"	5.5 V	0.4 V		"	D5		"	"
			24	"	"	"	"			"	"		GND	GND		5.5 V	5.5 V	0.4 V	"	D4		"	"
	I _{II 2}		25							0.4 V	"		OND	OND		0.0 V	0.0 V	0.4 ¥		S			
	I _{IL3}		26							0.4 V	"	0.4 V								C	"		"
	·IL3		27								"	0	0.4 V							B			
			28								"		0.4 V	0.4 V						A			
	I _{IH1}	3010	29	2.7 V	GND	GND	GND			5.5 V	"	5.5 V	GND	GND	GND	GND	GND	GND	"	D3		20	μA
	•IH1	"	30	GND	2.7 V	GND	"			"		"	GND	5.5 V	"	"	"	"	"	D2		- 20	μΛ
			31	GIND "	GND	2.7 V				"	"		5.5 V	GND					"	D2		"	
			32	"	GND	GND	2.7 V						5.5 V	5.5 V					"	D0			"
			33		GND	GND	2.7 V			2.7 V	"		5.5 V	5.5 V						S			
			33							2.7 V	"	2.7 V								C			
			35								"	2.1 V	2.7 V							B			
			36		1	1	-						2.1 V	2.7 V						A			
			30	GND	GND	GND	GND			5.5 V	"	GND	GND	GND	2.7 V	GND	GND	GND		D7			
			38	"	"	"	- GND			J.J V "	"	"	GND	5.5 V	GND	2.7 V	GND	GND "	"	D7 D6		"	"
			38	"	"	"				"	"		5.5 V	5.5 V GND	UND "	GND	2.7 V		"	D6		"	
			40	"	"	"				"	"		5.5 V	5.5 V		GND "	GND	2.7 V	"	D5 D4		"	"
	\vdash	"	40	7.0 V	"	"				"	"	5.5 V	5.5 V GND	5.5 V GND			GND "	GND	"	D4 D3		100	
	I _{IH2}				701/						"	5.5 V						UND "	"			100	μA "
			42	GND	7.0 V	701/							GND	5.5 V						D2			
			43		GND	7.0 V	701/						5.5 V	GND						D1			
			44		GND	GND	7.0 V						5.5 V	5.5 V						D0			
			45							7.0 V		7.0.11								S			
1			46				L					7.0 V	7.0.1/	L						С			
1			47				L					ļ	7.0 V			L				В			
			48							1/				7.0 V						A			
			49	GND	GND	GND	GND			5.5 V	"	GND	GND	GND	7.0 V	GND	GND	GND		D7			
1			50	"	"	"				"	"		GND	5.5 V	GND	7.0 V	GND		"	D6		"	"
			51 52	"	"	"	"			"	"		5.5 V	GND	"	GND	7.0 V		"	D5		"	
													5.5 V	5.5 V			GND	7.0 V		D4			

TABLE III. <u>Group A inspection for device type 01</u>. Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open).

See footnotes at end of device type 01.

						Te	erminal o	conditio	ns (pins	not des	signated	l may b	e high ≥	2.0 V; lo	$w \le 0.7$	V; or op	en).						
		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
Subgroup	Symbol	883 method	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lir	nits	Unit
			Test no.	D3	D2	D1	D0	Y	W	S	GND	С	В	Α	D7	D6	D5	D4	V _{CC}		Min	Max	
1	los	3011	53	GND	GND	GND	5.5 V	GND		GND	"	GND	GND	GND	GND	GND	GND	GND	5.5 V	Y	-15	-100	mA
Tc = 25°C		3011	54	GND	GND	GND	GND		GND	5.5 V	"	GND	GND	GND	GND	GND	GND	GND	"	W	-15	-100	
	I _{CC1}	3005	55	5.5 V	5.5 V	5.5 V	5.5 V			5.5 V		5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	"	V _{cc}		10	"
2			al conditions																				
3			al conditions					55°C and												-			
7	Func-	3014	56	В	В	В	В	L	Н	A	GND	В	В	В	В	В	В	В	5.0 V	All			
Tc = 25°C		"	57	A	A	A	A	"	"	"	"	В	В	В	A	A	A	A	"	outputs			
	tests	"	58	A	A	A	A		"	"	"	A	A	A	A	A	A	A					
			59	B	В	В	B					"			В	В	В	В					
			60												A	A	A	A					
			61					Н		B						B	B	B					
			62	"				L	Н	A				B		A						2/	
			63 64	"	"		"	H	H	B	"		В	B			A					<u>3</u> /	
			64	"	"		"	H		B	"		D "	A			A "						
			66	"	"	"	"	L	H	A				B				A					
			67	"	"	"	"	H	1	B	"			B				-					
			68	А	"	"	"	1	H	A	"	В	A	A									
			69	"	"	"	"	H	L	B	"	"	"	A									
			70	"	Α		"		H	A	"			В				"					
			71	"	"	"	"	Ĥ	L	B	"			B									
			72	"	"	Α	"	L	н	Α		"	В	Α		"		"		"			
			73	"	"	"	"	Н	L	В	"	"		Α		"	"	"		"			
			74	"	"	"	Α	L	Н	A	-	"		В		"				"			
			75	"	"	"	A	Н	L	В	"	"	"	В		"	"	"	"	"			
8	Repeat	subgroup 7	tests at T _C =	= +125°C	and T _c = -	55°C.																	
9	t _{PLH1}	3003	76				IN	OUT		GND	GND	GND	GND	GND					5.0 V	D0 to Y	3	37	ns
Tc = 25°C		Fig. 4	77			IN		"		"	-		GND	5.0 V						D1 to Y	-		"
			78		IN			"		"	"	"	5.0 V	GND					"	D2 to Y		"	"
			79	IN				"		"	"	"	5.0 V	5.0 V					"	D3 to Y		"	"
		"	80					"		"	-	5.0 V	GND	GND				IN		D4 to Y	-		"
			81					"		"	"	"	GND	5.0 V			IN			D5 to Y			"
			82			<u> </u>						"	5.0 V	GND	16.1	IN	<u> </u>			D6 to Y			
	4		83				IN						5.0 V	5.0 V	IN					D7 to Y			
	t _{PHL1}		84		<u> </u>	IN	IN					GND	GND GND	GND 5.0 V		<u> </u>	<u> </u>			D0 to Y D1 to Y		31	
			85 86		IN	IIN		"			"		5.0 V	GND						D1 to Y D2 to Y			"
			80	IN	IIN			"		"	"		5.0 V 5.0 V	5.0 V						D2 to Y D3 to Y			"
			88	IIN				"		"	"	5.0 V	GND	GND		<u> </u>		IN	"	D3 to Y D4 to Y		"	"
			89					"		"	"	3.0 v	GND	5.0 V			IN			D4 to T D5 to Y			"
1		"	90			1	-	"		"	"		5.0 V	GND		IN			"	D6 to Y		"	"
		"	91					"		"	"		5.0 V	5.0 V	IN				"	D7 to Y		"	"
	t _{PLH2}	"	92				IN		OUT	"	"	GND	GND	GND					"	D0 to W		26	"
	1 612	"	93			IN			"	"	"	"	GND	5.0 V		1	1		"	D1 to W		"	"
1		"	94		IN	1			"	"	"	"	5.0 V	GND		İ	1		"	D2 to W		"	"
		"	95	IN	1	1			"	"	"	"	5.0 V	5.0 V		1	1		"	D3 to W		"	"
		"	96						"	"	"	5.0 V	GND	GND				IN	"	D4 to W		"	"
1		"	97						"	"	"	"	GND	5.0 V			IN			D5 to W			"
		"	98						"	"	"		5.0 V	GND		IN			"	D6 to W		"	"
1	1	"	99						"	"	"		5.0 V	5.0 V	IN					D7 to W	"		"

TABLE III. Group A inspection for device type 01 - Continued. Terminal conditions (pins not designated may be high \geq 2.0 V: low \leq 0.7 V: or open).

See footnotes at end of device types 01.

bgroup Sy		MIL-STD- 883	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
bgroup Sy	ymbol	993	a 44																				
		method	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lin	nits	Unit
			Test no.	D3	D2	D1	D0	Y	W	S	GND	С	В	А	D7	D6	D5	D4	V _{CC}		Min	Max	
9 t _P	t _{PHL2}	3003	100				IN		OUT	GND	GND	GND	GND	GND					5.0 V	D0 to W	3	25	ns
c = 25°C		Fig. 4	101			IN			"	"			GND	5.0 V						D1 to W			"
			102		IN				"	"	"		5.0 V	GND						D2 to W			
			103	IN					"	"	"		5.0 V	5.0 V						D3 to W			
			104						"	"	"	5.0 V	GND	GND				IN	"	D4 to W	"		"
			105						-			-	GND	5.0 V			IN		-	D5 to W			
			106						"	"	"		5.0 V	GND		IN			-	D6 to W		"	
			107						"		"		5.0 V	5.0 V	IN					D7 to W			
tP	t _{PLH3}		108	5.0 V	5.0 V	5.0 V	5.0 V	OUT		IN	"	GND	GND	GND	5.0 V	5.0 V	5.0 V	5.0 V	"	S to Y		47	
tP	t _{PHL3}		109	5.0 V	5.0 V	5.0 V	5.0 V	OUT			"	GND	GND	GND		5.0 V	5.0 V	5.0 V	"	S to Y		37	"
tp	t _{PLH4}		110	GND	GND	GND	GND		OUT		"	5.0 V	5.0 V	5.0 V		GND	GND	GND	"	S to W		29	"
tP	t _{PHL4}		111	GND	GND	GND	"		OUT	"	"	5.0 V	5.0 V	5.0 V		GND	GND	GND	"	S to W		35	"
tP	t _{PLH5}		112			5.0 V	"	OUT		GND	"	GND	GND	IN					"	A to Y		48	"
			113		5.0 V		"			"	"	GND	IN	GND					"	B to Y		"	
			114				"				"	IN	GND	GND				5.0 V	"	C to Y			
tp	t _{PHL5}		115			GND	5.0 V	-		"	"	GND	GND	IN					"	A to Y		35	
			116		GND		"			"	"	GND	IN	GND						B to Y		"	"
			117				"			"	"	IN	GND	GND				GND		C to Y		"	"
t _P	t _{PLH6}		118			GND	"		OUT	"	"	GND	GND	IN					"	A to W		28	"
			119		GND		"		"	"	"	GND	IN	GND					"	B to W		"	"
			120				"		"	"	"	IN	GND	GND				GND	"	C to W		"	"
tp	t _{PHL6}		121			5.0 V	GND			"	"	GND	GND	IN					"	A to W		37	
			122		5.0 V		"			"	"	GND	IN	GND					"	B to W			
10 Sar		"	123 ninal conditio				"		"	"	"	IN	GND	GND				5.0 V	"	C to W		"	"

TABLE III. <u>Group A inspection for device type 01</u> - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open).

 $\underline{1}$ Case X and 2 pins not referenced are NC.

 $\underline{2}/~I_{\text{IL}}$ limits shall be as follows:

25

			Min/N	lax limits (mA) for circuit		
Test	Α	В	С	D	E	F	G
I _{IL1}	16/40	12/36	16/40	03/30	002/150	105/345	0/15
I _{IL2 &}	12/36	12/36	16/40	03/30	002/150	16/40	0/15
I _{IL3}					10/34		

 $\label{eq:alpha} \begin{array}{l} \underline{3} / \mbox{ Inputs: } A \geq 2.5 \mbox{ V minimum, } B \leq 0.4 \mbox{ V maximum.} \\ \mbox{ Outputs: } H \geq 1.5 \mbox{ V, } L \leq 1.5 \mbox{ V.} \end{array}$

						IE	erminal	conditio	ns (pins	not des	signated	l may b	e high \geq	2.0 V; IC	$DW \le 0.7$	v; or op	en).						
		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
Subgroup	Symbol	883 method	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lim	nits	Unit
			Test no.	1G	В	1C3	1C2	1C1	1C0	1Y	GND	2Y	2C0	2C1	2C2	2C3	А	2G	V _{CC}		Min	Max	
1	V _{OH}	3006	1	0.7 V	0.7 V				2.0 V	4 mA	GND						0.7 V		4.5 V	1Y	2.5		V
Тс = 25°С	•01	3006	2	0.7 1	0.7 V				2.0 1		"	4 mA	2.0 V				0.7 V	0.7 V	"	2Y	2.5		
10 - 25 0	V _{OL}	3007	3	2.0 V	0.1 V					4 mA	"	.4 110 (2.0 1				0.7 V	0.1 V		1Y	2.0	0.4	
	V OL	3007	4	2.0 V						7 11/4		4 mA						2.0 V		2Y		0.4	
	V	3007	5	-18 mA							"	4 111/4						2.0 V		1G		-1.5	
	VIC		6	-10 IIIA	-18 mA															B		-1.5	
			7		-18 MA	10 1														1C3			
						-18 mA	10 1													1C3			
			8				-18 mA	40												1C2 1C1			
			9					-18 mA	40.4														
			10						-18 mA				10							1C0 2C0			
			11										-18 mA	40. 4						200			
			12											-18 mA	40 4	l				2C1			
			13												-18 mA	10 1				2C2			
			14					L								-18 mA	40 1			2C3			
			15					L									-18 mA			A			
			16	0.434	0110												0115	-18 mA	= = \(2G	<u> </u>	"	
	I _{IL1}	3009	17	0.4 V	GND											L	GND	GND	5.5 V	1G	2/	2/	mA
			18	GND	0.4 V												GND			В		"	
			19	"	5.5 V	0.4 V	5.5 V	5.5 V	5.5 V				5.5 V	5.5 V	5.5 V	5.5 V	5.5 V		"	1C3		"	
		"	20	"	5.5 V	5.5 V	0.4 V	5.5 V						"			GND		"	1C2		"	
		"	21	-	GND	"	5.5 V	0.4 V	"		-		"	"	=		5.5 V			1C1			"
		"	22	"	"	"	"	5.5 V	0.4 V		-			"			GND		"	1C0	"	"	"
		"	23	=	"	"	"	"	5.5 V		=		0.4 V	"			GND		"	2C0		"	"
		"	24	-	"	"	"	"	"		-		5.5 V	0.4 V			5.5 V		"	2C1		"	"
		"	25	"	5.5 V	"	"	"	"		"			5.5 V	0.4 V		GND	"	"	2C2	"	"	"
		"	26	"	5.5 V			"					"	5.5 V	5.5 V	0.4 V	5.5 V	"	"	2C3		"	
		"	27	"	GND						"						0.4 V		"	A	"		
		"	28	"	GND						"						GND	0.4 V	"	2G		"	"
	I _{IH1}	3010	29	2.7 V	GND						-						5.5 V	5.5 V	"	1G		20	μA
		"	30	GND	2.7 V						=						5.5 V		"	В		"	"
		"	31	5.5 V	GND	2.7 V	GND	GND	GND		=		GND	GND	GND	GND	GND		"	1C3			
		"	32	-	GND	GND	2.7 V	GND						"		"	5.5 V	"	"	1C2		"	"
			33	"	5.5 V	"	GND	2.7 V			"			"			GND		"	1C1			
		"	34	"				GND	2.7 V		"			"			5.5 V		"	1C0		"	"
		"	35	"	"	"	"	"	GND				2.7 V	"		"	5.5 V		"	2C0		"	"
		"	36	"	"	"	"	"	"		"		GND	2.7 V			GND	"	"	2C1		"	"
		"	37	"	GND	"	"	"	"		"			GND	2.7 V		5.5 V		"	2C2		"	"
		"	38	"	GND	"	"	"	"		"			GND	GND	2.7 V	GND	"	"	2C3		"	"
		"	39	"	5.5 V						"						2.7 V	GND	"	A		"	"
		"	40	-	5.5 V						"						GND	2.7 V	"	2G		"	"
	I _{IH2}	"	41	7.0 V	GND						"						5.5 V	5.5 V	"	1G		100	μA
		"	42	GND	7.0 V						"					1	5.5 V	"	"	В		"	"
		"	43	5.5 V	GND	7.0 V	GND	GND	GND		"		GND	GND	GND	GND	GND	"	"	1C3			"
		"	44	"	GND	GND	7.0 V	GND	"				"	"	"	"	5.5 V	"	"	1C2		"	"
		"	45	"	5.5 V	"	GND	7.0 V			"		"	"			GND	"	"	102 1C1			
		"	46	"	"	"	"	GND	7.0 V		"		"	"		"	5.5 V	"	"	1C0		"	"
		"	47	"	"	"	"	"	GND		"		7.0 V	"			5.5 V	"	"	2C0		"	"
		"	48	"	"	"	"	"	"		"		GND	7.0 V			GND	"		200 2C1		"	
		"	40	"	GND	"	"	"	"		"		"	GND	7.0 V		5.5 V	"	"	201		"	"
		"	50	"	GND	"	"	"	"		"			GND	GND	7.0 V	GND		"	2C2 2C3		"	"
		"	51	"	5.5 V						"				UND	1.0 V	7.0 V	GND	"	203		"	"
		"	52	"	5.5 V						"					-	GND	7.0 V	"	2G		"	"
	I _{os}	3011	53	GND	GND	GND	GND	GND	5.5 V	GND			5.5 V	GND	GND	GND	"	GND	"	20 1Y	-15	-100	mA
	'OS	3011	54	"	"	"	"	"	5.5 V	GND	"	GND	5.5 V	"	"	"		"	"	2Y	-15	-100	"
	I _{CC1}	3005	55	"					GND		"		GND	"					"	V _{CC}	-15	10	
	ICC1	3003	55						GND	I			GND			1	1			V CC		10	

TABLE III. <u>Group A inspection for device type 02</u>. Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open).

See footnotes at end of device type 02.

							erminal	conditio	ns (pins	s not de	signate	u may t	be nign ≥	2.0 V; I	$0W \le 0.7$	v; or op	ben).						
		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
ubgroup	Symbol	883 method	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lin	nits	Unit
			Test no.	1G	В	1C3	1C2	1C1	1C0	1Y	GND	2Y	2C0	2C1	2C2	2C3	Α	2G	Vcc		Min	Max	
2	Same to	ests termina	al conditions										200	201	202	200			100			max	
3			al conditions																				
7	Func-	3014	56	A	A	A	A	A	A	10 01111100	GND	L	А	А	А	А	Α	Α	5.0 V	1Y, 2Y			
c = 25°C	tional	"	57	"	B	B	B	B	B	"	"		B	B	В	B	B	"	"	,			
- 20 0	tests		58						A			"	A	"					"				
	10010		59	В	"	"	"	"	A	Н	"	Н	A	"			"	В					
			60	"	"	"	"		B	1	"	L	В	"				"					
			61	"	"	A	А	Α	"	"	"			A	A	А							
			62	Α	"	"	"	"	"	"	"			"			A	Α					
			63	В	"	"	"	"	"	Н	"	Н		"	"		"	В			<u>3</u> /		
			64	В	"	"	"	В	"	L	"	L		В			"	В			-		
			65	Α	Α	"	"	"	"	L	"	L		"		"	В	A	"				
			66	В	"	"	"	"	"	Н	"	Н	"	"			"	В	"				
		"	67	B	"	"	В	"	"	L	"	L		"	В		"	B	"	1			
			68	А	"	"	"	"	"	L	"	L	-	"			Α	Α	"				
			69	В	"	"	"	"	"	Н	"	Н		"			"	В					
			70	В	"	В	"	"	"	L	"	L	-	"		В	"	В					
8	Repea	t subgroup 7	tests at T _c	= +125°C	and -55°C).																	
9	t _{PLH1}	3003	71	GND	GND				IN	OUT	GND						GND	GND	5.0 V	1C0 to 1Y	3	20	ns
= 25°C		Fig. 4	72	"	GND			IN		-	"						5.0 V		"	1C1 to 1Y			
		"	73	"	5.0 V		IN			"	"						GND		"	1C2 to 1Y		"	"
			74	"	5.0 V	IN				"	"						5.0 V		"	1C3 to 1Y		"	"
			75	"	GND						"	OUT	IN				GND			2C0 to 2Y		"	
			76		GND						"			IN			5.0 V			2C1 to 2Y		"	
			77	"	5.0 V						"	"			IN		GND		"	2C2 to 2Y		"	
			78	-	5.0 V						"	"				IN	5.0 V	"	"	2C3 to 2Y	-	"	"
	t _{PHL1}	"	79	=	GND				IN	OUT	"						GND			1C0 to 1Y	-	31	
			80	=	GND			IN		=	"						5.0 V			1C1 to 1Y	-	"	
			81	-	5.0 V		IN			=	"						GND			1C2 to 1Y	-	"	
			82		5.0 V	IN				-	"						5.0 V			1C3 to 1Y		"	"
			83		GND						"	OUT	IN				GND			2C0 to 2Y		"	
			84		GND						"			IN			5.0 V			2C1 to 2Y		"	
			85		5.0 V						"				IN		GND			2C2 to 2Y		"	
		"	86	"	5.0 V						"					IN	5.0 V			2C3 to 2Y		"	"
	t _{PLH3}		87	IN	GND				5.0 V	OUT	"						GND			1G to 1Y		29	
			88						1 /			OUT	5.0 V			ļ		IN		2G to 2Y		29	"
	t _{PHL3}		89	IN					5.0 V	OUT										1G to 1Y		37	
			90									OUT	5.0 V					IN		2G to 2Y		37	
	t _{PLH5}		91	GND	5.0 V	GND	5.0 V			OUT		0.117			5.0 V	GND	IN	GND		A to 1Y		34	
			92		5.0 V	GND	5.0 V	0115		OUT		OUT		ONE	5.0 V	GND	IN			A to 2Y			
					IN	5.0 V		GND		OUT	"			GND		5.0 V	5.0 V			B to 1Y			
		:	93			= 0 \ '						OUT				5.0 V	5.0 V			B to 2Y			
			94		IN	5.0 V			5.0.1/	OUT			5 0 1/							A 4 414		40	
	t _{PHL5}		94 95	*	GND	5.0 V			5.0 V	OUT	"		5.0 V				IN			A to 1Y	•	43	
	t _{PHL5}	11 11 11	94 95 96	"	GND GND	5.0 V	0.15	"	5.0 V "		"	OUT	5.0 V "		0110		IN			A to 2Y		43	
	t _{PHL5}	" " " " " " " " " " " " " " " " " " "	94 95	"	GND	5.0 V	GND GND	"	5.0 V "	OUT OUT	"		5.0 V "	"	GND GND				"			43	

TABLE III. <u>Group A inspection for device type 02</u> - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open).

See footnotes at end of device type 02.

TABLE III. Group A inspection for device type 02 - Continued.

$\underline{1}/$ Case X and 2 pins not referenced are NC. $\underline{2}/$ I_{IL} limits are as follows:

			Min/Ma	x limits (mA) f	or circuits		
Test	А	В	С	D	E	F	G
I _{IL1}	Tests 17 and 28 001/15 tests 18 through 27 12/36	12/36	12/36	03/30	Tests 17 and 28 016/40 tests 18 and27 12/36 Tests 19 through 26 16/40	12/36	0/15

 $\label{eq:linear} \begin{array}{ll} \underline{2} / & \mbox{Inputs:} & \mbox{A} \geq 2.5 \mbox{ V}; \mbox{ B} \leq 0.4 \mbox{ V}. \\ & \mbox{Outputs:} & \mbox{H} \geq 1.5 \mbox{ V}; \mbox{ L} \leq 1.5 \mbox{ V} \end{array}$

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
oup	Symbol	883 method	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lin	nits	
			Test no.	S	1A	1B	1Y	2A	2B	2Y	GND	3Y	3B	3A	4Y	4B	4A	G	V _{CC}		Min	Max	1
	V _{OH}	3006	1	2.0 V		2.0 V	4 mA				GND							0.7 V	4.5 V	1Y	2.5		
25°C	0.11	"	2	"					2.0 V	4 mA	"									2Y			1
		"	3	"					-		"	4 mA	2.0 V							3Y			1
		"	4	"							"		-		4 mA	2.0 V				4Y			1
	V _{OL}	3007	5				4 mA											2.0 V		1Y		0.4	1
	0L	"	6							4 mA	"									2Y		"	1
		"	7								"	4 mA								3Y		"	1
			8												4 mA					4Y			1
	VIC		9	-18 mA							"									S		-1.5	1
	10		10		-18 mA						"									1A		"	
			11			-18 mA														1B			1
			12					-18 mA			"									2A			1
			13						-18 mA		"									2B			
			14								"		-18 mA							3B		"	1
			15								"			-18 mA						3A		"	1
			16								"					-18 mA				4B		"	1
			17								"						-18 mA		"	4A		"	1
			18								"							-18 mA	"	G		"	1
	I _{IL1}	3009	19	GND	0.4 V	5.5 V					"							GND	5.5 V	1A	2/	2/	
		"	20	5.5 V	5.5 V	0.4 V												"	"	1B		"	1
		"	21	GND				0.4 V	5.5 V		"								"	2A		"	1
		"	22	5.5 V				5.5 V	0.4 V		"								"	2B		"	1
		"	23	5.5 V					-		"		0.4 V	5.5 V					"	3B		"	1
		"	24	GND							"		5.5 V	0.4 V					"	3A		"	1
		"	25	5.5 V							"					0.4 V	5.5 V		"	4B		"	1
		"	26	GND							"					5.5 V	0.4 V		"	4A		"	1
	I _{IL2}	"	27	0.4 V							"							5.5 V	"	S		"	1
		"	28	5.5 V							-							0.4 V		G		"	1
	I _{IH1}	3010	29	5.5 V	2.7 V						-									1A		20	
		"	30	GND		2.7 V					"								"	1B		"	T
		"	31	5.5 V				2.7 V			"								"	2A		"	1
		"	32	GND					2.7 V		-								"	2B		"	1
		"	33	GND							-		2.7 V						"	3B		"	
			34	5.5 V							-			2.7 V					"	3A		"	1
			35	GND							-					2.7 V			"	4B			1
			36	5.5 V							"						2.7 V		"	4A		"	
	I _{IH2}	3010	37	5.5 V	7.0 V						"								"	1A		100	Γ
		"	38	GND		7.0 V					=								"	1B		"	L
		"	39	5.5 V				7.0 V			"								"	2A		"	L
		"	40	GND					7.0 V		"								"	2B			
		"	41	GND							"		7.0 V						"	3B			
		"	42	5.5 V							"			7.0 V					"	3A		"	
		"	43	GND												7.0 V			"	4B			
		"	44	5.5 V													7.0 V		"	4A		"	
	I _{IH3}	"	45	2.7 V							"							GND		S		40	
		"	46 <u>3</u> /	GND							"							2.7 V		G		40	1
	I _{IH4}	"	47	7.0 V							"							GND		S		200	
		"	48 <u>3</u> /	GND														7.0 V		G		200	
	los	3011	49	"	5.5 V	5.5 V	GND											GND	"	1Y	-15	-100	
		"	50	"				5.5 V	5.5 V	GND	-							-	"	2Y		"	
		"	51	"							"	GND	5.5 V	5.5 V				=	"	3Y	"	"	
		"	52	"							"				GND	5.5 V	5.5 V		"	4Y		"	L
	I _{CC1}	3005	53	5.5 V	5.5 V	5.5 V		5.5 V	5.5 V		=		5.5 V	5.5 V		5.5 V	5.5 V	5.5 V	"	Vcc		16	
				1.12	a a such and	oup 1, exce	· -	10500		144 1	-												

TABLE III. <u>Group A inspection for device type 03</u>. Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open).

See footnotes at end of device type 03.

													e high \geq										
		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
ibgroup	Symbol	883 method	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lin	nits	Uni
			Test no.	S	1A	1B	1Y	2A	2B	2Y	GND	3Y	3B	3A	4Y	4B	4A	G	Vcc		Min	Max	
7	Func-	3014	54	А	Α	А	L	Α	А	L	GND	L	А	А	L	A	Α	А	5.0 V	All			
= 25°C	tional	"	55	В	Α	Α	"	Α	Α	"			А	A		A	A		"	outputs			
	tests		56	"	В	В		В	В	-			В	В		В	В		"	-			
		"	57	"	В	"	"	В	"	"	"			В		"	В	В			<u>4</u> /		
		"	58	"	Α	"	Н	A	"	Н	"	Н		A	Н	"	A						
		"	59	"	Α	Α	Н	A	Α	Н	"	Н	А	A	Н	Α	А						
		"	60	"	В	"	L	В	"	L	"	L		В	L	"	В						
		"	61	A	В	"	Н	В	"	Н	"	Н		В	Н	"	В						
		"	62	"	Α		Н	A		н		Н	"	А	Н	-	А		-				
		"	63	"	Α	В	L	A	В	L		L	В	А	L	В	А		-				
8	Repeat		tests at T _C =		and T _C = -	55°C																	
9	t _{PLH1}	3003	64	GND	IN		OUT				GND							GND	5.0 V	1A to 1Y	3	19	r
= 25°C		Fig. 4	65	5.0 V		IN	OUT				"									1B to 1Y			
		"	66	GND				IN		OUT									-	2A to 2Y			
		"	67	5.0 V					IN	OUT										2B to 2Y			
		"	68	5.0 V								OUT	IN							3B to 3Y			
		"	69	GND							"	OUT		IN						3A to 3Y			
		"	70	5.0 V											OUT	IN				4B to 4Y			
		"	71	GND											OUT		IN			4A to 4Y			
	t _{PHL1}	"	72	GND	IN		OUT													1A to 1Y			
		"	73	5.0 V		IN	OUT				"								"	1B to 1Y		"	
		"	74	GND				IN		OUT	"								"	2A to 2Y		"	
		"	75	5.0 V					IN	OUT	"									2B to 2Y			
		"	76	5.0 V							"	OUT	IN							3B to 3Y			
		"	77	GND							"	OUT		IN						3A to 3Y			
		"	78	5.0 V							"				OUT	IN				4B to 4Y			
			79	GND							"				OUT		IN			4A to 4Y		"	
	t _{PLH3}		80	5.0 V		5.0 V	OUT				"							IN		G to 1Y		25	
			81						5.0 V	OUT										G to 2Y			
			82									OUT	5.0 V		0.117	5 0 1 1				G to 3Y			ļ
			83		5.0.1/		OUT								OUT	5.0 V				G to 4Y			<u> </u>
	t _{PHL3}		84	GND	5.0 V		OUT	5.0.1/		OUT								IN		G to 1Y		26	<u> </u>
			85					5.0 V		OUT		OUT		5.0 V						G to 2Y			
			86 87	"							"	001		0.U V	OUT		5.0 V			G to 3Y G to 4Y			├
	+	"	87 88	IN	5.0 V	GND	OUT				"				001		5.U V	GND		S to 1Y		28	├
	t _{PLH5}		88		5.U V	GND	001	5.0 V	GND	OUT	"							GND		S to 1Y S to 2Y		20	
		"	90	"				5.0 V	GND	001	"	OUT	GND	5.0 V						S to 2Y			
			90 91	"							"	001	GIND	5.0 V	OUT	GND	5.0 V			S to 31 S to 4Y			
	t	"	91	"	GND	5.0 V	OUT	ł			"				001	GND	5.0 v	IN		S to 4 Y		32	
	t _{PHL5}		92	"	GND	5.0 V	001	GND	5.0 V	OUT	"							"		S to 1Y		32	
		"	93	"				UND	5.0 V	001	"	OUT	5.0 V	GND						S to 2Y S to 3Y			
		"	94 95	"				ł			"	001	J.U V	GND	OUT	5.0 V	GND			S to 31			
			30		l			1	25°C and								-		1			1	L

TABLE III. Group A inspection for device type 03 - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open).

TABLE III. Group A inspection for device type 03 - Continued.

<u>1</u>/ Pins not designated are high \ge 2.0 V; low \le 0.7 V; or open. Case X and 2 pins not referenced are NC.

 $\underline{2}$ / I_{IL} limits are as follows:

					Min/Max limits	s (mA) for circuits	6
Test	A	В	С	D	E	F	G
I _{IL1}	135/370	016/40	20/44	03/30	0/20	12/36	0/15
I _{IL2}	270/740	12/36	40/88	06/60	0/10 for test 27 0/10 for test 28	24/72 except 12/36 test 28	0/15

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
roup	Symbol	883 method	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lin		ι
			Test no.	S	1A	1B	1Y	2A	2B	2Y	GND	3Y	3B	3A	4Y	4B	4A	G	V _{CC}		Min	Max	
1	V _{OH}	3006	1				4 mA				GND							2.0 V	4.5 V	1Y	2.5		
25°C		"	2							4 mA	-							-		2Y	-		
		"	3								=	4 mA						-		3Y	-		
		-	4								-				4 mA			-		4Y	-		
	V _{OL}	3007	5	2.0 V		2.0 V	4 mA				-							0.7 V	-	1Y		0.4	
		"	6	"					2.0 V	4 mA								-		2Y			
		"	7	"								4 mA	2.0 V							3Y			
		"	8	"							"				4 mA	2.0 V				4Y		"	
	VIC		9	-18 mA							"									S		-1.5	
			10		-18 mA															1A			
			11			-18 mA														1B			
			12					-18 mA												2A		"	
			13						-18 mA		"									2B		"	
			14								"		-18 mA							3B		"	
			15								"			-18 mA						3A		"	
			16								"					-18 mA				4B		"	
			17								"						-18 mA			4A			
			18		L						"							-18 mA		G			
	I _{IL1}	3009	19	GND	0.4 V	5.5 V					"							GND	5.5 V	1A	<u>2</u> /	<u>2</u> /	
			20	5.5 V	5.5 V	0.4 V								ļ			L		"	1B		"	4
		"	21	GND				0.4 V	5.5 V		-								"	2A		"	
		"	22	5.5 V				5.5 V	0.4 V		-							-	"	2B		"	
		"	23	5.5 V							-		0.4 V	5.5 V					"	3B		"	
		"	24	GND							-		5.5 V	0.4 V					"	ЗA		"	
		"	25	5.5 V							-					0.4 V	5.5 V		"	4B		"	
		"	26	GND							-					5.5 V	0.4 V		"	4A		"	
	I _{IL2}	"	27	0.4 V							"							5.5 V	"	S		"	_
		"	28	5.5 V														0.4 V		G		"	_
	I _{IH1}	3010	29	5.5 V	2.7 V															1A		20	
			30	GND		2.7 V					"									1B		"	_
			31	5.5 V				2.7 V											"	2A		"	_
			32	GND					2.7 V										"	2B			_
			33	GND							"		2.7 V						"	3B			_
			34	5.5 V										2.7 V						3A			_
			35	GND												2.7 V				4B			_
			36	5.5 V	7.01/	L											2.7 V			4A			_
	I _{IH2}	3010	37	5.5 V	7.0 V	7.0.1/														1A		100	4
			38	GND		7.0 V		701/						ļ			<u> </u>			1B			+
			39	5.5 V				7.0 V	701/					l			<u> </u>			2A			+
			40	GND GND					7.0 V				701/	l			<u> </u>			2B			+
			41 42	GND 5.5 V									7.0 V	7.0 V			<u> </u>			3B 3A			+
				5.5 V GND	<u> </u>	<u> </u>						<u> </u>		7.0 V		7.0 V				3A 4B			+
			43 44		<u> </u>	<u> </u>						<u> </u>				1.0 V	7.0 V			4B 4A			_
	_	"	44 45	5.5 V 2.7 V							"						7.0 V	GND		4A S		40	+
	I _{IH3}	"	45	GND							"							2.7 V		G		40	+
ŀ	l	"	40	7.0 V							"			ł				GND		S		200	+
	I _{IH4}		47	GND							"							7.0 V		G			_
				GND			ONID	L				├ ──		l			├ ──┤				45	200	_
	los	3011	49				GND							l			<u> </u>	5.5 V		1Y	-15	-100	
			50							GND		CND		l			<u> </u>			2Y			+
			51	"								GND		l	CND		<u> </u>			3Y			+
		3005	52	E E V	E E V	E E V		E E V	E E V			<u> </u>	5.5 V	5.5 V	GND	5.5 V	5.5 V			4Y V _{CC}			+
	I _{CC1}	3005	53	5.5 V	5.5 V	5.5 V	1	5.5 V	5.5 V			1	5.5 V	5.5 V		5.5 V	5.5 V			Vcc		8.0	1

TABLE III. <u>Group A inspection for device type 04</u>. Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open).

See footnotes at end of device type 04.

						10		Jonantio		not doc	ignatoa		e high ≥	2.0 0, 10	, , , , , , , , , , , , , , , , , , , 	v, or op	011).						
		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
Subgroup	Symbol	883 method	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lin	nits	Unit
			Test no.	S	1A	1B	1Y	2A	2B	2Y	GND	3Y	3B	3A	4Y	4B	4A	G	V _{CC}		Min	Max	
7	Func-	3014	54	А	Α	А	Н	А	А	Н	GND	Н	А	А	Н	Α	А	А	5.0 V	All			
Tc = 25°C	tional		55	В	A	A	"	A	A	"	"		А	Α		Α	А		"	outputs			
	tests		56		В	В	"	В	В	"	"		В	В		В	В		"	-			
			57	"	В	"	"	В	"	"	"			В			В	В	"		<u>3</u> /		
		"	58	"	A	"	L	А	"	L	"	L	-	А	L		А	"	"				
		"	59	"	A	A	L	A	A	L	"	L	А	A	L	A	A		-				
		"	60	"	В	"	Н	В	"	Н	"	Н	-	В	Η		В		-				
		"	61	A	В	"	L	В	"	L	"	L	-	В	L		В						
		"	62	"	A	"	L	A	"	L	"	L		A	L		A						
		"	63	"	A	В	Н	A	В	Н	"	Н	В	A	Н	В	A						
		subgroup 7				55°C								1	1	1							1
9	t _{PLH1}	3003	64	GND	IN		OUT				GND							GND	5.0 V	1A to 1Y	3	17	ns
Tc = 25°C		Fig. 4	65	5.0 V		IN	OUT													1B to 1Y			
			66	GND				IN		OUT										2A to 2Y			
			67	5.0 V					IN	OUT		OUT	INI							2B to 2Y			
			68	5.0 V								OUT	IN	INI						3B to 3Y			
			69	GND								OUT		IN	OUT	INI				3A to 3Y			
			70 71	5.0 V GND											OUT	IN	IN			4B to 4Y 4A to 4Y			
ŀ	+	"	72	GND	IN		OUT				"				001		IIN			1A to 1Y			
	t _{PHL1}		72	5.0 V	IIN	IN	OUT				"									1B to 1Y			
			74	GND		IIN	001	IN		OUT	"									2A to 2Y			
			75	5.0 V					IN	OUT	"									2B to 2Y			
			76	5.0 V						001	"	OUT	IN					"		3B to 3Y			
			77	GND							"	OUT		IN						3A to 3Y			
			78	5.0 V							"				OUT	IN				4B to 4Y			"
			79	GND							"				OUT		IN	"	"	4A to 4Y	"		"
Ī	t _{PLH3}	"	80	GND	5.0 V		OUT				"							IN	"	G to 1Y		22	
			81	"				5.0 V		OUT	"								"	G to 2Y			"
			82	"							"	OUT		5.0 V						G to 3Y			"
			83	"							"				OUT		5.0 V			G to 4Y			"
ļ	t _{PHL3}	"	84	5.0 V		5.0 V	OUT				"									G to 1Y		23	"
ļ		"	85	"					5.0 V	OUT	"									G to 2Y			
ļ		"	86	"							"	OUT	5.0 V							G to 3Y			
ļ		"	87	"							"				OUT	5.0 V				G to 4Y			
ļ	t _{PLH5}		88	IN	5.0 V	GND	OUT	5.0.1/	0110	OUT								GND		S to 1Y		25	
ļ			89					5.0 V	GND	OUT		OUT	CNID	FOV						S to 2Y			
ļ			90 91									OUT	GND	5.0 V	OUT	GND	5.0 V			S to 3Y S to 4Y			
•	+		91 92	"	GND	5.0 V	OUT				"				OUT	GND	0.U V			S to 4Y S to 1Y		29	"
ļ	t _{PHL5}		92 93	"	GIND	5.U V	001	GND	5.0 V	OUT	"									S to 1Y S to 2Y		- 29	
ļ			93 94	"				GND	5.0 V	001	"	OUT	5.0 V	GND						S to 2Y			
ļ			94 95	"							"	001	J.U V	GND	OUT	5.0 V	GND			S to 31			"
10	Samo +	ests and terr		one as for	cubarous	0 overet	$T = \pm 125$	°C and for	following	limite: t	and t	- 3 to 26	net –	2 to 22 po				net -	3 to 11 m			I	I
10						group 10,			ronowing	minus. IPLH	1 and LPHL1	- 5 10 20	$\mu_{113}, \mu_{LH3} =$	5 10 55 115,	PHL3 – 3 10	JJ HS, IPLI	₁₅ – J 10 30	$\mu_{HL5} =$	5 10 44 11	J.			

TABLE III. <u>Group A inspection for device type 04</u> - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open).

 $\underline{1/}\,$ Case X and 2 pins not referenced are NC. $\underline{2/}\,$ I_{IL} limits are as follows:

					Min/Max limits (m	A) for circuits	
Test	A	В	С	D	E	F	G
I _{IL1}	135/370	016/40	20/44	03/30	0/20	12/36	0/15
I _{IL2}	270/740	12/36	40/88	06/60	0/10 for test 27	24/72 except	0/15
					0/10 for test 28	12/36 test 28	

 $\label{eq:alpha} \begin{array}{l} \underline{3}/ \mbox{ Inputs: } A \geq 2.5 \mbox{ V minimum, } B \leq 0.4 \mbox{ V maximum.} \\ \mbox{ Outputs: } H \geq 1.5 \mbox{ V, } L \leq 1.5 \mbox{ V.} \end{array}$

1 Tc = 25°C	Symbol V _{OH}	MIL-STD- 883 method	Cases E, F Cases <u>1</u> /	1	2	3	4	5	6	7	8	9	10	11	0.7 ≤ 0.7	13	14	15	16				1
1 Tc = 25°C											0	0	10		12								l
Tc = 25°C	V _{OH}		2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lin	nits	Unit
Tc = 25°C	V _{OH}		Test no.	D3	D2	D1	D0	Y	W	S	GND	С	В	Α	D7	D6	D5	D4	Vcc		Min	Max	1
Tc = 25°C	-	3006	1					-1 mA		0.7 V	GND	2.0 V	2.0 V	2.0 V	2.0 V				4.5 V	Y	2.4		V
		"	2				0.7 V		-1 mA	"	"	0.7 V	0.7 V	0.7 V						W	2.4		
-	V _{OL}	3007	3				0.7 V	4 mA		"	"	0.7 V	0.7 V	0.7 V						Y		0.4	
			4						4 mA	"	"	2.0 V	2.0 V	2.0 V	2.0 V				"	W		0.4	"
	VIC		5	-18 mA							"								"	D3		-1.5	
			6		-18 mA						"									D2		"	
			7			-18 mA					"									D1			"
			8				-18 mA				"									D0			
			9							-18 mA	"									S			
			10								"	-18 mA								С			-
			11								"		-18 mA							В			
			12								"			-18 mA						A		"	
			13								"				-18 mA					D7		"	
			14								"					-18 mA				D6			"
			15								"						-18 mA			D5			
L			16								"							-18 mA	"	D4		"	
	I _{IL1}	3009	17	0.4 V	5.5 V	5.5 V	5.5 V			GND	"	GND	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	D3	2/	2/	mA
			18	5.5 V	0.4 V	5.5 V							5.5 V	GND					"	D2		"	
			19	"	5.5 V	0.4 V							GND	5.5 V					"	D1	-	"	"
			20	"	"	5.5 V	0.4 V					"	GND	GND	"				"	D0		"	
			21	"		"	5.5 V			"		5.5 V	5.5 V	5.5 V	0.4 V	"			"	D7			"
			22	"	"	"	"			"	"		5.5 V	GND	5.5 V	0.4 V			"	D6		"	"
			23	"		"				"			GND	5.5 V	-	5.5 V	0.4 V			D5			"
_			24	"	"	"	"						GND	GND		5.5 V	5.5 V	0.4 V	"	D4	-		
	I _{IL2}		25							0.4 V		0.434								S	-		
	I _{IL3}		26									0.4 V	0.414							С			
			27										0.4 V	0.434						В			
			28	0714		OND						5.5.1	OND	0.4 V		ONID	OND			A D3			<u> </u>
	I _{IH1}	3010	29	2.7 V	GND	GND	GND			GND		5.5 V	GND	GND	GND	GND	GND	GND				20	μA
			30	GND	2.7 V	GND							GND	5.5 V						D2			
			31		GND	2.7 V							5.5 V	GND						D1			
			32		GND	GND	2.7 V						5.5 V	5.5 V						D0			
			33							2.7 V		071/								S			
			34									2.7 V	071/							C B			
			35 36								"		2.7 V	2.7 V						A			
		"	36	GND	GND	GND	GND			GND	"	GND	GND	GND	2.7 V	GND	GND	GND		A D7			
		"	37	"	"	"	UND "			"	"	"	GND	5.5 V	GND	2.7 V	GND	"		D7 D6		"	"
		"	38	"	"	"	"			"	"		5.5 V	S.S V GND	- GND	GND	2.7 V			D6 D5		"	
			40	"	"	"	"			"	"		5.5 V 5.5 V	5.5 V		GND	GND	2.7 V		D5 D4		"	"
	I _{IH2}	"	40	7.0 V	"	"	"			"	"	5.5 V	GND	GND		"	"	GND		D4 D3		100	"
	'IH2		41	GND	7.0 V	GND				"	"	5.5 v "	GND	5.5 V				"		D3 D2		"	"
			42	"	GND	7.0 V							5.5 V	GND		"			"	D2 D1		"	"
			43	"	GND	GND	7.0 V						5.5 V	5.5 V		"			"	D1 D0		"	"
		"	44		GND	OND	7.0 v			7.0 V	"		0.0 v	5.5 v						S			
		"	46							1.0 1	"	7.0 V								C			
		"	47								"	7.0 V	7.0 V							B			
			47								"		1.5 V	7.0 V						A			
		"	40	GND	GND	GND	GND			GND	"	GND	GND	GND	7.0 V	GND	GND	GND		D7	-	"	
		"	50	"	"	"	"			"	"	"	GND	5.5 V	GND	7.0 V	GND	"	"	D6		"	"
		"	51	"	"	"	"			"	"		5.5 V	GND	"	GND	7.0 V		"	D5		"	
		"	52	"	"	"	"			"	"		5.5 V	5.5 V		"	GND	7.0 V	"	D4		"	"

TABLE III. <u>Group A inspection for device type 05</u>. Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open).

See footnotes at end of device type 05.

MIL-M-38510/309E

Subply No No.PD Co.Pd 1 2 3 4 5 6 7 6 9 10 11 12 13 14 15 16 16 16							Te	erminal of	conditio	ns (pins	not des	signated	l may b	e high ≥	2.0 V; lo	$50 \ge w$	V; or op	en).						
N N			MIL-STD-	Cases E, F	1	2													15	16				
1 1 53 5.50 5.50 5.50 5.70 5.	Subgroup	Symbol		2, X																				Unit
1 1										W												Min		<u> </u>
Image: Second		I _{OZH}			5.5 V	5.5 V	5.5 V	5.5 V	2.7 V		2.0 V	GND	5.5 V	5.5 V	5.5 V		5.5 V	5.5 V	5.5 V	5.5 V				μA
Image: Note: 1 1 <th1< th=""> 1 <th1< th=""> <t< td=""><td>Tc = 25°C</td><td></td><td></td><td></td><td>"</td><td>"</td><td>"</td><td>-</td><td></td><td>2.7 V</td><td>-</td><td>-</td><td></td><td>"</td><td>"</td><td></td><td></td><td>"</td><td>-</td><td></td><td></td><td></td><td></td><td>"</td></t<></th1<></th1<>	Tc = 25°C				"	"	"	-		2.7 V	-	-		"	"			"	-					"
Image: state Image: state<		I _{OZL}							0.4 V									"						"
1/2 0			0011						0115	0.4 V														
Image: state									GND		GND					5.5 V								mA "
Image Image <t< td=""><td></td><td></td><td></td><td></td><td>E E V</td><td>E E V</td><td>EEV</td><td></td><td></td><td>GND</td><td></td><td></td><td></td><td></td><td></td><td>EEV</td><td>EEV</td><td>EEV</td><td>E E V</td><td></td><td></td><td>-30</td><td></td><td></td></t<>					E E V	E E V	EEV			GND						EEV	EEV	EEV	E E V			-30		
2 3 and tests, terminal container and trains as backyong 1, except 7, e-30° cml VL, tests omtion. 3 and tests, terminal container and trains as backyong 1, except 7, e-30° cml VL, tests omtion. 4 A A A A A A A A B											55V									"				
3 are test, terms are strated out to an all strated out to any	2								125°C and	V tosts			5.5 V	5.5 V	0.0 V	5.5 V	0.0 V	0.0 V	0.0 V		V CC		12	
7 buc 7 buc 7 buc 7 buc 8 buc 9 buc																								
Te =27 Ional Ional E C <thc< th=""> C C <</thc<>										10 10313 01		GND	В	В	В	В	В	В	В	50V	YW			
Instrumentary Instrum			"	62							"	"	"	"	"					3.0 V	"			
Normal Property in the second secon	10 - 20 0					"	"								"		"	"		"	"			
Norm Norm <th< td=""><td></td><td>10010</td><td>"</td><td></td><td>"</td><td>"</td><td>"</td><td>"</td><td></td><td></td><td>"</td><td>"</td><td></td><td>"</td><td>Α</td><td></td><td></td><td></td><td>"</td><td></td><td>"</td><td></td><td></td><td></td></th<>		10010	"		"	"	"	"			"	"		"	Α				"		"			
Normal Normal<			"		"	"	В	"		H	"	"		"					"		"			
k k 67 0 B 0			"		"	"	"	"		L	"	"		Α							"			
Normal Normal Section			"		"	В	"	"		Н	"	"	"		В						"			
Normal Normal Section			"		"	"	"	"	Н	L	"	"					"				"		4/	
k fri r k r L H L H L F B r K F B K F B K K F B K			"	69	В	"	"	-	L	Н	-	-		"	А	-		"			"		_	
Normal Problem Product			"	70	"	"		=	Н	L	=	=	Α	В	В	=		-	-	-	"			
k 73 *			"		"			-	L	Н	-	-			В	-			В		"			
Normal Problem Variable			"		"			-	Н	L	-	-				-			-		"			
Normal Problem Probability			"		"	"	"	"	L	Н	"							В			"			
No			"		"	"	"	"	Н	L	"			A							"			
N N									L	н							В							
B Repeat-subgroup.7 test at Tc = +125°C and Tc = +55°C. 9 10+1 3003 78 In OUT GND GND GND In									н	L														
9 Tc = 25°C ¹ / ₁ / ₁ 3003 (Fig. 4) ** 78 (Fig. 4) ** <th78 (Fig. 4) ** 78 (Fig. 4) *</th78 	0	Denet			. 40500	n and The	5500		L	Н					A	В								
TC = 25°C (Fig. 4) 79 IN IN <thin< th=""> IN IN</thin<>					= +125°C	and IC = -	55°C.	INI			CND	CND	CND	CND	CND		-			501/	D0 to V	2	22	
80 IN IN<							INI	IIN	"		GND "	GND "	GND "							5.0 V		3	33	115
Image: Normal and the second	10 - 25 0		(i ig. +) "			IN	IIN				"	"												
$ \frac{82}{10} = 1 \\ \frac{82}{10} = 1 \\ \frac{82}{10} = 1 \\ \frac{82}{10} = 1 \\ \frac{83}{10} \\ \frac{83}{10} = 1 \\$					IN	IIN					"	"												
Image: Normal and the second									"		"								IN	"			"	"
No. 84 Image: constraint of the second seco			"						"		"	"	"					IN						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			"						"		"	"	"				IN			"		"	"	"
87 IN IN<			"						"		"	"	"			IN				"		"	"	"
ks in in<		t _{PHL1}	"	86				IN	"		"	"	GND	GND	GND					"	D0 to Y	"	"	
Normal Sector Normal S			"	87			IN		"		"	"	"	GND	5.0 V					"	D1 to Y	"	"	
90 1 1 1 1 5.0 GND GND 1<			"			IN																-	-	
91 <td></td> <td></td> <td>"</td> <td></td> <td>IN</td> <td></td> <td></td> <td></td> <td>"</td> <td></td> <td>"</td> <td>"</td> <td></td>			"		IN				"		"	"												
92 1 1 1 1 1 5.0 V GND IN 1 D6 to Y 1 1 1 93 0			"						"		-	-	5.0 V						IN					
Image: Problem P33 Participation P33 Participation P33 Participation P33 Participation P33 Participation P33 Participation P33 P33 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>"</td><td></td><td>"</td><td></td><td>"</td><td></td><td></td><td></td><td></td><td>IN</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									"		"		"					IN						
tplH2 94 IN OUT " GND GND GND IN " DotoW " 20 " 95 IN IN " " GND GND 5.0 V " DotoW " 20 " 96 IN " " " GND 5.0 V IN " " " " GND 5.0 V IN " " " " " " GND IN " " " " " GND 5.0 V GND IN "<					<u> </u>	<u> </u>											IN							
95 IN """"""""""""""""""""""""""""""""""""		L			<u> </u>	<u> </u>				OUT						IN	L						"	
96 IN " " " 5.0 V GND " " D2 to W " " " " " 5.0 V GND " " D2 to W " " " " " 5.0 V GND " " D2 to W "		t _{PLH2}					INI	IN		001			GND										20	
97 IN " " 5.0 V 5.0 V " " " " " " 0.0 V IN " D3 to W " " " " " " 0.0 V S.0 V IN " D3 to W " <th"< th=""> <th"< th=""> "</th"<></th"<>						INI	IN																	
98 Image: Second s					INI	IIN				"														
99 Image: Second s			"		IÍN					"		"					+		IN	"				"
" 100 " " " " " 5.0 V GND IN " D6 to W " " "			"							"		"	3.0 V				+	IN	IN					
			"		<u> </u>					"	"	"					IN							
	1		"							"	"	"				IN						"		

TABLE III. Group A inspection for device type 05 - Continued. Terminal conditions (pins not designated may be high > 2.0 V; low < 0.7 V; or open).

See footnotes at end of device type 05.

Tc = 25°C	Symbol n t _{PHL2}	11L-STD- 883 method 3003 (Fig. 4) " "	Cases E, F Cases <u>1</u> / 2, X Test no. 102 103 104 105 106 107	1 2 D3 IN	2 3 D2	3 4 D1	4 5 D0 IN	5 7 Y	6 8 W	7 9	8 10	9 12	10 13	11 14	12 15	13	14	15 19	16 20	Measured	Lim	nits	Unit
9 Tc = 25°C	t _{PHL2} (method 3003	2, X Test no. 102 103 104 105 106 107	D3	D2	D1	D0			-	10	12	13	14	15	17	18	19	20	Measured	Lin	nits	Linit
Tc = 25°C	(102 103 104 105 106 107					Y	W								.0	.0		terminal			Unit
Tc = 25°C	(103 104 105 106 107	IN	IN	IN	IN			S	GND	С	В	А	D7	D6	D5	D4	V _{CC}		Min	Max	
		(Fig. 4) " " "	104 105 106 107	IN	IN	IN			OUT	GND	GND	GND	GND	GND					5.0 V	D0 to W	3	20	ns
tŗ	t _{P1 H5}	" " "	105 106 107	IN	IN	11.4			"	"	-	"	GND	5.0 V						D1 to W			
tŗ	t _{PI H5}	" " "	106 107	IN					"	"	=	"	5.0 V	GND						D2 to W	"		
tŗ	t _{PI H5}	" "	107						"	"		"	5.0 V	5.0 V						D3 to W			"
tr	t _{PI H5}								"	"	=	5.0 V	GND	GND				IN	-	D4 to W			
tr	t _{PI H5}	"							"		=	"	GND	5.0 V			IN			D5 to W		-	-
tr	t _{PI H5}		108						"	"	=	"	5.0 V	GND		IN				D6 to W	"		
tr	t _{PI H5}	"	109						"	"	=	"	5.0 V	5.0 V	IN				-	D7 to W			"
		"	110			5.0 V	GND	OUT			=	GND	GND	IN						A to Y		50	"
		"	111		5.0 V		-	=			=	GND	IN	GND						B to Y		-	"
		"	112				"	"		"		IN	GND	GND				5.0 V		C to Y			"
tr	t _{PHL5}	"	113			5.0 V	"	=		"	=	GND	GND	IN					-	A to Y			"
		"	114		5.0 V		=	-			-	GND	IN	GND						B to Y		-	
		"	115				"	"			"	IN	GND	GND				5.0 V		C to Y			
tŗ	t _{PLH6}	"	116			5.0 V	"		OUT	"		GND	GND	IN						A to W		38	
		"	117		5.0 V		"		"			GND	IN	GND					-	B to W			
		"	118				=		"	"		IN	GND	GND				5.0 V		C to W			
tŗ	t _{PHL6}	"	119			5.0 V	"		"	"		GND	GND	IN						A to W			"
		"	120		5.0 V		"		"	"	=	GND	IN	GND					-	B to W			"
		"	121				-		"		=	IN	GND	"				5.0 V		C to W		-	
t _F	t _{PZH1}	"	122				5.0 V	OUT		IN	=	GND	-	"						S to Y		50	"
t _F	t _{PZH2}	"	123				GND		OUT	"	=	"	-							S to W	"	32	
t _f	t _{PZL1}	"	124				GND	OUT		"	=	"	-						-	S to Y		45	
t _f	t _{PZL2}	"	125				5.0 V		OUT	IN	-	"		"						S to W		45	
t _F	t _{PHZ1}	"	126				5.0 V	OUT		"	-	"	"	"						S to Y	"	50	"
t _F	t _{PHZ2}	"	127				GND		OUT	"	"	"	"	"						S to W	"	60	"
tr	t _{PLZ1}	"	128				GND	OUT		"		"	"	"						S to Y	"	35	"
tr	t _{PLZ2}	"	129				5.0 V		OUT		"	"	"	"						S to W		35	
t _{PI}	PLH1 and	$t_{PHL1} = 3$ to 75 ns	erminal con 3 to 50 ns; t ; t _{PZH2} = 3 to	PLH2 and	d t _{PHL2} = 3	3 to 30 ns	s; t _{PLH5} an	nd t _{PHL5} =	3 to 75 r	ns; t _{PLH6} a	Ind t _{PHL6}	= 3 to 57		= 3 to 45	ns								

TABLE III. <u>Group A inspection for device type 05</u> - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open).

 $\underline{1}/$ Case X and 2 pins not referenced are NC.

 $\underline{2}$ / I_{IL} limits are as follows:

36

	Min/Max limits (mA) for circuits						
Test	A	В	С	D	E	F	G
I _{IL1}	16/40	012/36	16/40	03/30	005/72	105/345	0/15
I _{IL2}	0/20	12/36	12/36	03/30	002/150	16/40	0/15
I _{IL3}	12/36	12/36	12/36	03/30	10/34	16/40	0/15

 $\underline{3}\!/$ I_{OS} limits for circuits A, B, D, F, and G are -15 to -100 mA.

 $\label{eq:alpha} \begin{array}{l} \underline{4} / \mbox{ Inputs: } A \geq 2.5 \mbox{ V minimum, } B \leq 0.4 \mbox{ V maximum.} \\ \mbox{ Outputs: } H \geq 1.5 \mbox{ V, } L \leq 1.5 \mbox{ V.} \end{array}$

						IE	erminal	conditio	ns (pins	not des	signated	l may b	e high ≥	2.0 V; Id	$5W \le 0.7$	v; or op	en).						
		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
group	Symbol	883 method	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lin	nits	Unit
			Test no.	S	1A	1B	1Y	2A	2B	2Y	GND	3Y	3B	3A	4Y	4B	4A	G	Vcc		Min	Max	
1	V _{OH}	3006	1	0.7 V	2.0 V		-1 mA				GND							0.7 V	4.5 V	1Y	2.4		V
= 25°C			2	-				2.0 V		-1 mA	"								"	2Y			
			3	"							"	-1 mA		2.0 V					"	3Y			
			4	"							"				-1 mA		2.0 V		"	4Y			
	V _{OL}	3007	5	2.0 V		0.7 V	12 mA				"									1Y		0.4	"
			6	-					0.7 V	12 mA	"									2Y			
			7	-							"	12 mA	0.7 V							3Y			
			8	-							"				12 mA	0.7 V			"	4Y		"	
	VIC		9	-18 mA							"									S		-1.5	
			10		-18 mA						"									1A		"	
			11			-18 mA					"									1B		"	
			12					-18 mA			"									2A		"	
			13						-18 mA		"								-	2B			
			14								"		-18 mA							3B			
			15								"			-18 mA						3A			
			16								"					-18 mA				4B		"	
			17								"						-18 mA			4A		"	
			18								"							-18 mA		G		"	
	I _{IL1}	3009	19	GND	0.4 V						"					ļ			5.5 V	1A	<u>2</u> /	<u>2</u> /	m/
		"	20	5.5 V		0.4 V													"	1B		"	
			21	GND				0.4 V			"									2A			"
			22	5.5 V					0.4 V											2B			
			23	5.5 V									0.4 V							3B			
			24	GND										0.4 V						3A			
			25	5.5 V												0.4 V	0.414			4B			
			26	GND													0.4 V	0.4 V		4A			
	I _{IL2}		27	0.4.1/														0.4 V		G			
		3010	28 29	0.4 V 5.5 V	2.7 V						"									S 1A		20	
	I _{IH1}	3010	30	GND	2.1 V	2.7 V					"								"	1B		20	μ <i>ι</i> "
			30	5.5 V		2.7 V		2.7 V											"	2A		"	
			32	GND				2.1 V	2.7 V		"								"	2A 2B			
			33	GND					2.1 V		"		2.7 V						"	2B 3B			
			34	5.5 V							"		2.1 V	2.7 V					"	3A		"	
		"	35	GND							"			2.7 V		2.7 V			"	4B			
			36	5.5 V							"					2.7 V	2.7 V		"	4A		"	
			37	0.0 V							"						2.7 V	2.7 V		G			
	I _{IH2}	3010	38	5.5 V	7.0 V															1A		100	
	112	"	39	GND		7.0 V					"					<u> </u>			"	1B		"	
		"	40	5.5 V		-		7.0 V			"			1					"	2A		"	"
		"	41	GND	1	1	1	-	7.0 V		"			1		l I			"	2B		"	
		"	42	GND							"		7.0 V						"	3B		"	
		"	43	5.5 V							"			7.0 V					"	ЗA		"	
		"	44	GND							"					7.0 V			"	4B		"	"
		"	45	5.5 V							"						7.0 V		"	4A		"	
		"	46								"							7.0 V		G		"	
	I _{IH3}	"	47	2.7 V							"									S		40	
	I _{IH4}	"	48	7.0 V							"									S		200	
	I _{OZH}		49	2.0 V	0.7 V		2.7 V				"							2.0 V	"	1Y		20	
			50	=				0.7 V		2.7 V	"									2Y		"	
			51	"								2.7 V		0.7 V						3Y			
			52	"							"				2.7 V		0.7 V		"	4Y			
	I _{OZL}		53	0.7 V		2.0 V	0.4 V												"	1Y		-20	
			54	"					2.0 V	0.4 V						ļ				2Y			"
			55 56	"							"	0.4 V	2.0 V							3Y			"
							1	1	1		"				0.4 V	2.0 V				4Y	1		

TABLE III. <u>Group A inspection for device type 06</u>. Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open).

See footnotes at end of device type 06.

						Тс	rminal						e high ≥				en)						
	<u> </u>		Cases	1	2	3		5		7	signalet	i iiiay D	e nign ≥ 10	2.0 V, IC	12 SW ≤ 0.7	v, or op	en). 14	15	16	1			
		MIL-STD-	E, F	I	2	3	4	5	0	'	0	9	10		12	15	14	15	10				
Subgroup	Symbol	883 method	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lin	its	Unit
			Test no.	S	1A	1B	1Y	2A	2B	2Y	GND	3Y	3B	3A	4Y	4B	4A	G	V _{cc}		Min	Max	
	l _{os}	3011	57	GND	5.5 V		GND				"							GND	"	1Y	-30	-130	mA
	<u>3</u> /		58	"				5.5 V		GND									"	2Y			
		"	59	"							"	GND		5.5 V				"	"	3Y		"	
		"	60	"							"				GND		5.5 V	"	"	4Y		"	
	I _{CC1}	3005	61		5.5 V	5.5 V		5.5 V	5.5 V		"		5.5 V	5.5 V		5.5 V	5.5 V		"	V _{cc}		12	
	I _{CC2}	"	62		GND	GND		GND	GND		"		GND	GND		GND	GND			V _{CC}		18	
	I _{CC3}		63		GND	GND		GND	GND		"		GND	GND		GND	GND	5.5 V		V _{CC}		19	
2			al conditions																				
3			al conditions										-		-								
7	Func-	3014	64	В	В	В	L	В	В	L	GND	L	В	В	L	В	В	В	5.0 V	All			
Tc = 25°C			65	"	В	A	L	В	A	L	"	L	A	В	L	A	В	"		outputs			
1	tests		66		A		Н	A		Н		Н		A	Н		A		"	1			
		"	67	"	В		L	В	-	L	"	L	-	В	L	"	В	"			<u>4</u> /		
		"	68	A	В	"	Н	В	"	Н	"	Н		В	Н		В						
		"	69	"	A	-	Н	A	-	Н	"	Н	"	A	Н		A						
		"	70	"	A	В	L	A	В	L	"	L	В	Α	L	В	A	"					
		"	71	"	В	В	L	В	В	L	"	L	В	В	L	В	В						
8	Repeat		tests at T _C			55°C																	
9	t _{PLH1}	3003	72	GND	IN		OUT				GND							GND	5.0 V	1A to 1Y	3	23	ns
Tc = 25°C		Fig. 4	73	5.0 V		IN	OUT				"									1B to 1Y			
		"	74	GND				IN		OUT	"									2A to 2Y			
		"	75	5.0 V					IN	OUT	"									2B to 2Y			
		"	76	5.0 V							"	OUT	IN							3B to 3Y			
		"	77	GND							"	OUT		IN						3A to 3Y			
		"	78	5.0 V							"				OUT	IN				4B to 4Y			
		"	79	GND							"				OUT		IN			4A to 4Y			
	t _{PHL1}	"	80	GND	IN		OUT				"									1A to 1Y			
		"	81	5.0 V		IN	OUT				"									1B to 1Y	-		
		"	82	GND				IN		OUT	"									2A to 2Y			
		"	83	5.0 V					IN	OUT	"									2B to 2Y	-		
			84	5.0 V							"	OUT	IN							3B to 3Y			
			85	GND							"	OUT		IN						3A to 3Y	-		
			86	5.0 V											OUT	IN				4B to 4Y			<u> </u>
	L		87	GND		5.0.1/	OUT								OUT		IN		<u> </u>	4A to 4Y			
1	t _{PLH5}		88	IN "	GND	5.0 V	OUT	CNID	FOV	OUT				ļ						S to 1Y		26	
1			89					GND	5.0 V	OUT		OUT	FOV	CND						S to 2Y			
1			90	"								001	5.0 V	GND		FOV	CND			S to 3Y			
1			91		FOV	CNID	OUT					\vdash		├ ──┤	OUT	5.0 V	GND		+	S to 4Y			
	t _{PHL5}		92 93		5.0 V	GND	OUT	5.0 V	GND	OUT										S to 1Y			
			93 94					5.U V	GND	OUT		OUT	GND	5.0 V						S to 2Y S to 3Y			
1			94 95									001	GND	5.U V	OUT	GND	5.0 V			S to 3Y S to 4Y			
	+	"	95 96	GND	5.0 V		OUT					<u> </u>		<u> </u>	001	GND	0.0 V	IN		G to 1Y		35	
	t _{PZH3}		96 97	GND "	0.U V		001	5.0 V		OUT	"									G to 1Y		35	
			97 98					0.U V		001	"	OUT		5.0 V						G to 2Y G to 3Y			
			98	"							"	001		5.U V	OUT		5.0 V			G to 3Y G to 4Y			
	t	"	100	5.0 V		GND	OUT				"				001		5.0 V			G to 4Y			
	t _{PZL3}		100	5.0 v		GND	001		GND	OUT	"									G to 1Y			
1			101	"					GND	001	"	OUT	GND							G to 2Y	"		
			102	"							"	001	GND		OUT	GND				G to 31 G to 4Y	"		
L		L	105	L	L	L	l	L	l	l	L				001	UND		l		0.041	L		

TABLE III. Group A inspection for device type 06 - Continued.

See footnotes at end of device type 06.

TABLE III.	Grou	o A ins	pection	for dev	vice typ	be 06	 Continu 	ued.
al conditions (n	ine ne	t docio	notod n	nov ho	high	201	$1 \cdot \log < 0$	1711.0

						_																	
						Te	erminal	conditio	ns (pins	not des	signated	l may b	e high ≥	2.0 V; lo	ow ≤ 0.7	V; or op	en).						
		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
Subgroup	Symbol	883 method	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lin	nits	Unit
			Test no.	S	1A	1B	1Y	2A	2B	2Y	GND	3Y	3B	3A	4Y	4B	4A	G	V _{CC}		Min	Max	
9	t _{PHZ3}	3003	104	5.0 V		5.0 V	OUT				GND							IN		G to 1Y	3	35	ns
Tc = 25°C		Fig. 5	105	"					5.0 V	OUT	"									G to 2Y		"	"
			106	"							"	OUT	5.0 V						"	G to 3Y		"	"
			107	"							"				OUT	5.0 V			"	G to 4Y		"	"
	t _{PLZ3}	"	108	GND	GND		OUT				"								"	G to 1Y		30	"
			109	"				GND		OUT	"									G to 2Y		"	"
		"	110	"							"	OUT		GND						G to 3Y		"	"
			111	"							"				OUT		GND		"	G to 4Y		"	"
10			al conditions o 35 ns; t _{PLH}								ns.												
11	Same te	ests, termina	al conditions	and limits	as subgro	oup 10, ex	cept T _C =	-55°C.															

1/ Case X and 2 pins not referenced are NC.

 $\underline{2}/~I_{\text{IL}}$ limits shall be as follows:

			Min/Max lin	nits (mA) for cire	cuits		
Test	А	В	С	D	E	F	G
I _{IL1}	15/38	16/40	20/44	0/30	0/20	12/36	0/15
IIL2 test 27	0/20	16/40	20/44	0/30	0/10	12/36	0/15
IIL2 test 28	0/20	32/80	40/88	0/60	0/10	24/72	0/15

 $\underline{3}\!/$ I_{OS} limits for circuits B, C, D, F, and G are -15 to -100 mA.

 $\underline{4}/$ Inputs: A ≥ 2.5 V minimum, B ≤ 0.4 V maximum. 39

Outputs: Output voltages shall be either:

a. H = 2.5 volts minimum and L = 0.4 volt maximum when using a high speed checker double comparator, or b. H \ge 1.5 volts and L \le 1.5 volts when using a high speed checker single comparator.

c. Attributes data only is required for subgroups 7 and 8.

						le	erminal		ns (pins				e high ≥				en).						
		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
group	Symbol	883 method	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lin	nits	Unit
			Test no.	S	1A	1B	1Y	2A	2B	2Y	GND	3Y	3B	3A	4Y	4B	4A	G	Vcc		Min	Max	
1	V _{OH}	3006	1	0.7 V	0.7 V		-1 mA				GND							0.7 V	4.5 V	1Y	2.4		V
= 25°C			2	"				0.7 V		-1 mA	"								"	2Y			"
			3	"							"	-1 mA		0.7 V						3Y			"
		"	4	"							"				-1 mA		0.7 V		"	4Y			"
	V _{OL}	3007	5	2.0 V		2.0 V	12 mA				"									1Y		0.4	"
			6	"					2.0 V	12 mA	"									2Y			"
		"	7	"							"	12 mA	2.0 V							3Y		"	
			8								"				12 mA	2.0 V			"	4Y		"	
	VIC		9	-18 mA							"								"	S		-1.5	
			10		-18 mA						"							1		1A			
			11			-18 mA					"							1		1B			
			12					-18 mA			"								"	2A			
			13						-18 mA		"								"	2B			
			14								"		-18 mA							3B	Ļ	"	
			15								"			-18 mA						ЗA	Ļ	"	
			16			I	I	I			"	ļ'				-18 mA	10 .			4B	───		
			17									'					-18 mA	<u> </u>		4A			
		0000	18		0.41/	L	L	L	<u> </u>		<u> </u>	──'			<u> </u>			-18 mA		G	- 0/		
	I _{IL1}	3009	19	GND	0.4 V	0.414						├ ────'						GND	5.5 V	1A	<u>2</u> /	<u>2</u> /	m/
			20	5.5 V		0.4 V		0.414				'								1B	<u> </u>		
			21	GND				0.4 V	0.4.1/			'								2A 2B	<u> </u>		
			22 23	5.5 V 5.5 V					0.4 V		"	<u> </u>	0.4 V							2B 3B	───		
			23	S.5 V GND							"		0.4 V	0.4 V						3B 3A	<u> </u>		
			24	5.5 V							"	<u> </u>		0.4 V		0.4 V				4B			
			25	5.5 V							"	┥────′				0.4 V	0.4 V			4B 4A			
	I _{IL2}	"	20	5.5 V							"						0.4 V	0.4 V		G			
	1LZ		28	0.4 V							"	<u> </u>						0.4 0		S			
	I _{IH1}	3010	29	5.5 V	2.7 V						"									1A		20	μA
		"	30	GND		2.7 V					"							·	"	1B	-		μ.,
		"	31	5.5 V				2.7 V											"	2A		"	
			32	GND					2.7 V		"	1							"	2B		"	
			33	GND							"	1	2.7 V						"	3B		"	
			34	5.5 V							"			2.7 V					"	3A		"	
		"	35	GND							"					2.7 V			"	4B		"	
		"	36	5.5 V							"						2.7 V		"	4A		"	
		"	37	GND							"							2.7 V		G			
	I _{IH2}	3010	38	5.5 V	7.0 V						"							<u> </u>	"	1A		100	
		"	39	GND		7.0 V					"	ļ'				ļ			"	1B	L		"
			40	5.5 V		ļ	ļ	7.0 V			"	ļ'				ļ				2A	└───	"	
			41	GND		I	I	I	7.0 V		"	└─── ′	7.0.1/			l			<u> </u>	2B	───		
			42	GND		ļ	ļ	ļ			<u> </u>	↓ ′	7.0 V	7.0.1/		ļ			<u> </u>	3B	┝───		<u> </u>
			43	5.5 V		ļ	ļ	ļ			<u> </u>	↓ ′		7.0 V		7.01/			<u> </u>	3A	┝───		<u> </u>
			44	GND		l	l	l				───′				7.0 V	7.0 V			4B 4A	───		
			45 46	5.5 V GND								┥─────′			-		7.0 V	7.0 V		G 4A	├───		
	I _{IH3}	"	40	2.7 V							"							7.0 V		S		40	
	I _{IH3}	"	47	7.0 V		t	t	t			"	├────				t				S	<u>├</u> ───	200	
	I _{IH4}		40	2.0 V		2.0 V	2.7 V				"	<u> </u>						2.0 V	"	1Y	<u>├</u> ──	200	
	•OZH		50	2.0 V		2.0 V	2.1 V		2.0 V	2.7 V		<u> </u>						2.5 v		2Y	<u>├</u> ──	20	
			51	"		1	1	1	v	v	"	2.7 V	2.0 V	1		1				3Y	1		
			52	"							"	2.7 V	2.0 *		2.7 V	2.0 V			"	4Y	1		
	I _{OZL}		53	0.7 V	0.7 V		0.4 V				"								"	1Y	1	-20	
	-02L		54			1		0.7 V		0.4 V				1		1			"	2Y	1	"	
					1	ł	ł		1		"	+		1		ł			+		+		
			55									0.4 V		0.7 V				, "		3Y			

TABLE III. <u>Group A inspection for device type 07</u>. Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open).

See footnotes at end of device type 07.

						Ie	erminal	conditio	ns (pins	not des	signated	l may b	e high ≥	2.0 V; lo	$5w \le 0.7$	V; or op	ben).						
		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
Subgroup	Symbol	883 method	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lin	nits	Unit
			Test no.	S	1A	1B	1Y	2A	2B	2Y	GND	3Y	3B	3A	4Y	4B	4A	G	V _{CC}		Min	Max	
	los	3011	57	GND	GND		GND											GND	"	1Y	-30	-130	mA
	<u>3</u> /	"	58	"				GND		GND	"								"	2Y			
		"	59	"							"	GND		GND						3Y			
		"	60	"							"				GND		GND			4Y			"
	I _{CC1}	3005	61	5.5 V	5.5 V	5.5 V		5.5 V	5.5 V				5.5 V	5.5 V		5.5 V	5.5 V		"	V _{cc}		15	
	I _{CC2}		62	GND	GND	GND		GND	GND				GND	GND		GND	GND			V _{cc}		9	
	I _{CC3}		63		<u> </u>			10500										5.5 V		V _{CC}		19	
2			al conditions																				
3		ests, termin									ONE						_		5.0.1		-		
7	Func-	3014	64 65	B	B	B	н	B	B	н	GND	н	B	B	Н	B	B	B	5.0 V	All			
Tc = 25°C					B	A	н	B	A	н		H L	A	B	н	A	B			outputs			
	tests		66				L	A B		L				A	L		A			_	41		
			67 68	A	B		Н	B	"	Н	"	H		B	H		B			-	<u>4</u> /		
			69	н "	A	"		A	"		"			A			A			-			
			70	"	A	В	H	A	В	H	"	H	В	A	H	В	A			-			
			70	"	B	B	Н	В	B	н	"	Н	B	В	Н	B	B			-			
8	Reneat	subaroup 7	tests at T _C	= +125°C	-			U	5				D	D		D	U						
9	t _{PLH1}	3003	72	GND	IN	55 0	OUT	1		1	GND	1				1		GND	5.0 V	1A to 1Y	3	23	ns
с = 25°С	PLHI	Fig. 4	73	5.0 V		IN	OUT				"							"	"	1B to 1Y	"	"	"
0 - 20 0		"	74	GND			00.	IN		OUT	"									2A to 2Y			"
			75	5.0 V					IN	OUT	"							"		2B to 2Y	"		
		"	76	5.0 V							"	OUT	IN							3B to 3Y			
			77	GND							"	OUT		IN						3A to 3Y			
		"	78	5.0 V							"				OUT	IN		"		4B to 4Y	-		
		"	79	GND							"				OUT		IN	"		4A to 4Y	-		
	t _{PHL1}	"	80	GND	IN		OUT				"									1A to 1Y	=		-
		"	81	5.0 V		IN	OUT				"							-		1B to 1Y	-	-	-
		"	82	GND				IN		OUT	"									2A to 2Y	-		-
		"	83	5.0 V					IN	OUT	"									2B to 2Y	-		
		"	84	5.0 V							"	OUT	IN					"		3B to 3Y			"
			85	GND							"	OUT		IN						3A to 3Y			
			86	5.0 V											OUT	IN				4B to 4Y			
	+		87	GND	5.0 V	CND	OUT								OUT		IN			4A to 4Y			
	t _{PLH5}		88 89	IN "	5.0 V	GND	OUT	5.0 V	GND	OUT	"	<u> </u>				<u> </u>				S to 1Y S to 2Y		26	
			90	"				5.0 V	GND	001	"	OUT	GND	5.0 V						S to 2Y			
			90									001	GND	J.U V	OUT	GND	5.0 V			S to 3Y			
	t _{PHL5}	"	91	"	GND	5.0 V	OUT				"				001	GND	0.0 v			S to 1Y			
	4PHL5	"	93	"		5.0 v	001	GND	5.0 V	OUT	"							"		S to 2Y	"		"
		"	94	"				0.10	0.0 .		"	OUT	5.0 V	GND				"		S to 3Y	"		"
			95	"							"		0.0 1	0.10	OUT	5.0 V	GND	"		S to 4Y	"		"
	t _{PZH3}	"	96	GND	GND	1	OUT	1		1	"			1				IN	"	G to 1Y	"	35	"
	1210	"	97	"		1		GND		OUT	"	İ 👘		1		1	1	"		G to 2Y	"	"	
		"	98	"							"	OUT		GND				"		G to 3Y	"		
		"	99	"							"				OUT		GND	"	"	G to 4Y			
	t _{PZL3}	"	100	5.0 V		5.0 V	OUT											"		G to 1Y			
		"	101	"					5.0 V	OUT	"									G to 2Y			
		"	102	"							"	OUT	5.0 V							G to 3Y	-		-
	1	"	103	"	1						"		1		OUT	5.0 V			"	G to 4Y	-		

TABLE III. Group A inspection for device type 07 - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open).

See footnotes at end of device type 07.

TABLE III.	Group A inspection for device type 07 - Continued.
Torminal conditions (r	$r_{\rm max}$ and $r_{\rm max}$ be high > 2.0 V/: low < 0.7 V/: or open)

						IE	erminal	conalitio	ns (pins	not des	signated	may D	e high \geq	2.0 V, IC	$JW \ge 0.7$	v, or op	en).						
		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
Subgroup	Symbol	883 method	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lin	nits	Unit
			Test no.	S	1A	1B	1Y	2A	2B	2Y	GND	3Y	3B	ЗA	4Y	4B	4A	G	V _{CC}		Min	Max	
9	t _{PHZ3}	3003	104	GND	GND		OUT				=							IN	"	G to 1Y	3	35	ns
Tc = 25°C		Fig. 4	105					GND		OUT									"	G to 2Y	-	"	
		"	106	"							"	OUT		GND					"	G to 3Y		"	
		"	107	"							"				OUT		GND		"	G to 4Y		"	
	t _{PLZ3}	"	108	5.0 V		5.0 V	OUT				"									G to 1Y		30	"
	-	"	109	"					5.0 V	OUT	"								"	G to 2Y		"	
		"	110	"							"	OUT	5.0 V						"	G to 3Y		"	
		"	111	"							"				OUT	5.0 V				G to 4Y		"	
			ninal condi																				
			3 to 35 ns;							to 53 ns;	$t_{PLZ3} = 3$	to 45 ns	i.										
11	Same	tests, term	ninal condit	tions and	d limits as	s subgrou	up 10, ex	cept T _C =	= -55°C.														

1/ Case X and 2 pins not referenced are NC.

 $\underline{2}$ / I_{IL} limits shall be as follows:

			Min/Max lin	nits (mA) for circ	uits		
Test	A	В	С	D	E	F	G
I _{IL1}	15/38	16/40	20/44	0/30	0/20	12/36	0/15
IIL2 test 27	0/20	16/40	20/44	0/30	0/10	12/36	0/15
IIL2 test 28	0/20	32/80	32/80	0/60	0/10	24/72	0/15

 $\underline{3}$ / I_{OS} limits for circuits B, C, D, F, and G are -15 to -100 mA.

$\label{eq:alpha} \underline{4} / \mbox{ Inputs: } A \geq 2.5 \mbox{ V minimum, } B \leq 0.4 \mbox{ V maximum.} \\ Outputs: \mbox{ Output voltages shall be either: }$ 42

- a. H = 2.5 volts minimum and L = 0.4 volt maximum when using a high speed checker double comparator, or
- b. H \ge 1.5 volts and L \le 1.5 volts when using a high speed checker single comparator.
- c. Attributes data only is required for subgroups 7 and 8.

						IE	erminal	conditio	ns (pins	not des	lignated	l may b	e high \geq	2.0 V; IC	$DW \le 0.7$	v; or op	en).						
		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
ıbgroup	Symbol	883 method	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lin	nits	Uni
			Test no.	1G	В	1C3	1C2	1C1	1C0	1Y	GND	2Y	2C0	2C1	2C2	2C3	А	2G	V _{CC}		Min	Max	
1	V _{OH}	3006	1	0.7 V	0.7 V				2.0 V	-1 mA	GND						0.7 V		4.5 V	1Y	2.4		V
= 25°C		"	2		0.7 V						"	-1 mA	2.0 V				0.7 V	0.7 V		2Y	2.4		
	V _{OL}	3007	3	0.7 V	2.0 V	0.7 V				4 mA	"						2.0 V		"	1Y		0.4	"
		"	4		2.0 V						"	4 mA				0.7 V	2.0 V	0.7 V	"	2Y		0.4	"
	VIC		5	-18 mA							"								"	1G		-1.5	"
			6		-18 mA						"									В		"	
			7			-18 mA					"									1C3			
			8				-18 mA				"								-	1C2			
			9					-18 mA			=								-	1C1		-	
			10						-18 mA		=								-	1C0		-	
			11								-		-18 mA							2C0			
			12								"			-18 mA						2C1		"	-
			13								"				-18 mA					2C2		"	
			14								-					-18 mA				2C3			
			15								"						-18 mA			A			
			16								"							-18 mA		2G			
	I _{IL1}	3009	17	0.4 V							"								5.5 V	1G	2/	2/	m
		"	18		0.4 V						"								"	В	"	"	
		"	19	GND	5.5 V	0.4 V											5.5 V		"	1C3	"	"	'
		"	20	"	5.5 V		0.4 V				"						GND		"	1C2	"	"	
		"	21	"	GND			0.4 V			"						5.5 V		"	1C1	"	"	
		"	22	"	"				0.4 V		"						GND			1C0	"		,
		"	23		"						"		0.4 V				GND	GND	"	2C0		"	
		"	24		"						"			0.4 V			5.5 V			2C1	"	"	-
			25		5.5 V						"				0.4 V		GND		"	2C2	"	"	'
			26		5.5 V											0.4 V	5.5 V			2C3			
			27														0.4 V			A			
			28	0714														0.4 V		2G		"	
	I _{IH1}	3010	29	2.7 V																1G		20	μ
			30		2.7 V															В			
			31		GND	2.7 V											GND			1C3			
			32		GND		2.7 V										5.5 V		"	1C2		"	
			33		5.5 V			2.7 V	0714								GND			1C1			
			34						2.7 V				0.7.1				5.5 V			1C0			
			35			l							2.7 V	271			5.5 V			2C0			
			36 37		GND		<u> </u>		<u> </u>					2.7 V	2.7 V		GND 5.5 V			2C1 2C2			<u> </u>
			37		GND		<u> </u>		<u> </u>		"				2.1 V	2.7 V	5.5 V GND		"	2C2 2C3			
			38		GND		<u> </u>		<u> </u>		"					2.1 V	GND 2.7 V						<u> </u>
			39 40			 					"			 			2.1 V	2.7 V		A 2G			
		"	40	7.0 V		 					"			 				2.1 V		2G 1G		100	-
	I _{IH2}	"	41	1.0 V	7.0 V	 					"			 						B		"	
			42		GND	7.0 V					"						GND		"	1C3		"	
			43		GND	7.0 V	7.0 V				"						5.5 V		"	1C3		"	
		"	44		5.5 V		7.0 V	7.0 V			"						GND		"	1C2		"	
		"	46					7.0 0	7.0 V		"						5.5 V			101			
		"	40		"	t		-	7.0 V	-	"		7.0 V	t			5.5 V			2C0			
		"	48		"						"		1.0 *	7.0 V			GND			200 2C1			
		"	49		GND						"			7.0 *	7.0 V		5.5 V		"	2C2		"	
		"	50		GND						"				1.0 1	7.0 V	GND		"	2C3		"	
		"	51		0.10						"					7.0 0	7.0 V			A 203			
	1		52											l		L	1.5 V	7.0 V		2G			 .

TABLE III. <u>Group A inspection for device type 08</u>. Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open).

See footnotes at end of device type 08.

						Te	erminal	conditio	ns (pins	not des	signated	l may b	e high ≥	2.0 V; lo	$w \le 0.7$	V; or op	en).						
		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
Subgroup	Symbol	l 883 method	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lin	nits	Unit
			Test no.	1G	В	1C3	1C2	1C1	1C0	1Y	GND	2Y	2C0	2C1	2C2	2C3	Α	2G	V _{cc}		Min	Max	1
1	I _{OZH}		53	2.0 V	0.7 V				0.7 V	2.7 V	GND						0.7 V		5.5 V	1Y		20	μA
Tc = 25°C	0EII		54		0.7 V						"	2.7 V	0.7 V				0.7 V	2.0 V	"	2Y		20	"
	I _{OZL}		55	2.0 V	2.0 V	2.0 V				0.4 V	"						2.0 V		"	1Y		-20	"
	OZL		56		2.0 V						"	0.4 V				2.0 V	2.0 V	2.0 V	"	2Y		-20	"
	los	3011	57	GND	GND				5.5 V	GND							GND		"	1Y	-30	-130	mA
	3/	3011	58		"						"	GND	5.5 V				"	GND	"	2Y	-30	-130	"
	I _{CC1}	3005	59	GND	"	GND	GND	GND	GND		"		GND	GND	GND	GND	"	GND	"	V _{cc}		12	"
	I _{CC2}	3005	60	5.5 V	"	GND	GND	GND	GND		"		GND	GND	GND	GND	-	5.5 V	"	V _{cc}		14	-
2	Same to	ests, termina	al conditions	and limits	s as subgro	oup 1, exc	ept T _C = +	125°C and	VIC tests	omitted.													
3	Same to	ests, termina	al conditions	and limits	s as subgro	oup 1, exc	ept T _C = -5	55°C and ∖	Ic tests or	mitted.													
7	Func-	3014	61	В	В	Α	Α	Α	В	L	GND	L	В	A	A	A	В	В	5.0 V	All			
Tc = 25°C	tional	"	62	"	"	В	В	В	В	L	"	L	В	В	В	В				Outputs			
	tests		63						A	Н		Н	A	"	-				"	"			
		"	64		"		"	"		L	"	L		"	"	"	A	"		"			
		"	65	"	"	"	"	A	"	Н	"	Н		A		"	A	"	"	"			
		"	66	"	"	"	"	"	"	Н	"	Н	-	"	-		В	-		"			
			67	"	A	"	"	"	"	L	"	L		"		"	"	"		"			
			68	"	"	"	A	"	"	Н	"	Н	"	"	A	"				"		<u>4</u> /	
			69							L		L					A		"	"			
		<u>.</u> .	70		 	A				Н		Н				A	A						
8		subgroup 7				55°C.	r	r	15.1	OUT				1		r	OND		5.0.1/	400 1- 414			
9	t _{PLH1}	3003	71	GND	GND GND			IN	IN	OUT	GND						GND		5.0 V	1C0 to 1Y	3	30	ns
Tc = 25°C		(Fig. 4)	72 73		5.0 V		IN	IIN									5.0 V GND			1C1 to 1Y 1C2 to 1Y			
			73		5.0 V 5.0 V	IN	IIN			"	"						5.0 V			1C2 to 1Y 1C3 to 1Y			
			74		GND	lin					"	OUT	IN				GND	GND		2C0 to 2Y			
			75		GND						"	"	IIN	IN			5.0 V	GND "		2C0 to 21 2C1 to 2Y			
			70		5.0 V						"			IIN	IN		GND	"		2C1 to 21 2C2 to 2Y			
			78		5.0 V						"				IIN	IN	5.0 V	"		2C2 to 21 2C3 to 2Y			
	t _{PHI 1}	"	70	GND	GND				IN	OUT	"						GND			1C0 to 1Y		25	"
	4PHL1	"	80	"	GND			IN		001	"						5.0 V			1C1 to 1Y		"	"
		"	81	"	5.0 V		IN				"						GND		"	1C2 to 1Y	"	"	"
			82	"	5.0 V	IN				OUT	"						5.0 V			1C3 to 1Y			
		"	83		GND						"	OUT	IN				GND	GND	"	2C0 to 2Y		"	
		"	84		GND		1	1		1	"			IN		1	5.0 V			2C1 to 2Y			"
		"	85		5.0 V		Ì	Ì		İ 👘	"				IN	İ 👘	GND	"	"	2C2 to 2Y	"		"
		"	86		5.0 V						"					IN	5.0 V		"	2C3 to 2Y			"
	t _{PLH5}	"	87	GND	GND			5.0 V	GND	OUT	"						IN		"	A to 1Y		50	"
		"	88		GND						"	OUT	GND	5.0 V			IN	GND	"	A to 2Y	"	"	"
		"	89	GND	IN		5.0 V		GND	OUT	"						GND		"	B to 1Y	"	"	"
		"	90		IN						"	OUT	GND		5.0 V		GND	GND	"	B to 2Y		"	
	t _{PHL5}	"	91	GND	GND			GND	5.0 V	OUT	"						IN		"	A to 1Y		37	"
		"	92		GND						"	OUT	5.0 V	GND			IN	GND		A to 2Y		"	
									5.0 V								GND			B to 1Y			=
		"	93 94	GND	IN IN		GND		5.0 V	OUT		OUT	5.0 V		GND		GND	GND		B to 11 B to 2Y		4 1	

TABLE III. <u>Group A inspection for device type 08</u> - Continued.

or op op) -

See footnotes at end of device type 08.

TABLE III. Group A inspection for device type 08 - Continued.

	1		0	4	0		4	conditio	.0 (p0	7	- ginated		Ŭ	44	40	40	,	45	40	1			
		MIL-STD-	Cases E, F	1	2	3	4	5	6	1	8	9	10	11	12	13	14	15	16				
Subgroup	Symbol	883 method	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Limits		Unit
			Test no.	1G	В	1C3	1C2	1C1	1C0	1Y	GND	2Y	2C0	2C1	2C2	2C3	A	2G	V _{CC}		Min	Max	I
9	t _{PZH3}	3003	95	IN	5.0 V	5.0 V				OUT	GND						5.0 V		5.0 V	1G to 1Y	3	46	ns
Tc = 25°C		(Fig. 4)	96		5.0 V						"	OUT				5.0 V	5.0 V	IN	"	2G to 2Y		46	"
	t _{PZL3}	"	97	IN	GND				GND	OUT	-						GND		"	1G to 1Y	"	28	"
		"	98		GND						"	OUT	GND				GND	IN		2G to 2Y	"	28	"
	t _{PHZ3}	"	99	IN	5.0 V	5.0 V				OUT	"						5.0 V		"	1G to 1Y	"	46	"
			100		5.0 V						"	OUT				5.0 V	5.0 V	IN	"	2G to 2Y	"	46	"
	t _{PI Z3}	"	101	IN	GND				GND	OUT	"						GND		"	1G to 1Y	"	32	
			102		GND						"	OUT	GND				GND	IN	"	2G to 2Y	"	32	"
10	Same	tests. term	ninal condit	ions and	limits as	s subarou	p 9. exc	ept T _C = ·	+125°C a	nd limits	as follov	/S:											
	t _{PLH1} =	3 to 45 ns	s; t _{PHL1} = 3 t s; t _{PZL3} = 3	o 38 ns;	$t_{PLH5} = 3$	to 75 ns	; t _{PHL5} = 3	8 to 56 ns	;														
			al conditions				=																

Terminal conditions (pips not designated may be high ≥ 2.0 V: low ≤ 0.7 V: or open).

1/ Case X and 2 pins not referenced are NC.

 $\underline{2}/~I_{\text{IL}}$ limits shall be as follows:

			Min/Ma	ax limits (mA) fo	r circuits		
Test	Α	В	С	D	E	F	G
I _{IL1}	18 through 27 12/36 except test 28 and 17 001/15	12/36	12/36	03/30	Test 18 and 27 12/36 Test 17 and 28 16/40 Tests 19 through 26 16/40	12/36	0/15

45

 $\underline{3}/~I_{OS}$ limits for circuits B, D, E, F, and G are -15 to -100 mA.

 $\label{eq:alpha} \underline{4} / \mbox{ Inputs: } A \geq 2.4 \mbox{ V minimum, } B \leq 0.4 \mbox{ V maximum.} \\ Outputs: \mbox{ Output voltages shall be either:}$

a. H = 2.5 volts minimum and L = 0.4 volt maximum when using a high speed checker double comparator, or

b. H \geq 1.5 volts and L \leq 1.5 volts when using a high speed checker single comparator.

c. Attributes data only is required for subgroups 7 and 8.

						Ie	erminal	conditio	ns (pins	not des	signated	l may b	e high ≥	2.0 V; Io	$SW \le 0.7$	V; or op	en).						
		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
Subgroup	Symbol	883 method	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lim	nits	Unit
			Test no.	B2	A2	A1	B1	C2	D2	D1	GND	C1	WS	CP	QD	QC	QB	QA	V _{cc}		Min	Max	
1	V _{OH}	3006	1		2.0 V						GND		2.0 V	2/				4 mA	4.5 V	QA	2.5		V
Tc = 25°C			2	2.0 V							"		"	"			4 mA			QB	"		"
			3					2.0 V			"			"		4 mA			"	QC	"		"
			4						2.0 V		"			"	4 mA					QD			
	V _{OL}	3007	5		0.7 V									"				4.0 mA		QA		0.4	
		"	6	0.7 V										"			4.0 mA			QB			"
		"	7					0.7 V						"		4.0 mA				QC		"	
			8						0.7 V		"			"	4.0 mA					QD		"	
	VIC		9	-18 mA																B2		-1.5	
			10		-18 mA														-	A2			
			11			-18 mA														A1		"	"
			12				-18 mA				"									B1		"	"
			13					-18 mA			"									C2			"
			14						-18 mA		"									D2			"
			15							-18 mA	"									D1			
			16								"	-18 mA							-	C1			
			17										-18 mA							WS			
			18								"			-18 mA						CP			
		3009	19	0.4 V							"		5.5 V						5.5 V	B2	3/	3/	mA
	I _{IL1}	3009	20	0.4 V	0.4 V								5.5 V						5.5 V	A2	3/	3/	- IIIA "
			20		0.4 V	0.4 V							GND							A2 A1			
			21			0.4 V	0.4 V						GND							B1			
			22				0.4 V	0.4 V			"		5.5 V						"	C2			
			23					0.4 V	0.4 V		"		5.5 V						"	D2			
			24			-			0.4 V	0.4 V			GND							D1			
			26			-				0.4 V		0.4 V	GND							C1			
			20			-						0.4 V	0.4 V						"	WS			
			28			-							0.4 V	0.4 V									
			20											0.4 1						CP			
	I _{IH1}	3010	29	2.7 V									GND							B2		20	μΑ
			30		2.7 V						"		GND						"	A2		"	
			31			2.7 V					"		5.5 V						"	A1		"	
			32				2.7 V				"		5.5 V						"	B1			
		"	33					2.7 V					GND						"	C2			
		"	34						2.7 V				GND						"	D2			
		"	35							2.7 V			5.5 V						"	D1			
		"	36								"	2.7 V	5.5 V						"	C1			
		"	37								"		2.7 V							WS			
		"	38				1				"			2.7 V		1				CP			
	\vdash	"	39	5.5 V									GND							B2	┝───	100	
	I _{IH2}		39 40	0.0 V	5.5 V								GND						"	A2	┝───	100	
			40		0.5 V	5.5 V	1	+					5.5 V			1				A2 A1	├	+ . +	
			41			5.5 V	5.5 V						5.5 V 5.5 V							B1	<u> </u>	+	
			42			<u> </u>	5.5 V	5.5 V					5.5 V GND							C2	<u> </u>	+	
			43			<u> </u>		0.0 V	5.5 V		"		GND							D2	<u> </u>	+ . +	
			44			+		ł	0.0 V	5.5 V	"		5.5 V						"	D2 D1	├───		<u> </u>
			45	-				t		J.J V	"	5.5 V	J.J V "							C1	<u> </u>	+ . +	
			40		1	+	1				"	0.0 v				1				WS			
			47		1	+	1				"			5.5 V		1							
			-0		1		1							0.0 v		1				CP			1
	I _{os}	3011	49			5.5 V					"		GND	2/				GND		QA	-15	-100	mA
		"	50			1	5.5 V				"			"			GND			QB	"		
		"	51								"	5.5 V	-	"		GND				QC			
			50							5.5 V	"			"	GND					QD		"	
			52 53							GND					0.15								

TABLE III. <u>Group A inspection for device type 09</u>. Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open).

See footnotes at end of device type 09.

N method 2. X Image: Normal and the second seco				Cases	1	2	3	erminal of 4	5	6	7	8	9	10	11	12	13	14	15	16				
nethol 2, X nethol 2, X nethol 1 nethol			-	,																				
2 Same tests, terminal conditions and limits as subgroup 1, except T ₀ = x + 12° cand V ₀ ; tests contribute. N<	ubgroup	Symbol			2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20		Lim	nits	Unit
3 Same tests, terminal conditions and limits as subjound 1, except 12 = 45°C and V ₁₀ tests omitted. Normal Mathematical Stress (Same View) A A B B A L L L L South				Test no.	B2	A2	A1	B1	C2	D2	D1	GND	C1	WS	CP	QD	QC	QB	QA	V _{CC}		Min	Max	
7 Func- set 3014 64 A A A A B B A L <	2	Same to	ests, termina	al conditions	and limits	as subgro	oup 1, exce	ept T _C = +	125°C and	VIC tests	omitted.													
binal * 55 * <td>3</td> <td>Same to</td> <td>ests, termina</td> <td>al conditions</td> <td>and limits</td> <td>as subgro</td> <td>oup 1, exce</td> <td>ept T_C = -5</td> <td>5°C and \</td> <td>Ic tests of</td> <td>nitted.</td> <td></td>	3	Same to	ests, termina	al conditions	and limits	as subgro	oup 1, exce	ept T _C = -5	5°C and \	Ic tests of	nitted.													
lests · <td>7</td> <td>Func-</td> <td>3014</td> <td></td> <td>Α</td> <td>A</td> <td>В</td> <td>В</td> <td>A</td> <td>Α</td> <td>В</td> <td>GND</td> <td>В</td> <td>В</td> <td>A</td> <td>L</td> <td>L</td> <td>L</td> <td>L</td> <td>5.0 V</td> <td>All</td> <td></td> <td></td> <td></td>	7	Func-	3014		Α	A	В	В	A	Α	В	GND	В	В	A	L	L	L	L	5.0 V	All			
Normal relation Normal rel	c = 25°C	tional		55	"	"	"	"	"	"	"	"	-	"	В	"					ouputs			ł
Normal base Normal base		tests				-	-	-	-		-		-		A		-			"	"			
Normalize Normalize <t< td=""><td></td><td></td><td>"</td><td></td><td>"</td><td></td><td>A</td><td>A</td><td>"</td><td>"</td><td>A</td><td>"</td><td>Α</td><td></td><td></td><td></td><td></td><td>"</td><td>"</td><td>"</td><td>"</td><td></td><td></td><td>I</td></t<>			"		"		A	A	"	"	A	"	Α					"	"	"	"			I
Normal base Normal base			"		"	"	"	"	-	"	"	"				Н	Н	Н	Н	"	"			I
Normal and the second secon			"			"	"	"	"	"	"	"	"							"	"			
* 62 * A A A * A * A * A * A * A * A * A * A * A *			"									"									"			L
* 63 * B B * B * F															B	L	L	L	L				= (L
Normal relation Provide relation </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u>5</u>/</td> <td>┝───</td>																							<u>5</u> /	┝───
i 65 i							В	В			В "													┝───
Normal region Normal r											"	"									"			
Image: constraint of the state of			"		"	"	Δ	Δ	"	"	Δ	"	Δ	- A 	"				"		"			<u> </u>
Normal region Normal r			"		"	"	"	"	"	"	"	"	"		B	н	н	н	Н		"			
Image: Normal base in the second se			"		"				"	"	"	"						"	"		"			
Image: Normal and the state of the			"		В	В	"	"	В	В	"	"		"		"					"			<u> </u>
Image: Normal State Network Image: Normal State Network <t< td=""><td></td><td></td><td>"</td><td></td><td></td><td></td><td>"</td><td>"</td><td></td><td></td><td>"</td><td>"</td><td></td><td>"</td><td></td><td>L</td><td>L</td><td>L</td><td>L</td><td>"</td><td>"</td><td></td><td></td><td></td></t<>			"				"	"			"	"		"		L	L	L	L	"	"			
8 Repeat subgroup 7 tests at T _c = +125°C and T _c = -55°C. 9 t _{PLH1} 3003 73 IN IN GND 5.5 V IN OUT 5.0 V CP to QA 3 33 ns 9 t _{PLH1} 3003 73 IN IN <td></td> <td></td> <td>"</td> <td>71</td> <td>А</td> <td>Α</td> <td>"</td> <td>"</td> <td>Α</td> <td>А</td> <td>"</td> <td>"</td> <td></td> <td></td> <td>"</td> <td>"</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td> <td></td> <td></td>			"	71	А	Α	"	"	Α	А	"	"			"	"		"	"	"	"			
9 trunt 3003 73 IN IN GND 5.5 V IN IN OUT 5.0 V CP to QA 3 33 ns 9 Fig. 4 74 IN IN IN IN IN IN IN OUT 5.0 V CP to QA 3 33 ns 10 75 IN			"	72	В	В	"	"	В	В	"	"			-	"				"	"			
Fig. 4 74 IN IN <th< td=""><td>8</td><td>Repeat</td><td>subgroup 7</td><td>tests at T_C =</td><td>+125°C</td><td>and T_c = -</td><td>55°C.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	8	Repeat	subgroup 7	tests at T _C =	+125°C	and T _c = -	55°C.																	
Image: Constraint of the constraint of the	9	t _{PLH1}	3003	73		IN						GND		5.5 V	IN				OUT	5.0 V	CP to QA	3	33	ns
Image: Constraint of the constraint of the	c = 25°C		Fig. 4	74	IN							"			"			OUT		"	CP to QB	"	"	
test 77 IN I			"	75					IN			"		"	"		OUT			"	CP to QC	"	"	
Image: tent tent tent tent tent tent tent te			"	76						IN		"			"	OUT				"	CP to QD	"	"	"
"78 IN IN <t< td=""><td></td><td>t_{PHL1}</td><td>"</td><td>77</td><td></td><td>IN</td><td></td><td></td><td></td><td></td><td></td><td>"</td><td></td><td></td><td>"</td><td></td><td></td><td></td><td>OUT</td><td>"</td><td></td><td>"</td><td>37</td><td>"</td></t<>		t _{PHL1}	"	77		IN						"			"				OUT	"		"	37	"
"79 IN """"""""""""""""""""""""""""""""""""			"	78	IN							"		"	"			OUT		"		"	"	
			"	79					IN			"		"	"		OUT			"		"	"	"
			"	80						IN		"		"	"	OUT				"		"	"	"
						5																		
10 Same tests, terminal conditions and limits as subgroup 9, except T _c = +125°C and limits as follows: t _{PLH1} = 3 to 43 ns; t _{PHL1} = 3 to 48 ns.	11	Same to	ests, termina	al conditions	and limits	as subor	oup 10, ex	cept T _C = -	55°C.															

TABLE III. Group A inspection for device type 09 - Continued. Terminal conditions (pins not designated may be high > 2.0 V· low < 0.7 V· or open).

 $\underline{1}/$ Case X and 2 pins not referenced are NC. $\underline{2}/$ Apply normal clock pulse. $\underline{3}/$ I_{IL} limits shall be as follows:

47

			Min/Max I	imits (mA) for circui	its		
Test	А	В	С	D	E	F	G
I _{IL1}	16/40	-	-	16/40 except 03/30 test 27 and 28	16/40 except 12/36 test 27 and 28	12/36	-

5. PACKAGING

5.1 <u>Packaging requirements.</u> For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD personnel, these personnel need to contact the responsible packaging activity to ascertain requisite packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Department of Defense Agency, or within the Military Department's System Command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.

- 6.2 Acquisition requirements. Acquisition documents should specify the following:
 - a. Title, number, and date of the specification.
 - b. Complete part number (see 1.2).
 - c. Requirements for delivery of one copy of the quality conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
 - d. Requirements for certificate of compliance, if applicable.
 - e. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable.
 - f. Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
 - g. Requirements for product assurance options.
 - Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
 - j. Requirements for "JAN" marking.

6.3 <u>Superseding information</u>. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.

6.4 <u>Qualification</u>. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199.

6.5 <u>Abbreviations, symbols, and definitions.</u> The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and as follows:

V _{IC}	Voltage level at an input terminal. Input clamp voltage.
l _{IN}	
t _{PHZ}	Output disable time (of a three-state output) from high level. The time between the specified reference points on the input and output voltage waveforms with the three-state output changing from the defined high level to a high-impedance (off) state.
t _{PLZ}	Output disable time (of a three-state output) from low level. The time between the specified reference points on the input and output voltage waveforms with the three-state output changing from the defined low level to a high-impedance (off) state.
t _{PZH}	Output enable time (of a three-state output) to high level.
t _{PZL}	The time between the specified reference points on the input and output voltage waveforms with the three-state output changing from a high-impedance (off) state to the defined low level. Output enable time (of a three-state output) to low level. The time between the specified reference points on the input and output voltage waveforms with the three-state output changing from a high-impedance (off) state to the defined low level.

6.6 <u>Logistic support</u>. Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming should not affect the part number.

6.7 <u>Substitutability.</u> The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-38510 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Military device type	Generic-industry type
01	54LS151
02	54LS153
03	54LS157
04	54LS158
05	54LS251
06	54LS257B
07	54LS258B
08	54LS253
09	54LS298

6.8 <u>Manufacturers' designation.</u> Manufacturers' circuits, which form a part of this specification, are designated as shown in table IV herein.

				CIRCUITS			
	А	В	С	D	Е	F	G
Device type	Texas Instruments	Advanced Micro Devices	Raytheon	Signetics	Motorola	Fairchild	National
01	Х	Х	Х	Х	Х	Х	Х
02	Х	Х	Х	Х	Х	Х	Х
03	Х	Х	Х	Х	Х	Х	Х
04	Х	Х	Х	Х	Х	Х	Х
05	Х	Х	Х	Х	Х	Х	Х
06	Х	Х	Х	Х	Х	Х	Х
07	Х	Х	Х	Х	Х	Х	Х
08	Х	Х	Х	Х	Х	Х	Х
09	Х	Х	Х	Х	Х	Х	Х

TABLE IV. Manufacturer's designator.

6.9 <u>Changes from previous issue</u>. Asterisks are not used in this revision to identify changes with respect to the previous issue due to the extensiveness of the changes.

Custodians: Army - CR Navy - EC Air Force - 11 DLA - CC Preparing activity: DLA - CC

(Project 5962-1958)

Review activities: Army - MI, SM Navy - AS, CG, MC, SH, TD Air Force - 03, 19, 99

STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL									
INSTRUCTIONS 1. The preparing activity must complete blocks 1, 2, 3, and 8. In block 1, both the document number and revision letter should be given.									
2. The submitter of this form must complete blocks 4, 5, 6, and 7, and send to preparing activity.									
3. The preparing activity must provide a reply within 30 days from receipt of the form.									
NOTE: This form may not be used to reques	t copies of documents, nor to request waivers	or clarification of requirements on current contracts.							
I RECOMMEND A CHANGE:	1. DOCUMENT NUMBER MIL-M-38510/309E	2. DOCUMENT DATE (YYYYMMDD) 2003-04-10							
3. DOCUMENT TITLE MICROCIRCUITS, DIGITAL, BIPOLAR LOW-POWER SCHOTTKY TTL, SELECTOR/MULTIPLEXER, WITH THREE STATE OUTPUTS, MONOLITHIC SILICON									
4. NATURE OF CHANGE (Identify paragraph)	number and include proposed rewrite, if possi	ble. Attach extra sheets as needed.)							
5. REASON FOR RECOMMENDATION									
6. SUBMITTER a. NAME (Last, First Middle Initial)	b. ORGANIZATION								
c. ADDRESS (Include Zip Code)	d. TELEPHONE (Inclu (1) Commercial (2) DSN (If applicable)	de Area Code) 7. DATE SUBMITTED (YYYYMMDD)							
8. PREPARING ACTIVITY									
a. NAME Defense Supply Center, Columbus	b. TELEPHONE (Inclu (1) Commercial 614-6								
c. ADDRESS (Include Zip Code) DSCC-VA P. O. Box 3990 Columbus, Ohio 43216-5000	Defense Standardiza 8725 John J. Kingma Fort Belvoir, Virginia								
DD Form 1426, FEB 1999 (EG)	PREVIOUS EDITIONS ARE OBSOLETE.	WHS/DIOR, Feb 99							