MILITARY SPECIFICATION

MICROCIRCUITS, DIGITAL, BIPOLAR, LOW-POWER SCHOTTKY TTL, DATA SELECTOR/MULTIPLEXER WITH THREE-STATE OUTPUTS, MONOLITHIC SILICON

Inactive for new design after 18 April 1997.
This specification is approved for use by all Departments and Agencies of the Department of Defense.

1. SCOPE

1.1 Scope. This specification covers the detail requirements for monolithic silicon, low-power Schottky TTL, data selector/multiplexer (three-state) logic microcircuits. Two product assurance classes and a choice of case outlines and lead finishes are provided for each type and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.3).
1.2 Part number. The part number should be in accordance with MIL-PRF-38535, and as specified herein.
1.2.1 Device types. The device types should be as follows:

Device type
01
02
03,04
05
06,07
08
09

Circuit

Eight-input data selector/multiplexer, with enable Dual, four-input data selector/multiplexer, with enable Quad, two-input data selector/multiplexer, with enable Eight-input data selector/multiplexer, 3-state outputs with enable Quad, two-input data selector/multiplexer, 3-state outputs with enable Dual, four-input data selector/multiplexer, 3-state outputs with enable Cascadable, quad, two-input data selector/multiplexer, with storage
1.2.2 Device class. The device class should be the product assurance level as defined in MIL-PRF-38535.
1.2.3 Case outlines. The case outlines should be as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	Terminals	Package style
E	GDIP1-T16 or CDIP2-T16	16	Dual-in-line
F	GDFP2-F16 or CDFP3-F16	16	Flat pack
X	CQCC2-N20	20	Square leadless chip carrier
2	CQCC1-N20	20	Square leadless chip carrier

[^0]
1.3 Absolute maximum ratings.

Supply voltage range	-0.5 V to 7.0 V
Input voltage range .	-1.5 V at -18 mA to 7.0 V
Storage temperature range	-65° to $+150^{\circ} \mathrm{C}$
Maximum power dissipation (P_{D}) 1/	
Device type 01, 02	55 mW
Device type 03	88 mW
Device type 04	44 mW
Device type 05	66 mW
Device type 06, 07	104.5 mW
Device type 08	77 mW
Device type 09	115.5 mW
Lead temperature (soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
Thermal resistance, junction to case (θ_{Jc}):	
Cases E, F, X, and 2	(See MIL-STD-1835)
Junction temperature (T_{J}) 2 /	$+175^{\circ} \mathrm{C}$
1.4 Recommended operating conditions.	
Supply voltage (V_{CC})	4.5 V dc minimum to 5.5 V dc maximum
Minimum high level input voltage (V_{IH})	2.0 V
Maximum low level input voltage (V_{IL})	0.7 V
Normalized fanout (each output) 3/	
Low logic level	10 maximum
High logic level	20 maximum
Case operating temperature range (T_{c})	-55° to $+125^{\circ} \mathrm{C}$
Setup time $\mathrm{t}_{\text {(SETUP) }}$ type 09 data to clock	15 ns
Setup time $\mathrm{t}_{\text {(SETUP) }}$ type 09 word select to clock	25 ns
Hold time $\mathrm{t}_{(\text {Hold })}$ type 09 data to clock	5 ns
Hold time $\mathrm{t}_{(\text {HOLD }}$ type 09 word select to clock	0 ns
Clock pulse width $\mathrm{tp}_{\text {(CLOCK) }}$ type 09 high or low .	20 ns

[^1]
2. APPLICABLE DOCUMENTS

2.1 Government documents.

2.1.1 Specifications and Standards. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents shall be those listed in the issue of the Departments of Defense Index of Specifications and Standards (DODISS) and supplement thereto, cited in the solicitation.

SPECIFICATION

DEPARTMENT OF DEFENSE
MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE

| MIL-STD-883 | - \quad Test Method Standard for Microelectronics. |
| :--- | :--- | :--- |
| MIL-STD-1835 | - \quad Interface Standard Electronic Component Case Outlines |

(Unless otherwise indicated, copies of the above specifications and standards are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)
2.2 Order of precedence. In the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 Qualification. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.4).
3.2 Item requirements. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
3.3 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.
3.3.1 Terminal connections. The terminal connections shall be as specified on figure 1.
3.3.2 Logic diagrams. The logic diagrams shall be specified on figure 2.
3.3.3 Truth tables. The truth tables shall be as specified on figure 3.
3.3.4 Schematic circuits. The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity upon request.
3.3.5 Case outlines. The case outlines shall be as specified in 1.2.3.
3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).
3.5 Electrical performance characteristics. The electrical performance characteristics are as specified in table I, and apply over the full recommended case operating temperature range, unless otherwise specified.
3.6 Electrical test requirements. The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.
3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.
3.8 Microcircuit group assignment. The devices covered by this specification shall be in microcircuit group number 11 (see MIL-PRF-38535, appendix A).

4. VERIFICATION

4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.
4.2 Screening. Screening shall be in accordance with MIL-PRF-38535 and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:
a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
c. Additional screening for space level product shall be as specified in MIL-PRF-38535, appendix B.
4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535.
4.4 Technology Conformance inspection (TCI). Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).
4.4.1 Group A inspection. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:
a. Tests shall be as specified in table II herein.
b. Subgroups 4,5 , and 6 shall be omitted.
4.4.2 Group B inspection. Group B inspection shall be in accordance with table II MIL-PRF-38535.

MIL-M-38510/309E

TABLE I. Electrical performance characteristics.

Test	Symbol	Conditions $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified		Device types	Limits		Unit	
				Min	Max			
High level output voltage	$\mathrm{V}_{\text {OH }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=0.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V} \end{aligned}$	$\mathrm{l}_{\mathrm{OH}}=-.4 \mathrm{~mA}$		$\begin{gathered} 01,02, \\ 03,04,09 \end{gathered}$	2.5		V
			$\mathrm{l}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	$\begin{gathered} 05,06,07 \\ 08 \end{gathered}$	2.4		V	
Low level output voltage	VoL1	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{l} \mathrm{LL}=4.0 \mathrm{~mA}$	$\begin{gathered} \hline 01,02,03, \\ 04,05,08, \\ 09 \\ \hline \end{gathered}$		0.40	V	
			$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	06, 07		0.40	V	
Input clamp voltage	V IC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} \end{aligned}$		All		-1.5	V	
Low level input current at data inputs	IL1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$		01, 05	0	-. 72	mA	
Low level input current at select or strobe	IIL2			01, 05	0	-. 40	mA	
Low level input current at A, B, or C	IIL3			01, 05	0	-. 40	mA	
Low level input current	$\mathrm{I}_{\text {LL1 }}$			02, 08	0	-. 40	mA	
				09	-. 03	-. 40		
Low level input current at A, B, or C	$\mathrm{I}_{1 / 1}$			03, 04	0	-. 44	mA	
Low level input current at select or strobe	IIL2			03, 04	0	-. 88	mA	
Low level input current at A, B, or output control	IL1			06, 07	0	-. 44	mA	
Low level input current at select	ILL2			06	0	-. 88	mA	
				07	0	-. 80		
High level input current	$\mathrm{I}_{\mathrm{H} 1}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.7 \mathrm{~V}$		$\begin{gathered} \hline 01,02,05, \\ 08,09 \\ \hline \end{gathered}$		20	$\mu \mathrm{A}$	
	$1{ }_{1+2}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=7.0 \mathrm{~V}$		$\begin{gathered} 01,02,05, \\ 08 \\ \hline \end{gathered}$		100	$\mu \mathrm{A}$	
	I_{1+2}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}$		09		100	$\mu \mathrm{A}$	
High level input current at A or B	$\mathrm{I}_{\mathrm{H} 1}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.7 \mathrm{~V}$		03, 04		20	$\mu \mathrm{A}$	
	I_{1+2}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$	
High level input current at strobe or select	I_{1+3}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.7 \mathrm{~V}$		03, 04		40	$\mu \mathrm{A}$	
	I_{1+4}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=7.0 \mathrm{~V}$				200	$\mu \mathrm{A}$	
High level input current at A, B, or output control	I_{1+1}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.7 \mathrm{~V}$		06, 07		20	$\mu \mathrm{A}$	
	$\mathrm{I}_{\mathrm{H} 2}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$	

MIL-M-38510/309E

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol	Conditions $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified		Device types	Limits		Unit	
				Min	Max			
High level input current at select	I_{1+3}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.7 \mathrm{~V}$			06, 07		40	$\mu \mathrm{A}$
	I_{1+4}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=7.0 \mathrm{~V}$				200	$\mu \mathrm{A}$	
Off-state output current high level voltage applied	lozh	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$		$\begin{aligned} & 05,06, \\ & 07,08 \end{aligned}$		20	$\mu \mathrm{A}$	
Off-state output current low level voltage applied	lozl	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}$		$\begin{aligned} & \hline 05,06, \\ & 07,08 \\ & \hline \end{aligned}$		-20	$\mu \mathrm{A}$	
Short circuit output current	los	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad 1 / \\ & \mathrm{V}_{\text {OUT }}=\mathrm{GND} \end{aligned}$		$\begin{gathered} \hline 01,02,03, \\ 04,09 \\ \hline \end{gathered}$	-15	-100	mA	
				$\begin{gathered} 05,06,07 \\ 08 \end{gathered}$	-15	-130		
Supply current	$\mathrm{lcC1}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IN}}($ data) $=5.5 \mathrm{~V}$	01		10	mA	
			$\mathrm{V}_{\text {IN }}($ data $)=\mathrm{GND}$	02		10		
				09		21		
	$\mathrm{lcC1}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}($ data $)=5.5 \mathrm{~V}$		03		16	mA	
	$\mathrm{lcC1}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}($ data $)=5.5 \mathrm{~V}$		04		8	mA	
	$\mathrm{lcC1}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}(\text { data })=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}(\text { strobe })=\mathrm{GND} \end{aligned}$		05		10	mA	
	$\mathrm{lcC2}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}(\text { data })=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}(\text { strobe })=5.5 \mathrm{~V} \end{aligned}$		05		12	mA	
	$\mathrm{lcC1}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}(\text { data })=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}(\text { output control })=\mathrm{GND} \end{aligned}$		06		12	mA	
				07		15		
	ICC2	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}(\text { data })=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IN}}(\text { output control })=\mathrm{GND} \end{aligned}$		06		18	mA	
				07		9		
	IcC3	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}(\text { output control })=5.5 \mathrm{~V} \end{aligned}$		06, 07		19	mA	
	$\mathrm{ICC1}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}(\text { data })=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IN}}(\text { output control })=\mathrm{GND} \end{aligned}$		08		12	mA	
	$\mathrm{ICC2}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}(\text { data })=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IN}}(\text { output control })=5.5 \mathrm{~V} \end{aligned}$		08		14	mA	
Propagation delay time, low to high level output from data input to Y	tpLH1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 10 \% \\ & \mathrm{R}_{\mathrm{L}}=\text { See figure } 5 . \end{aligned}$		01	3	56	ns	
				02	3	30		
				03	3	29		
				04	3	26		
				05	3	50		
				06, 07	3	35		
				09	3	43		
				08	3	45		

1/ Not more than one output should be shorted at one time.

MIL-M-38510/309E

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol	Conditions $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified	Device types	Limits		Unit
				Min	Max	
Propagation delay time, high to low level output from data input to Y	tpHL1	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 10 \% \\ & \mathrm{R}_{\mathrm{L}}=\text { See figure } 5 . \end{aligned}$	01, 02	3	47	ns
			03	3	29	
			04	3	26	
			05	3	50	
			06, 07	3	35	
			09	3	48	
			08	3	38	
Propagation delay time, low to high level output from data to W	tpLH2		01	3	39	ns
			05	3	30	
Propagation delay time, high to low level output from data to W	tpHL2		01	3	38	ns
			03	3	30	
Propagation delay time, low to high level output from strobe to Y	tpLH3		01	3	71	ns
			02	3	44	
			03	3	38	
			04	3	33	
Propagation delay time, high to low level output from strobe to Y	tpHL3		01, 02	3	56	ns
			03	3	39	
			04	3	35	
Propagation delay time, low to high level output from strobe to W	tpLH4		01	3	44	ns
Propagation delay time, high to low level output from strobe to W	tpHL4		01	3	53	ns
Propagation delay time, high to low level output from select to Y	tpLH5		01	3	72	ns
			02	3	51	
			03	3	42	
			04	3	38	
			05, 08	3	75	
			06, 07	3	39	
Propagation delay time, high to low level output from select to Y	tPHL5		01	3	53	ns
			02	3	65	
			03	3	48	
			04	3	44	
			05	3	75	
			06, 07	3	39	
			08	3	56	

MIL-M-38510/309E

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol	Conditions $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified	Device types	Limits		Unit
				Min	Max	
Propagation delay time, low to high level output from select to W	tpLH6	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, C_{L}=50 \mathrm{pF} \pm 10 \% \\ & R_{L}=\text { See figure } 5 . \end{aligned}$	01	3	42	ns
			05	3	57	
Propagation delay time, high to low level output from select to W	$\mathrm{t}_{\text {PHL6 }}$		01	3	56	ns
			05	3	57	
Enable time to high level output from strobe to Y	$t_{\text {tziH1 }}$		05	3	75	ns
Enable time to high level output from strobe to W	tpzH2		05	3	48	ns
Enable time to high level output from output control to Y	tpzH3		06, 07	3	53	ns
			08	3	69	
Enable time to low level output from strobe to Y	tpzL1		05	3	68	ns
Enable time to low level output from strobe to W	tpzL2		05	3	68	ns
Enable time to low level output from output control to Y	tpzı3		06, 07	3	53	ns
			08	3	42	
Disable time from high level output, from strobe to Y	$\mathrm{t}_{\text {PHZ }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \text { minimum } \\ & \mathrm{R}_{\mathrm{L}}=\text { See figure } 5 . \end{aligned}$	05	3	75	ns
Disable time from high level output, from strobe to W	tpHz2		05	3	90	ns
Disable time from high level output, from output control to Y	tphz3		06, 07	3	53	ns
			08	3	69	
Disable time from low level output, from strobe to Y	tpLZ1		05	3	45	ns
Disable time from low level output, from strobe to W	tplz2		05	3	45	ns
Disable time from low level output, from output control to Y	tpLz3		06, 07	3	45	ns
			08	3	48	

MIL-M-38510/309E

TABLE II. Electrical test requirements.

MIL-PRF-38535 test requirements	Subgroups (see table III)	
	Class S devices	Class B devices
Interim electrical parameters	1	1
Final electrical test parameters	$1^{*}, 2,3,7,9$,	$1^{*}, 2,3,7,9$
	10,11	
Group A test requirements	$1,2,3,7,8$,	$1,2,3,7,8$,
	$9,10,11$	$9,10,11$
Group B test requirements when using	$1,2,3,7,8$,	N / A
the method 5005 QCl option	$9,10,11$	
Group C end-point electrical parameters	$1,2,3,7,8$	$1,2,3$
	$9,10,11$	
Group D end-point electrical parameters	$1,2,3$	$1,2,3$

*PDA applies to subgroup 1.
4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:
a. End-point electrical parameters shall be as specified in table II herein.
b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
4.4.4 Group D inspection. Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.
4.5 Methods of inspection. Methods of inspection shall be specified and as follows:
4.5.1 Voltage and current. All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.

MIL-M-38510/309E

Terminal number	Terminal symbol device type 01		Terminal symbol device type 02		Terminal symbol device type 03		Terminal symbol device type 04		Terminal symbol device type 05	
	$\begin{gathered} \text { Case } \\ \mathrm{X}, 2 \\ \hline \end{gathered}$	$\begin{gathered} \text { Case } \\ \text { E, F } \end{gathered}$	$\begin{gathered} \text { Case } \\ \mathrm{X}, 2 \\ \hline \end{gathered}$	$\begin{gathered} \text { Case } \\ E, F \end{gathered}$	$\begin{array}{r} \text { Case } \\ \times, 2 \\ \hline \hline \end{array}$	$\begin{gathered} \text { Case } \\ E, F \end{gathered}$	$\begin{gathered} \text { Case } \\ \times, 2 \\ \hline \hline \end{gathered}$	$\begin{aligned} & \text { Case } \\ & E, F \end{aligned}$	$\begin{gathered} \text { Case } \\ \mathrm{X}, 2 \\ \hline \end{gathered}$	$\begin{gathered} \text { Case } \\ \mathrm{E}, \mathrm{~F} \\ \hline \end{gathered}$
1	NC	D3	NC	1G	NC	S	NC	S	NC	D3
2	D3	D2	IG	B	S	1A	S	1A	D3	D2
3	D2	D1	B	1 C 3	1A	1B	1A	1B	D2	D1
4	D1	D0	1C3	1 C 2	1B	1 Y	1B	1 Y	D1	D0
5	D0	Y	1C2	1 C 1	1 Y	2A	1 Y	2A	D0	Y
6	NC	W	NC	1 C 0	NC	2B	NC	2B	NC	W
7	Y	S	1C1	1 Y	2A	2 Y	2A	2 Y	Y	S
8	W	GND	1C0	GND	2B	GND	2B	GND	W	GND
9	S	C	1Y	2 Y	2 Y	3 Y	2 Y	3 Y	S	C
10	GND	B	GND	2C0	GND	3B	GND	3B	GND	B
11	NC	A	NC	2 C 1	NC	3A	NC	3 A	NC	A
12	C	D7	2 Y	2 C 2	3 Y	4 Y	3 Y	4 Y	C	D7
13	B	D6	2C0	2 C 3	3B	4B	3B	4B	B	D6
14	A	D5	2C1	A	3A	4A	3A	4A	A	D5
15	D7	D4	2C2	2G	4 Y	G	4 Y	G	D7	D4
16	NC	V_{cc}								
17	D6		2C3		4B		4B		D6	
18	D5		A		4A		4A		D5	
19	D4		2G		G		G		D4	
20	V_{Cc}									

FIGURE 1. Terminal connections.

MIL-M-38510/309E

Terminal number	Terminal symbol device type 06		Terminal symbol device type 07		Terminal symbol device type 08		Terminal symbol device type 09	
	$\begin{gathered} \hline \text { Case } \\ \mathrm{X}, 2 \\ \hline \end{gathered}$	$\begin{gathered} \text { Case } \\ \mathrm{E}, \mathrm{~F} \end{gathered}$	$\begin{gathered} \hline \text { Case } \\ \mathrm{X}, 2 \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { Case } \\ \mathrm{E}, \mathrm{~F} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Case } \\ \mathrm{X}, 2 \\ \hline \end{gathered}$	Case E, F	$\begin{gathered} \hline \text { Case } \\ \mathrm{X}, 2 \\ \hline \end{gathered}$	Case E, F
1	NC	S	NC	S	NC	1G	NC	B2
2	S	1A	S	1A	1G	B	B2	A2
3	1A	1B	1A	1B	B	1 C 3	A2	A1
4	1 B	1 Y	1B	1 Y	1 C 3	1 C 2	A1	B1
5	1 Y	2A	1Y	2A	1 C 2	1 C 1	B1	C2
6	NC	2B	NC	2 B	NC	1C0	NC	D2
7	2 A	2 Y	2A	2 Y	1C1	1 Y	C2	D1
8	2 B	GND	2B	GND	1C0	GND	D2	GND
9	2 Y	3 Y	2 Y	3 Y	1 Y	2 Y	D1	C1
10	GND	3B	GND	3B	GND	2C0	GND	ws
11	NC	3A	NC	3A	NC	2 C 1	NC	$\overline{\mathrm{CP}}$
12	3 Y	4 Y	3 Y	4 Y	2 Y	2C2	C1	QD
13	3B	4B	3B	4B	2C0	2 C 3	WS	QC
14	3A	4A	3A	4A	2C1	A	$\overline{C P}$	QB
15	4 Y	G	4 Y	G	2C2	2G	QD	QA
16	NC	V_{cc}	NC	V_{cc}	NC	V_{cc}	NC	$\mathrm{V}_{\text {c }}$
17	4 B		4B		2C3		QC	
18	4A		4A		A		QB	
19	G		G		2G		QA	
20	V_{cc}		V_{cc}		V_{CC}		V_{CC}	

FIGURE 1. Terminal connections - Continued.

MIL-M-38510/309E

FIGURE 2. Logic diagrams.

FIGURE 2. Logic diagrams - Continued.

MIL-M-38510/309E

DEVICE TYPE 08

FIGURE 2. Logic diagrams - Continued.

FIGURE 2. Logic diagrams - Continued.

MIL-M-38510/309E
Device type 01

INPUTS				OUTPUTS	
SELECT			$\begin{gathered} \text { STROBE } \\ \mathrm{S} \end{gathered}$		
C	B	A		Y	W
X	X	X	H	L	H
L	L	L	L	D0	$\overline{\mathrm{D} 0}$
L	L	H	L	D1	$\overline{\mathrm{D} 1}$
L	H	L	L	D2	$\overline{\mathrm{D} 2}$
L	H	H	L	D3	$\overline{\text { D3 }}$
H	L	L	L	D4	$\overline{\text { D4 }}$
H	L	H	L	D5	$\overline{\text { D5 }}$
H	H	L	L	D6	$\overline{\mathrm{D} 6}$
H	H	H	L	D7	$\overline{\text { D7 }}$

$\mathrm{H}=$ high level, $\mathrm{L}=$ low level, $\mathrm{X}=$ irrelevant.
D0, D1 \ldots. 7 = the level of the D respective input.

Device type 02

SELECT INPUTS		DATA INPUTS				STROBE	OUTPUT
B	A	C0	C1	C2	C3	G	Y
X	X	X	X	X	X	H	L
L	L	L	X	X	X	L	L
L	L	H	X	X	X	L	H
L	H	X	L	X	X	L	L
L	H	X	H	X	X	L	H
H	L	X	X	L	X	L	L
H	L	X	X	H	X	L	H
H	H	X	X	X	L	L	L
H	H	X	X	X	H	L	H

Select inputs A and B are common to both sections.
$H=$ high level, $L=$ low level, $X=$ irrelevant.

Device types 03 and 04

INPUTS					OUTPUT Y	
STROBE	SELECT	A	B	TYPE 03	TYPE 04	
H	X	X	X	L	H	
L	L	L	X	L	H	
L	L	H	X	H	L	
L	H	X	L	L	H	
L	H	X	H	H	L	

$H=$ high level, $L=$ low level, $X=$ irrelevant.

FIGURE 3. Truth tables.

MIL-M-38510/309E

Device type 05

INPUTS				OUTPUTS	
SELECT			STROBE		
C	B	A	S	Y	W
X	X	X	H	Z	Z
L	L	L	L	D0	$\overline{\mathrm{D} 0}$
L	L	H	L	D1	$\overline{\mathrm{D} 1}$
L	H	L	L	D2	$\overline{\mathrm{D} 2}$
L	H	H	L	D3	$\overline{\mathrm{D} 3}$
H	L	L	L	D4	$\overline{\text { D4 }}$
H	L	H	L	D5	$\overline{\mathrm{D} 5}$
H	H	L	L	D6	$\overline{\text { D6 }}$
H	H	H	L	D7	$\overline{\text { D7 }}$

$H=$ high logic level, $L=$ low logic level, $X=$ irrelevant, $\mathrm{Z}=$ high impedance (off).
D0, $\mathrm{D} 1 \ldots . . . \mathrm{D} 7=$ the level of the respective D input.

Device types 06 and 07

INPUTS				OUTPUT Y	
OUTPUT CONTROL	SELECT	A	B	$\begin{gathered} \hline \text { TYPE } \\ 06 \end{gathered}$	$\begin{gathered} \hline \text { TYPE } \\ 07 \end{gathered}$
H	X	X	X	Z	Z
L	L	L	X	L	H
L	L	H	X	H	L
L	H	X	L	L	H
L	H	X	H	H	L

$H=$ high logic level, $L=$ low logic level, $X=$ irrelevant, $\mathrm{Z}=$ high impedance (off).

FIGURE 3. Truth tables - Continued.

MIL-M-38510/309E

Device type 08

SELECT INPUTS		DATA INPUTS				OUTPUT	OUTPUT
B CONTROL	A	C0	C1	C2	C3	G	Y
X	X	X	X	X	X	H	Z
L	L	L	X	X	X	L	L
L	L	H	X	X	X	L	H
L	H	X	L	X	X	L	L
L	H	X	H	X	X	L	H
H	L	X	X	L	X	L	L
H	L	X	X	H	X	L	H
H	H	X	X	X	L	L	L
H	H	X	X	X	H	L	H

Address inputs A and B are common to both sections.
$H=$ high logic level, $L=$ low logic level, $X=$ irrelevant,
$\mathrm{Z}=$ high impedance (off).

Device type 09

INPUTS		OUTPUTS			
WORD SELECT	CLOCK	Q_{A}	Q_{B}	Q_{C}	Q_{D}
L	\downarrow	a 1	b 1	c 1	d 1
H	\downarrow	a 2	b 2	c 2	d 2
X	H	$\mathrm{Q}_{\mathrm{A} 0}$	$\mathrm{Q}_{\mathrm{B} 0}$	$\mathrm{Q}_{\mathrm{C} 0}$	$\mathrm{Q}_{\mathrm{D} 0}$

$\mathrm{H}=$ high level (steady state)
L = low level (steady state)
X = irrelevant (any input, including transitions)
$\downarrow=$ transition from high to low level
a1, a2, etc. = the level of steady state input at A1, A2, etc.
$Q_{A 0}, Q_{B 0}$, etc. $=$ the level of Q_{A}, Q_{B} etc, entered on the most recent \downarrow transition of the clock input.

FIGURE 3. Truth tables - Continued.

MIL-M-38510/309E

NOTES:

1. Input pulse characteristics: $\mathrm{PRR} \leq 1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$.
2. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 10 \%$ including probe and jig capacitance.
3. $R_{\mathrm{L}}=2.0 \mathrm{k} \Omega \pm 5 \%$. All diodes are 1 N 3064 or 1 N 916 .
4. Load circuit on a given output is only required where the specific test in table III indicates "OUT" on that output.

FIGURE 4. Switching test for device types 01, 02, 03, and 04.

NOTES:

1. Input pulse characteristics: $\mathrm{PRR} \leq 1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$.
2. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 10 \%$ for $t_{\text {PLH }}, t_{\text {PHL }}, t_{\text {PLL }}$, and tpzH tests; $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ minimum for tphz, and tpLz tests. C_{L} includes probe and jig capacitance.
3. All diodes are 1 N 3064 or 1 N 916 . $R_{L}=2.0 \mathrm{k} \Omega \pm 5 \%$ for device types 05 and 08 , and $R_{L}=680 \Omega \pm 5 \%$ for device types 06 and 07.
4. Load circuit on a given output is only required where the specific test in table III indicates "OUT" on that output.

FIGURE 4. Switching test for device types 05, 06, 07, 08 - Continued.

MIL-M-38510/309E

FIGURE 4. Switching test for device types $05,06,07,08$ - Continued.

MIL-M-38510/309E

CLOCK TO OUTPUT

$\underline{\text { LOAD FOR OUTPUT UNDER TEST }}$

NOTES:

1. Input pulse characteristics: $\mathrm{PRR} \leq 1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{O}} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{I}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}($ data $)=20 \mathrm{~ns}, \mathrm{t}_{\mathrm{P}}($ clock $)=20 \mathrm{~ns}, \mathrm{t}_{\mathrm{SETUP}}=15 \mathrm{~ns}$, and thold $=5 \mathrm{~ns}$.
2. $C_{L}=50 \mathrm{pF} \pm 10 \%$ including probe and jig capacitance.
3. $R_{L}=2.0 \mathrm{k} \Omega \pm 5 \%$. All diodes are 1 N 3064 or equivalent.
4. Load circuit on a given output is only required where the specific test in table III indicates "OUT" on that output.

FIGURE 4. Switching test for device type 09 - Continued.

TABLE III. Group A inspection for device type 01.

Subgroup	Symbol	$\begin{array}{\|c} \text { MIL-STD- } \\ 883 \\ \text { method } \end{array}$	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Limits		Unit
			$\begin{aligned} & \text { Cases } 1 / \\ & 2, x^{1} \end{aligned}$	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20				
			Test no.	D3	D2	D1	D0	Y	W	S	GND	C	B	A	D7	D6	D5	D4	V_{cc}		Min	Max	
$\begin{array}{c\|} \hline 1 \\ \mathrm{Tc}=25^{\circ} \mathrm{C} \end{array}$	V_{OH}	$\begin{aligned} & 3006 \\ & 3006 \end{aligned}$	1	2.0 V	2.0 V	2.0 V	2.0 V		$-.4 \mathrm{~mA}$	2.0 V	GND	2.0 V	4.5 V	W	2.5		V						
			2	"	"	"	"	$-.4 \mathrm{~mA}$		0.7 V	"	0.7 V	0.7 V	0.7 V	"	"	"	"	"	Y	2.5		"
	VoL	3007	3	"	"	"	"		4.0 mA	0.7 V	"	0.7 V	0.7 V	0.7 V	"	"	"	"	"	W		0.4	"
		3007	4	"	"	"	"	4.0 mA		2.0 V	"	2.0 V	2.0 V	2.0 V	"	"	"	"	"	Y		0.4	"
	$\mathrm{V}_{\text {IC }}$		5	$-18 \mathrm{~mA}$							"								"	D3		-1.5	"
			6		$-18 \mathrm{~mA}$						"								"	D2			"
			7			-18 mA					"								"	D1		"	"
			8				$-18 \mathrm{~mA}$				"								"	D0		"	"
			9							-18 mA	"								"	S		"	"
			10								"	-18 mA							"	C		"	"
			11								"		$-18 \mathrm{~mA}$						"	B		"	"
			12								"			$-18 \mathrm{~mA}$					"	A		"	"
			13								"				$-18 \mathrm{~mA}$				"	D7		"	"
			14								"					-18 mA			"	D6		"	"
			15								"						-18 mA		"	D5		"	"
			16								"							-18 mA	"	D4		"	"
	${ }_{\text {ILI }}$	$\begin{gathered} \hline 3009 \\ " \\ " \\ " \\ " \\ " \\ " \\ " \\ " \end{gathered}$	17	0.4 V	5.5 V	5.5 V	5.5 V			GND	"	GND	5.5 V	D3	2/	2/	mA						
			18	5.5 V	0.4 V	5.5 V	"			"	"	"	5.5 V	GND	"	V	"	"	"	D2			"
			19	"	5.5 V	0.4 V	"			"	"	"	GND	5.5 V	"	"	"	"	"	D1	"	"	"
			20	"		5.5 V	0.4 V			"	"	${ }^{\prime}$	GND	GND	"	"	"	"	"	D0	"	"	"
			21	"	"	"	5.5 V			"	"	5.5 V	5.5 V	5.5 V	0.4 V	"	"	"	"	D7	"	"	"
			22	"	"	"	"			"	"	"	5.5 V	GND	5.5 V	0.4 V	"	"	"	D6	"	"	"
			23	"	"	"	"			"	"	"	GND	5.5 V	"	5.5 V	0.4 V	"	"	D5	"	"	"
			24	"	"	"	"			"	"	"	GND	GND	"	5.5 V	5.5 V	0.4 V	"	D4	"	"	"
		"	25							0.4 V	"								"	S	"	"	"
		"	26								"	0.4 V							"	C	"	"	"
		"	27								"		0.4 V						"	B	"	"	"
		"	28								"			0.4 V					"	A	"	"	"
	$\mathrm{I}_{\mathrm{H}+1}$	3010	29	2.7 V	GND	GND	GND			5.5 V	"	5.5 V	GND	GND	GND	GND	GND	GND	"	D3		20	$\mu \mathrm{A}$
			30	GND	2.7 V	GND	"			"	"	"	GND	5.5 V	"	"	"	"	"	D2		"	,
			31	"	GND	2.7 V	"			"	"	"	5.5 V	GND	"	"	"	"	"	D1		"	"
			32	"	GND	GND	2.7 V			"	"	"	5.5 V	5.5 V	"	"	"	"	"	D0		"	"
			33							2.7 V	"								"	S		"	"
			34								"	2.7 V							"	C		"	"
			35								"		2.7 V						"	B		"	"
			36								"			2.7 V					"	A		"	"
			37	GND	GND	GND	GND			5.5 V	"	GND	GND	GND	2.7 V	GND	GND	GND	"	D7		"	"
			38	,						"	"	"	GND	5.5 V	GND	2.7 V	GND		"	D6		"	"
			39	"	"	"	"			"	"	"	5.5 V	GND	"	GND	2.7 V	"	"	D5		"	"
			40	"	"	"	"			"	"	"	5.5 V	5.5 V	"	"	GND	2.7 V	"	D4		"	"
	I_{1+2}	$" 7$$"$$"$$"$$"$$"$$"$$"$$"$$"$$"$	41	7.0 V	"	"	"			"	"	5.5 V	GND	GND	"	"	-	GND	"	D3		100	$\mu \mathrm{A}$
			42	GND	7.0 V	"	"			"	"	.	GND	5.5 V	"	"	"	,	"	D2			"
			43	GND	GND	7.0 V	"			"	"	"	5.5 V	GND	"	"	"	"	"	D1		"	"
			44	"	GND	GND	7.0 V			"	"	"	5.5 V	5.5 V	"	"	"	"	"	D0		"	"
			45							7.0 V	"								"	S		"	"
			46								"	7.0 V							"	C		"	"
			47								"		7.0 V						"	B		"	"
			48								"			7.0 V					"	A		"	"
			49	GND	GND	GND	GND			5.5 V	"	GND	GND	GND	7.0 V	GND	GND	GND	"	D7		"	"
			50	"	"	,	"			"	"	"	GND	5.5 V	GND	7.0 V	GND	"	"	D6		"	"
			51	"	"	"	"			"	"	"	5.5 V	GND	"	GND	7.0 V	"	"	D5		"	"
			52	"	"	"	"			"	"	"	5.5 V	5.5 V	"	"	GND	7.0 V	"	D4		"	"

See footnotes at end of device type 01

TABLE III. Group A inspection for device type 01 - Continued.

See footnotes at end of device types 01 .

TABLE III. Group A inspection for device type 01 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$; low $\leq 0.7 \mathrm{~V}$; or open).

Subgroup	Symbol	MIL-STD-883method	$\begin{gathered} \hline \text { Cases } \\ \mathrm{E}, \mathrm{~F} \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Limits		Unit					
			$\begin{array}{\|c\|} \hline \text { Cases } 1 / \\ 2, X^{-} \end{array}$	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20									
			Test no.	D3	D2	D1	D0	Y	W	S	GND	C	B	A	D7	D6	D5	D4	V_{cc}		Min	Max						
$\begin{array}{c\|} \hline 9 \\ \mathrm{TC}=25^{\circ} \mathrm{C} \end{array}$	$\mathrm{t}_{\text {PHL2 }}$	Fig. 4	100				IN		OUT	GND	GND	GND	GND	GND					5.0 V	D0 to W	3	25	ns					
			101			IN			"	"	"		GND	5.0 V					"	D1 to W		"	"					
			102		IN				"	"	"	"	5.0 V	GND					"	D2 to W	"	"	"					
			103	IN					"	"	"	"	5.0 V	5.0 V					"	D3 to W	"	"	"					
			104						"	"	"	5.0 V	GND	GND				IN	"	D4 to W	"	"	"					
			105						"	"	"	"	GND	5.0 V			IN		"	D5 to W	"	"	"					
			106						"	"	"	"	5.0 V	GND		IN			"	D6 to W	"	"	"					
			107						"	"	"	"	5.0 V	5.0 V	IN				"	D7 to W	"	"						
	tpLH	"	108	5.0 V	5.0 V	5.0 V	5.0 V	OUT		IN	"	GND	GND	GND	5.0 V	5.0 V	5.0 V	5.0 V	"	S to Y	"	47	"					
	tpHL3	"	109	5.0 V	5.0 V	5.0 V	5.0 V	OUT		"	"	GND	GND	GND		5.0 V	5.0 V	5.0 V	"	S to Y	"	37	"					
	$\mathrm{t}_{\text {PLH4 }}$	"	110	GND	GND	GND	GND		OUT	"	"	5.0 V	5.0 V	5.0 V	"	GND	GND	GND	"	S to W	"	29	"					
	$\mathrm{t}_{\text {PHL4 }}$	"	111	GND	GND	GND			OUT	"	"	5.0 V	5.0 V	5.0 V	"	GND	GND	GND	"	Sto W	"	35	"					
	$\mathrm{t}_{\text {PLH5 }}$	"	112			5.0 V	"	OUT		GND	"	GND	GND	IN					"	A to Y	"	48	"					
		"	113		5.0 V		"	"		"	"	GND	IN	GND					"	B to Y	"	"	"					
		"	114				"	"		"	"	IN	GND	GND				5.0 V	"	C to Y	$"$	"	"					
	$\mathrm{t}_{\text {PHL5 }}$	"	115			GND	5.0 V	"		"	"	GND	GND	IN					"	A to Y	"	35	"					
		"	116		GND		"	"		"	"	GND	IN	GND					"	B to Y	"	"	"					
		"	117				"	"		"	"	IN	GND	GND				GND	"	C to Y	"	"	"					
	${ }_{\text {PLLH6 }}$	"	118			GND	"		OUT	"	"	GND	GND	IN					"	A to W	"	28	"					
		"	119		GND		"			"	"	GND	IN	GND					"	B to W	"		"					
		"	120				"		"	"	"	IN	GND	GND				GND	"	C to W	"	"	"					
	$\mathrm{t}_{\text {PHL6 }}$	"	121			5.0 V	GND		"	"	"	GND	GND	IN					"	A to W	"	37	"					
		"	122		5.0 V		,		"	"	"	GND	IN	GND					"	B to W	"		"					
		"	123				"		"	"	"	IN	GND	GND				5.0 V	"	C to W	"	"	"					
10	Same tests, terminal conditions and limits as for subgroup 10 , except $T_{C}=-55^{\circ} \mathrm{C}$.																											
11																												

1/ Case X and 2 pins not referenced are NC.
2/ IIL limits shall be as follows:

Test	Min/Max limits (mA) for circuit						
	A	B	C	D	E	F	G
IL1	-.16/-. 40	-.12/-. 36	-. $16 /-.40$	-.03/-. 30	-.002/-. 150	-. $105 /-.345$	0/-. 15
ILL2 \&	-.12/-. 36	-.12/-. 36	-.16/-.40	-.03/-. 30	-.002/-. 150	-. $16 /-.40$	0/. 15
I_{1}					-. $10 /-.34$		

3/ Inputs: $\mathrm{A} \geq 2.5 \mathrm{~V}$ minimum, $\mathrm{B} \leq 0.4 \mathrm{~V}$ maximum.
Outputs: $\mathrm{H} \geq 1.5 \mathrm{~V}, \mathrm{~L} \leq 1.5 \mathrm{~V}$.

TABLE III. Group A inspection for device type 02
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$; low $\leq 0.7 \mathrm{~V}$; or open).

Subgroup	Symbol	$\begin{array}{\|c\|} \hline \text { MIL-STD- } \\ 883 \\ \text { method } \end{array}$	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Limits		Unit
			$\begin{gathered} \text { Cases } 1 / \\ 2, X^{1} \end{gathered}$	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20				
			Test no.	1G	B	1 C 3	1 C 2	1 C 1	1 C 0	1 Y	GND	2 Y	2 C 0	2 C 1	2 C 2	2 C 3	A	2G	V_{cc}		Min	Max	
$\begin{gathered} 1 \\ \mathrm{Tc}=25^{\circ} \mathrm{C} \end{gathered}$	V_{OH}	$\begin{aligned} & 3006 \\ & 3006 \end{aligned}$	1	0.7 V	0.7 V				2.0 V	-. 4 mA	GND						0.7 V		4.5 V	1 Y	2.5		V
			2		0.7 V						"	-. 4 mA	2.0 V				0.7 V	0.7 V	"	2 Y	2.5		"
	VoL	$\begin{aligned} & 3007 \\ & 3007 \end{aligned}$	3	2.0 V						4 mA	"								"	1 Y		0.4	"
			4								"	4 mA						2.0 V	"	2 Y		0.4	"
	VIC		5	$-18 \mathrm{~mA}$							"								"	1G		-1.5	"
			6		$-18 \mathrm{~mA}$						"								"	B		"	"
			7			$-18 \mathrm{~mA}$					"								"	1 C 3		"	"
			8				$-18 \mathrm{~mA}$				"								"	1 C 2		"	"
			9					-18 mA			"								"	1 C 1		"	"
			10						$-18 \mathrm{~mA}$		"								"	1C0		"	"
			11								"		-18 mA						"	2 C 0		"	"
			12								"			$-18 \mathrm{~mA}$					"	2 C 1		"	"
			13								"				-18 mA				"	2 C 2		"	"
			14								"					$-18 \mathrm{~mA}$			"	2 C 3		"	"
			15								"						$-18 \mathrm{~mA}$		"	A		"	"
			16								"							$-18 \mathrm{~mA}$	"	2G		"	"
	$\mathrm{I}_{\mathrm{LL} 1}$	3009	17	0.4 V	GND						"						GND	GND	5.5 V	1G	$\underline{\text { 2/ }}$	$\underline{1}$	mA
			18	GND	0.4 V						"						GND			B			
			19		5.5 V	0.4 V	5.5 V	5.5 V	5.5 V		"		5.5 V	"	"	1 C 3	"	"	"				
			20	"	5.5 V	5.5 V	0.4 V	5.5 V			"						GND	"	"	1 C 2	"	"	"
			21	"	GND	"	5.5 V	0.4 V	"		"		"	"	"	"	5.5 V	"	"	1 C 1		"	"
			22	"	"	"	"	5.5 V	0.4 V		"		"	"	"	"	GND	"	"	1 C 0	"	-	"
			23	"	"	"	"	"	5.5 V		"		0.4 V	"	"	"	GND	"	"	2 C 0		"	"
			24	"	"	"	"	"	V		"		5.5 V	0.4 V	"	"	5.5 V	"	"	2 C 1	"	"	"
			25	"	5.5 V	"	"	"	"		"		"	5.5 V	0.4 V	"	GND	"	"	2 C 2	"	"	"
			26	"	5.5 V	"	"	"	"		"		"	5.5 V	5.5 V	0.4 V	5.5 V	"	"	2 C 3	"	"	"
			27	"	GND						"						0.4 V	"	"	A	"	"	"
			28	"	GND						"						GND	0.4 V	"	2G	"	"	"
	I_{1+1}	3010	29	2.7 V	GND						"						5.5 V	5.5 V	"	1G		20	$\mu \mathrm{A}$
			30	GND	2.7 V						"						5.5 V	"	"	B		"	
			31	5.5 V	GND	2.7 V	GND	GND	GND		"		GND	GND	GND	GND	GND	"	"	1 C 3		"	"
			32		GND	GND	2.7 V	GND			"						5.5 V	"	"	1 C 2		"	"
			33		5.5 V	"	GND	2.7 V	"		"		"	"	"	"	GND	"	"	1 C 1		"	"
			34	"	"	"	"	GND	2.7 V		"		"	"	"	"	5.5 V	"	"	1C0		"	"
			35	"	"	"	"	"	GND		"		2.7 V	"	"	"	5.5 V	"	"	2 C 0		"	"
			36	"	"	"	"	"	"		"		GND	2.7 V	"	"	GND	"	"	2 C 1		"	"
			37	"	GND	"	"	"	"		"		"	GND	2.7 V	"	5.5 V		"	2 C 2		-	"
			38	"	GND	"	"	"	"		"		"	GND	GND	2.7 V	GND	"	"	2 C 3		"	"
			39	"	5.5 V						"						2.7 V	GND	"	A		"	"
			40	"	5.5 V						"						GND	2.7 V	"	2G		"	"
	I_{1+2}		41	7.0 V	GND						"						5.5 V	5.5 V	"	1G		100	$\mu \mathrm{A}$
			42	GND	7.0 V						"						5.5 V	"	"	B		"	"
			43	5.5 V	GND	7.0 V	GND	GND	GND		"		GND	GND	GND	GND	GND	"	${ }^{\prime}$	1C3		"	"
			44	"	GND	GND	7.0 V	GND	"		"		"	"	"		5.5 V	"	"	1-2		"	"
			45	"	5.5 V	"	GND	7.0 V	"		"		"	"	"	"	GND	"	"	1 C 1		"	"
			46	"	"	"	"	GND	7.0 V		"		"	"	"	"	5.5 V	"	"	1C0		"	"
			47	"	"	"	"	"	GND		"		7.0 V	"	"	"	5.5 V	"	"	2 C 0		"	"
			48	"	"	"	"	"	"		"		GND	7.0 V	"	"	GND	"	"	2 C 1			"
			49	"	GND	"	"	"	"		"		"	GND	7.0 V	"	5.5 V	"	"	2 C 2		"	"
			50	"	GND	"	"	"	"		"		"	GND	GND	7.0 V	GND	"	"	2 C 3		"	"
			51	"	5.5 V						"						7.0 V	GND	"	A		"	"
			52	"	5.5 V						"						GND	7.0 V	"	2G		"	"
	los	$\begin{aligned} & 3011 \\ & 3011 \end{aligned}$	53	GND	GND	GND	GND	GND	5.5 V	GND	"		5.5 V	GND	GND	GND	"	GND	"	1 Y	-15	-100	mA
			54	-	,		"	"	5.5 V		"	GND	5.5 V				"		"	2 Y	-15	-100	
	$\mathrm{I}_{\mathrm{C} 1}$	3005	55	"	"	"	"	"	GND		"		GND	"	"	"	"	"	"	V_{cc}		10	"

TABLE III. Group A inspection for device type 02 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$; low $\leq 0.7 \mathrm{~V}$; or open)

See footnotes at end of device type 02.

TABLE III. Group A inspection for device type 02 - Continued.

1/ Case X and 2 pins not referenced are NC.
2/ IL limits are as follows:

Test	Min/Max limits (mA) for circuits						
	A	B	C	D	E	F	G
ILL1	Tests 17 and 28 $\text { -. } 0.001 /-.$ tests 18 through 27 $\text { -. } 12 \text {-.- }$	-.12/-. 36	-. $12 /$-. 36	-.03/-. 30	Tests 17 and 28 tests 18 and27 $\text { -. } 12 \text { - } 36$ Tests 19 through 26 $\text { -. } 16 /-.40$	-. $12 /$-. 36	0/-. 15

2/ Inputs: $\mathrm{A} \geq 2.5 \mathrm{~V} ; \mathrm{B} \leq 0.4 \mathrm{~V}$.
Outputs: $\mathrm{H} \geq 1.5 \mathrm{~V} ; \mathrm{L} \leq 1.5 \mathrm{~V}$

TABLE III. Group A inspection for device type 03
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$; low $\leq 0.7 \mathrm{~V}$; or open).

Subgroup	Symbol	MIL-STD-883method	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Limits		Unit		
			$\begin{gathered} \text { Cases } 1 / \\ 2, X^{1 /} \end{gathered}$	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20						
			Test no.	S	1A	1B	1Y	2A	2B	2 Y	GND	3 Y	3B	3A	4Y	4B	4A	G	V_{cc}		Min	Max			
$\begin{gathered} 1 \\ \hline \mathrm{~T} \mathrm{C}=25^{\circ} \mathrm{C} \end{gathered}$	V_{OH}	$\begin{gathered} \hline 3006 \\ " \\ " \\ " \\ \hline \end{gathered}$	1	2.0 V		2.0 V	-. 4 mA				GND							0.7 V	4.5 V	1 Y	2.5		V		
			2	"					2.0 V	-.4 mA	"							"		2 Y	"		"		
			3	"							"	-. 4 mA	2.0 V					"	"	3 Y	"		"		
			4	"							"				$-.4 \mathrm{~mA}$	2.0 V		"	"	4Y	"		"		
	$\mathrm{V}_{\text {OL }}$	$\begin{gathered} 3007 \\ " \\ " \\ " \\ \hline \end{gathered}$	5				4 mA				"							2.0 V	"	1 Y		0.4	"		
			6							4 mA	"							"	"	$2 Y$		"	"		
			7								"	4 mA						"	"	3 Y		"	"		
			8								"				4 mA			"	"	4Y		"	"		
	V IC		9	$-18 \mathrm{~mA}$							"								"	S		-1.5	"		
			10		$-18 \mathrm{~mA}$						"								"	1A			"		
			11			$-18 \mathrm{~mA}$					"								"	1B		"	"		
			12					$-18 \mathrm{~mA}$			"								"	2A		"	"		
			13						$-18 \mathrm{~mA}$		"								"	2 B		"	"		
			14								"		$-18 \mathrm{~mA}$						"	3B		"	"		
			15								"			$-18 \mathrm{~mA}$					"	3A		"	"		
			16								"					$-18 \mathrm{~mA}$			"	4B			"		
			17								"						$-18 \mathrm{~mA}$		"	4A		"	"		
			18								"							-18 mA	"	G		"	"		
	I_{111}	$\begin{gathered} \hline 3009 \\ " " \\ " \\ " \\ " \\ " \\ " \\ " \\ " \\ \hline \end{gathered}$	19	GND	0.4 V	5.5 V					"							GND	5.5 V	1A	$\underline{2 /}$	$\underline{1 /}$	mA		
			20	5.5 V	5.5 V	0.4 V					"								"	1B					
			21	GND				0.4 V	5.5 V		"							"	"	2A		"	"		
			22	5.5 V				5.5 V	0.4 V		"							"	"	2B		"	"		
			23	5.5 V							"		0.4 V	5.5 V				"	"	3B		"	"		
			24	GND							"		5.5 V	0.4 V				"	"	3A		"	"		
			25	5.5 V							"					0.4 V	5.5 V	"	"	4B		"	"		
			26	GND							"					5.5 V	0.4 V	"	"	4A		"	"		
	1 IL2	${ }^{\prime}$	27	0.4 V							"							5.5 V	"	S		"	"		
			28	5.5 V							"							0.4 V	"	G		"	"		
	I_{1+1}	3010	29	5.5 V	2.7 V						"								"	1A		20	$\mu \mathrm{A}$		
			30	GND		2.7 V					"								"	1B		"			
			31	5.5 V				2.7 V			"								"	2A		"	"		
			32	GND					2.7 V		"								"	2B		"	"		
			33	GND							"		2.7 V						"	3B		"	"		
			34	5.5 V							"			2.7 V					"	3A		"	"		
			35	GND							"					2.7 V			"	4B		"	"		
			36	5.5 V							"						2.7 V		"	4A		"	"		
	I_{1+2}	3010	37	5.5 V	7.0 V						"								"	1A		100	"		
			38	GND		7.0 V					"								"	1B			"		
			39	5.5 V				7.0 V			"								"	2A		"	"		
			40	GND					7.0 V		"								"	2 B		"	"		
			41	GND							"		7.0 V						"	3B		"	"		
			42	5.5 V							"			7.0 V					"	3A		"	"		
			43	GND							"					7.0 V			"	4B		"	"		
			44	5.5 V							"						7.0 V		"	4A		"	"		
	I_{1+3}		45	2.7 V							"							GND	"	S		40	"		
		"	46 3/	GND							"							2.7 V	"	G		40	"		
	I_{1+4}	"	47	7.0 V							"							GND	"	S		200	$\mu \mathrm{A}$		
		"	48 3/	GND							"							7.0 V	"	G		200	$\mu \mathrm{A}$		
	Ios		49	"	5.5 V	5.5 V	GND				"							GND	"	1 Y	-15	-100	mA		
			50	"				5.5 V	5.5 V	GND	"							"	"	$2 Y$	"	"	"		
			51	"							"	GND	5.5 V	5.5 V				"	"	3 Y	"	"	"		
			52	"							"				GND	5.5 V	5.5 V	"	"	4Y	"	"	"		
2																									
3	Same tests, terminal conditions and limits as subgroup 1, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ and $\mathrm{V}_{1 \mathrm{C}}$ ctests omitted.																								

See footnotes at end of device type 03.

TABLE III. Group A inspection for device type 03 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$; low $\leq 0.7 \mathrm{~V}$; or open).

TABLE III. Group A inspection for device type 03 - Continued.

1/ Pins not designated are high $\geq 2.0 \mathrm{~V}$; low $\leq 0.7 \mathrm{~V}$; or open. Case X and 2 pins not referenced are NC
2/ I| limits are as follows:

Test				Min/Max limits (mA) for circuits			
	A	B	C	D	E	F	G
$\mathrm{I}_{\mathrm{IL} 1}$	$-.135 /-.370$	$-.016 /-.40$	$-.20 /-.44$	$-.03 /-.30$	$0 /-.20$	$-.12 /-.36$	$0 /-.15$
$\mathrm{I}_{\text {IL2 }}$	$-.270 /-.740$	$-.12 /-.36$	$-.40 /-.88$	$-.06 /-.60$	$0 /-.10$ for test 27 $0 /-.10$ for test 28	$-.24 /-.72$ except $-.12 /-.36$ test 28	$0 /-.15$

3/ For circuit F, test $46 I_{1+3}$ limit is $20 \mu \mathrm{~A}$. For circuit F, test $48 I_{I_{H}}$ limit is $100 \mu \mathrm{~A}$

4/ Inputs: $\mathrm{A} \geq 2.5 \mathrm{~V}$ minimum, $\mathrm{B} \leq 0.4 \mathrm{~V}$ maximum. Outputs: $\mathrm{H} \geq 1.5 \mathrm{~V}, \mathrm{~L} \leq 1.5 \mathrm{~V}$.

TABLE III. Group A inspection for device type 04.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V} ; \mathrm{low} \leq 0.7 \mathrm{~V}$; or open).

Subgroup	Symbol	MIL-STD- 883 method	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Limits		Unit					
			$\begin{gathered} \hline \text { Cases } 1 / \\ 2, X^{-} \end{gathered}$	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20									
			Test no.	S	1A	1B	1Y	2A	2B	2 Y	GND	3 Y	3B	3A	4Y	4B	4A	G	V_{cc}		Min	Max						
$\begin{gathered} 1 \\ \mathrm{Tc}=25^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{V}_{\text {OH }}$	$\begin{gathered} 3006 \\ " \\ " \\ " \\ \hline \end{gathered}$	1				$-.4 \mathrm{~mA}$				GND							2.0 V	4.5 V	1 Y	2.5		V					
			2							-.4 mA	"								"	2 Y	"		"					
			3								"	-. 4 mA						"	"	3 Y	"		"					
			4								"				$-.4 \mathrm{~mA}$			"	"	4Y	"		"					
	VoL	$\begin{gathered} 3007 \\ " \\ " \\ " \\ \hline \end{gathered}$	5	2.0 V		2.0 V	4 mA				"							0.7 V	"	1 Y		0.4	"					
			6	"					2.0 V	4 mA	"							"	"	$2 Y$		"	"					
			7	"							"	4 mA	2.0 V					"	"	3 Y		"	"					
			8	"							"				4 mA	2.0 V		"	"	4Y		"	"					
	V_{10}		9	$-18 \mathrm{~mA}$							"								"	S		-1.5	"					
			10		$-18 \mathrm{~mA}$						"								"	1A		"	"					
			11			$-18 \mathrm{~mA}$					"								"	1B		"	"					
			12					$-18 \mathrm{~mA}$			"								"	2A		"	"					
			13						-18 mA		"								"	2 B		"	"					
			14								"		-18 mA						"	3B		"	"					
			15								"			-18 mA					"	3A		"	"					
			16								"					-18 mA			"	4B		"	"					
			17								"						$-18 \mathrm{~mA}$		"	4A		"	"					
			18								"							-18 mA	"	G		"	"					
	$\mathrm{I}_{\mathrm{L} 1}$	$\begin{gathered} 3009 \\ " " \\ " \\ " \\ " \\ " \\ " \\ " \\ " \end{gathered}$	19	GND	0.4 V	5.5 V					"							GND	5.5 V	1A	$\underline{\underline{2}}$	$\underline{\underline{\prime}}$	mA					
			20	5.5 V	5.5 V	0.4 V					"									1B								
			21	GND				0.4 V	5.5 V		"							"	"	2A		"	"					
			22	5.5 V				5.5 V	0.4 V		"							"	"	2B		"	"					
			23	5.5 V							"		0.4 V	5.5 V				"	"	3B		"	"					
			24	GND							"		5.5 V	0.4 V				"	"	3A		"	"					
			25	5.5 V							"					0.4 V	5.5 V	"	"	4B		"	"					
			26	GND							"					5.5 V	0.4 V	"	"	4A		"	"					
	$I_{\text {LL2 }}$	"	27	0.4 V							"							5.5 V	"	S		"	"					
		"	28	5.5 V							"							0.4 V	"	G		"	"					
	I_{1+1}	$\begin{gathered} \hline 3010 \\ " " \\ " 1 \\ " \\ " \\ " \\ " \\ " \\ \hline \end{gathered}$	29	5.5 V	2.7 V						"								"	1A		20	$\mu \mathrm{A}$					
			30	GND		2.7 V					"									1B		"	"					
			31	5.5 V				2.7 V			"								"	2A		"	"					
			32	GND					2.7 V		"								"	2 B		"	"					
			33	GND							"		2.7 V						"	3B		"	"					
			34	5.5 V							"			2.7 V					"	3A		"	"					
			35	GND							"					2.7 V			"	4B		"	"					
			36	5.5 V							"						2.7 V		"	4A		"	"					
	I_{1+2}	$\begin{gathered} \hline 3010 \\ " " \\ " \\ " 1 " \\ " \\ " \\ " \\ " \\ " \end{gathered}$	37	5.5 V	7.0 V						"								"	1A		100	"					
			38	GND		7.0 V					"								"	1B			"					
			39	5.5 V				7.0 V			"								"	2A		"	"					
			40	GND					7.0 V		"									2B		"	"					
			41	GND							"		7.0 V						"	3B		"	"					
			42	5.5 V							"			7.0 V					"	3A		"	"					
			43	GND							"					7.0 V			"	4B			"					
			44	5.5 V							"						7.0 V			4A			"					
	1_{1+3}	"	45	2.7 V							"							GND	"	S		40	"					
		"	46	GND							"							2.7 V		G		40	"					
	$1_{1 / 4}$	"	47	7.0 V							"							GND		S		200	$\mu \mathrm{A}$					
		"	48	GND							"							7.0 V		G		200	$\mu \mathrm{A}$					
	Ios	3011$"$$"$$"$3005	49	"			GND				"							5.5 V	-	1 Y	-15	-100	mA					
			50	"						GND	"							"	"	$2 Y$	"	"	"					
			51	"							"	GND						"		3 Y	"	"	"					
			52	"							"				GND			"	"	4 Y	"	"	"					
	$\mathrm{ICC1}$		53	5.5 V	5.5 V	5.5 V		5.5 V	5.5 V		"		5.5 V	5.5 V		5.5 V	5.5 V	"	"	V_{cc}		8.0	"					
2	Same tests, terminal conditions and limits as subgroup 1, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and V_{10} tests omitted.																											
3																												

See footnotes at end of device type 04.

TABLE III. Group A inspection for device type 04 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$; low $\leq 0.7 \mathrm{~V}$; or open).

1) Case X and 2 pins not referenced are NC.

2/ IL limits are as follows:

Test				Min/Max limits (mA) for circuits			
	A	B	C	D	E	F	G
$\mathrm{I}_{\mathrm{L} 1}$	$-. .135 /-.370$	$-.016 /-.40$	$-.20 /-.44$	$-.03 /-.30$	$0 /-.20$	$-.12 /-.36$	$0 /-.15$
$\mathrm{I}_{\mathrm{L} 2}$	$-.270 /-.740$	$-.12 /-.36$	$-.40 /-.88$	$-.06 /-.60$	$0 /-.10$ for test 27	$-.24 /-.72$ except	$0 /-.15$
					$0 /-.10$ for test 28	$-.12 /-.36$ test 28	

3/ Inputs: $\mathrm{A} \geq 2.5 \mathrm{~V}$ minimum, $\mathrm{B} \leq 0.4 \mathrm{~V}$ maximum.
Outputs: $\mathrm{H} \geq 1.5 \mathrm{~V}, \mathrm{~L} \leq 1.5 \mathrm{~V}$

TABLE III. Group A inspection for device type 05.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$; low $\leq 0.7 \mathrm{~V}$; or open).

TABLE III. Group A inspection for device type 05 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$; low $\leq 0.7 \mathrm{~V}$; or open).

See footnotes at end of device type 05.

TABLE III. Group A inspection for device type 05 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$; low $\leq 0.7 \mathrm{~V}$; or open).

Subgroup	Symbol	$\begin{array}{\|c} \text { MIL-STD- } \\ 883 \\ \text { method } \end{array}$	$\begin{gathered} \text { Cases } \\ E, F \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Limits		Unit
			$\begin{gathered} \text { Cases } 1^{1 /} \\ 2,{ }^{\prime} \end{gathered}$	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20				
			Test no.	D3	D2	D1	D0	Y	W	S	GND	C	B	A	D7	D6	D5	D4	$\mathrm{V}_{\text {cc }}$		Min	Max	
$\begin{array}{c\|} \hline 9 \\ \mathrm{Tc}=25^{\circ} \mathrm{C} \end{array}$	$\mathrm{t}_{\text {PHL2 }}$	(Fig. 4)	102				IN		OUT	GND	GND	GND	GND	GND					5.0 V	D0 to W	3	20	ns
			103			IN			"	"	"	"	GND	5.0 V					"	D1 to W	"	"	"
			104		IN				"	"	"	"	5.0 V	GND					"	D2 to W	"	"	"
			105	IN					"	"	"	"	5.0 V	5.0 V					"	D3 to W	"	"	"
			106						"	"	"	5.0 V	GND	GND				IN	"	D4 to W	"	"	"
			107						"	"	"		GND	5.0 V			IN		"	D5 to W	"	"	"
			108						"	"	"	"	5.0 V	GND		IN			"	D6 to W	"	"	"
			109						"	"	"	"	5.0 V	5.0 V	IN				"	D7 to W	"	"	"
	tpLH5	"	110			5.0 V	GND	OUT		"	"	GND	GND	IN					"	A to Y	"	50	"
			111		5.0 V		"	"		"	"	GND	IN	GND					"	B to Y	"	"	"
		"	112				"	"		"	"	IN	GND	GND				5.0 V	"	C to Y	"	"	"
	$\mathrm{t}_{\text {PHL5 }}$	"	113			5.0 V	"	"		"	"	GND	GND	IN					"	A to Y	"	"	"
		"	114		5.0 V		"	"		"	"	GND	IN	GND					"	B to Y	"	"	"
		"	115				"	"		"	"	IN	GND	GND				5.0 V	"	C to Y	"	"	"
	tPLH6	"	116			5.0 V	"		OUT	"	"	GND	GND	IN					"	A to W	"	38	"
		"	117		5.0 V		"		"	"	"	GND	IN	GND					"	B to W	"		"
		"	118				"		"	"	"	IN	GND	GND				5.0 V	"	C to W	"	"	"
	$\mathrm{t}_{\text {PHL6 }}$		119			5.0 V	"		"	"	"	GND	GND	IN					"	A to W	"	"	"
			120		5.0 V		"		"	"	"	GND	IN	GND					"	B to W	"	"	"
			121				"		"	"	"	IN	GND					5.0 V	"	C to W	"	"	"
		"	122				5.0 V	OUT		IN	"	GND	"	"					"	S to Y	"	50	"
	$\mathrm{t}_{\text {PZH2 }}$ $\mathrm{t}_{\text {PZL1 }}$	"	123				GND		OUT	"	"	"	"	"					"	S to W	"	32	"
		"	124				GND	OUT		"	"	"	"	"					"	S to Y	"	45	"
	$\mathrm{t}_{\text {PLL2 }}$ $\mathrm{t}_{\text {PHZ1 }}$	"	125				5.0 V		OUT	IN	"	"	"	"					"	Sto W	"	45	"
		"	126				5.0 V	OUT		"	"	"	"	"					"	S to Y	"	50	"
	$\mathrm{t}_{\text {tryz2 }}$	"	127				GND		OUT	"	"	"	"	"					"	S to W	"	60	"
		"	128				GND	OUT		"	"	"	"	"					"	Sto Y	"	35	"
		"	129				5.0 V		OUT	"	"	"	"	"					"	S to W	"	35	"
10	Same tests and terminal conditions as subgroup 9, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and for the following limits: $\mathrm{t}_{\text {PLH } 1}$ and $\mathrm{t}_{\text {PHL } 1}=3$ to $50 \mathrm{~ns} ; \mathrm{t}_{\text {PLH2 }}$ and $\mathrm{t}_{\text {PHL2 }}=3$ to $30 \mathrm{~ns} ; \mathrm{t}_{\text {PLH5 }}$ and $\mathrm{t}_{\text {PHL5 }}=3$ to $75 \mathrm{~ns} ; \mathrm{t}_{\text {PLH6 }}$ and $\mathrm{t}_{\text {PHL6 }}=3$ to 57 ns ; $\mathrm{t}_{\text {PZH1 }}=3$ to $75 \mathrm{~ns} ; \mathrm{t}_{\text {PZH } 2}=3$ to $48 \mathrm{~ns} ; \mathrm{t}_{\text {PZL } 1}$ and $\mathrm{t}_{\text {PZL2 }}=3$ to $68 \mathrm{~ns} ; \mathrm{t}_{\text {PHZ } 1}=3$ to $75 \mathrm{~ns} ; \mathrm{t}_{\text {PHZ2 }}=3$ to $90 \mathrm{~ns} ; \mathrm{t}_{\text {PLZ }}$ and $\mathrm{t}_{\text {PLZ2 }}=3$ to 45 ns .																						
11	Same tests, terminal conditions, and limits as subgroup 10 except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$.																						

1/ Case X and 2 pins not referenced are NC.

2/ ILL limits are as follows:

Test	Min/Max limits (mA) for circuits							
	A	B	C	D	E	F	G	
	$-.16 /-.40$	$-.012 /-.36$	$-.16 /-.40$	$-.03 /-.30$	$-.005 /-.72$	$-.105 /-.345$	$0 /-.15$	
$\mathrm{I}_{\mathrm{IL} 2}$	$0 /-.20$	$-.12 /-.36$	$-.12 /-.36$	$-.03 /-.30$	$-.002 /-.150$	$-.16 /-.40$	$0 /-.15$	
$\mathrm{I}_{\mathrm{L} 3}$	$-.12 /-.36$	$-.12 /-.36$	$-.12 /-.36$	$-.03 /-.30$	$-.10 /-.34$	$-.16 /-.40$	$0 /-.15$	

3/ los limits for circuits A, B, D, F, and G are - 15 to -100 mA
4/ Inputs: $\mathrm{A} \geq 2.5 \mathrm{~V}$ minimum, $\mathrm{B} \leq 0.4 \mathrm{~V}$ maximum.
Outputs: $\mathrm{H} \geq 1.5 \mathrm{~V}, \mathrm{~L} \leq 1.5 \mathrm{~V}$.

TABLE III. Group A inspection for device type 06.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$; low $\leq 0.7 \mathrm{~V}$; or open).

TABLE III. Group A inspection for device type 06 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$; low $\leq 0.7 \mathrm{~V}$; or open).

See footnotes at end of device type 06.

TABLE III. Group A inspection for device type 06 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$; low $\leq 0.7 \mathrm{~V}$; or open).

Subgroup	Symbol	$\begin{gathered} \text { MIL-STD- } \\ 883 \\ \text { method } \end{gathered}$	$\begin{gathered} \text { Cases } \\ \mathrm{E}, \mathrm{~F} \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Limits		Unit					
			$\begin{aligned} & \text { Cases } 1^{1 /} \\ & 2, X^{1} \end{aligned}$	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20									
			Test no.	S	1A	1B	1 Y	2A	2B	2 Y	GND	$3 Y$	3B	3A	4 Y	4B	4A	G	V_{cc}		Min	Max						
$\begin{array}{c\|} \hline 9 \\ \mathrm{Tc}=25^{\circ} \mathrm{C} \end{array}$	$t_{\text {PHz3 }}$	3003 Fig. 5 "	104	5.0 V		5.0 V	OUT				GND							IN	"	G to 1Y	3	35	ns					
			105	"					5.0 V	OUT	"							"	"	G to 2Y	"		"					
			106	"							"	OUT	5.0 V					"	"	G to 3Y	"	"	"					
			107	"							"				OUT	5.0 V		"	"	G to 4Y	"	"	"					
	$\mathrm{tplz3}$	"	108	GND	GND		OUT				"							"	"	G to 1Y	"	30	"					
		"	109	"				GND		OUT	"							"	"	G to 2Y	"	"	"					
		"	110	"							"	OUT		GND				"	"	G to 3 Y	"	"	"					
		"	111	"							"				OUT		GND	"	"	G to 4 Y	"	"	"					
10	Same tests, terminal conditions and limits as subgroup 9 , except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and for the following: $\mathrm{t}_{\text {PLH } 1}$ and $\mathrm{t}_{\text {PHL } 1}=3$ to $35 \mathrm{~ns} ; \mathrm{t}_{\text {PLH } 5}$ and $\mathrm{t}_{\text {PLL5 }}=3$ to $39 \mathrm{~ns} ; \mathrm{t}_{\text {PZH3 }}, \mathrm{t}_{\text {PZL3 }}$, and $\mathrm{t}_{\text {PHZ3 }}=3$ to $53 \mathrm{~ns} ; \mathrm{t}_{\mathrm{PLZ3}}=3$ to 45 ns . Same tests, terminal conditions and limits as subgroup 10 , except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$.																											
11																												

1/ Case X and 2 pins not referenced are NC
2/ IIL limits shall be as follows:

Test	Min/Max limits (mA) for circuits							
	A	B	C	D	E	F	G	
$\mathrm{I}_{\mathrm{L} 1}$	$-.15 /-.38$	$-.16 /-.40$	$-.20 /-.44$	$0 /-.30$	$0 /-.20$	$-.12 /-.36$	$0 /-.15$	
$\mathrm{I}_{\mathrm{L} 2}$ test 27	$0 /-.20$	$-.16 /-.40$	$-.20 /-.44$	$0 /-.30$	$0 /-.10$	$-.12 /-.36$	$0 /-.15$	
$\mathrm{I}_{\mathrm{LL} 2}$ test 28	$0 /-.20$	$-.32 /-.80$	$-.40 /-.88$	$0 /-.60$	$0 /-.10$	$-.24 /-.72$	$0 /-.15$	

3/ Ios limits for circuits B, C, D, F, and G are -15 to -100 mA .

Outputs: Output voltages shall be either:
a. $H=2.5$ volts minimum and $L=0.4$ volt maximum when using a high speed checker double comparator, or
b. $\mathrm{H} \geq 1.5$ volts and $\mathrm{L} \leq 1.5$ volts when using a high speed checker single comparator.

TABLE III. Group A inspection for device type 07.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$; low $\leq 0.7 \mathrm{~V}$; or open).

TABLE III. Group A inspection for device type 07 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$; low $\leq 0.7 \mathrm{~V}$; or open).

Subgroup	Symbol	$\begin{array}{\|c} \text { MIL-STD- } \\ 883 \\ \text { method } \end{array}$	$\begin{gathered} \text { Cases } \\ \mathrm{E}, \mathrm{~F} \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Limits		Unit	
			$\begin{gathered} \text { Cases } 1 / 1 \\ 2, X^{1 /} \end{gathered}$	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20					
			Test no.	S	1A	1B	1Y	2A	2B	2 Y	GND	3 Y	3B	3A	4 Y	4B	4A	G	V_{cc}		Min	Max		
	$\begin{aligned} & \hline \text { Ios } \\ & \underline{3} / \end{aligned}$	3011	57	GND	GND		GND				"							GND		1 Y	-30	-130	mA	
			58	"				GND		GND	"								"	2 Y	"			
			59	"							"	GND		GND				"	"	3 Y	"	"	"	
			60	"							"				GND		GND	"	"	4 Y	"	"	"	
	$\mathrm{I}_{\mathrm{C} 1}$	3005	61	5.5 V	5.5 V	5.5 V		5.5 V	5.5 V		"		5.5 V	5.5 V		5.5 V	5.5 V	"	"	V_{cc}		15	"	
	$\mathrm{I}_{\mathrm{CC} 2}$	"	62	GND	GND	GND		GND	GND		"		GND	GND		GND	GND	"	"	V_{cc}		9	"	
	$\mathrm{ICC3}$	"	63								"							5.5 V	"	V_{cc}		19	"	
2	Same tests, terminal conditions and limits as subgroup 1 , except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and $\mathrm{V}_{\text {IC }}$ tests omitted.																							
3	Same tests, terminal conditions and limits as subgroup 1, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ and $\mathrm{V}_{1 \mathrm{C}}$ cests omitted.																							
$\begin{array}{c\|} \hline 7 \\ \hline \mathrm{Tc}=25^{\circ} \mathrm{C} \end{array}$	Functional tests	3014	64	B	B	B	H	B	B	H	GND	H	B	B	H	B	B	B	5.0 V	$\begin{gathered} \text { All } \\ \text { outputs } \end{gathered}$	4/			
			65	"	B	A	H	B	A	H	"	H	A	B	H	A	B	"	"					
			66	"	A	"	L	A	"	L	"	L	"	A	L	"	A	"	"					
			67	"	B	"	H	B	"	H	"	H	"	B	H	"	B	"	"					
			68	A	B	"	L	B	"	L	"	L	"	B	L	"	B	"	"					
			69	"	A	"	L	A	"	L	"	L	"	A	L	"	A	"	"					
			70	"	A	B	H	A	B	H	"	H	B	A	H	B	A	"	"					
			71	"	B	B	H	B	B	H	"	H	B	B	H	B	B	"	"					
8																								
9 $T \mathrm{C}=25^{\circ} \mathrm{C}$	Repeat subgroup 7 tests at $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ $\mathrm{t}_{\text {PLH }}$ 3003 72 GND IN						OUT				GND							GND	5.0 V	1A to 1Y	3	23	ns	
	Fig. 4		73	5.0 V		IN	OUT				"								"	1B to 1Y	"			
			74	GND				IN		OUT	"							"	"	2A to 2Y	"	"	"	
			75	5.0 V					IN	OUT	"							"	"	2B to 2Y	"	"	"	
			76	5.0 V							"	OUT	IN					"	"	3B to 3Y	"	"	"	
			77	GND							"	OUT		IN				"	"	3A to 3Y	"	"	"	
			78	5.0 V							"				OUT	IN		"	"	4B to 4Y	"	"	"	
			79	GND							"				OUT		IN	"	"	4A to 4Y	"	"	"	
	$\mathrm{t}_{\text {PLL1 }}$		80	GND	IN		OUT				"							"	"	1 A to 1 Y	"	"	"	
			81	5.0 V		IN	OUT				"							"	"	1B to 1Y	"	"	"	
			82	GND				IN		OUT	"							"	"	2A to 2Y	"	"	"	
			83	5.0 V					IN	OUT	"							"	"	2 B to 2Y	"	"	"	
			84	5.0 V							"	OUT	IN					"	"	3B to 3Y	"	"	"	
			85	GND							"	OUT		IN				"	"	3 A to 3Y	"	"	"	
			86	5.0 V							"				OUT	IN		"	"	4 B to 4Y	"	"	"	
			87	GND							"				OUT		IN	"	"	4A to 4Y	"	"	"	
	$\mathrm{t}_{\text {PLH5 }}$	"	88	IN	5.0 V	GND	OUT				"							"	"	S to 1 Y	"	26	"	
		"	89	"				5.0 V	GND	OUT	"							"	"	S to 2Y	"	"	"	
		"	90	"							"	OUT	GND	5.0 V				"	"	S to 3Y	"	"	"	
		"	91	"							"				OUT	GND	5.0 V	"	"	S to 4Y	"	"	"	
	$\mathrm{t}_{\text {PHL5 }}$		92	"	GND	5.0 V	OUT				"							"	"	S to 1 Y	"	"	"	
			93	"				GND	5.0 V	OUT	"							"	"	S to 2 Y	"	"	"	
			94	"							"	OUT	5.0 V	GND				"	"	S to 3Y	"	"	"	
			95	"							"				OUT	5.0 V	GND	"	"	S to 4Y	"	"	"	
	$\mathrm{t}_{\text {PZH3 }}$		96	GND	GND		OUT				"							IN	"	G to 1Y	"	35	"	
			97					GND		OUT	"								"	G to 2Y	"		"	
			98	"							"	OUT		GND				"	"	G to 3 Y	"	"	"	
			99	"							"				OUT		GND	"	"	G to 4Y	"	"	"	
	${ }_{\text {tpzL3 }}$		100	5.0 V		5.0 V	OUT				"							"	"	G to 1Y	"	"	"	
			101	"					5.0 V	OUT	"							"	"	G to 2Y	"	"	"	
			102	"							"	OUT	5.0 V					"	"	G to 3 Y	"	"	"	
			103	"											OUT	5.0 V		"	"	G to 4Y	"	"	"	

See footnotes at end of device type 07.

TABLE III. Group A inspection for device type 07 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$; low $\leq 0.7 \mathrm{~V}$; or open).

Subgroup	Symbol	MIL-STD- 883 method	$\begin{gathered} \text { Cases } \\ E, F \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Limits		Unit					
			$\begin{gathered} \text { Cases } 1 / 1 \\ 2, X^{1 /} \end{gathered}$	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20									
			Test no.	S	1A	1B	1 Y	2A	2B	2 Y	GND	3 Y	3B	3A	4 Y	4B	4A	G	V_{cc}		Min	Max						
$\begin{gathered} 9 \\ \mathrm{TC}=25^{\circ} \mathrm{C} \end{gathered}$	${ }_{\text {tpHz3 }}$	3003 Fig. 4	104	GND	GND		OUT				"							IN		G to 1Y	3	35	ns					
			105	"				GND		OUT	"							"	"	G to 2Y	"	"	"					
			106	"							"	OUT		GND				"	"	G to 3 Y	"	"	"					
			107	"							"				OUT		GND	"	"	G to 4Y	"	"	"					
	$\mathrm{tplz3}$		108	5.0 V		5.0 V	OUT				"							"	"	G to 1Y	"	30	"					
			109	"					5.0 V	OUT	"							"	"	G to 2Y	"		"					
			110	"							"	OUT	5.0 V					"	"	G to 3Y	"	"	"					
			111	"							"				OUT	5.0 V		"	"	G to 4Y	"	"	"					
10	Same tests, terminal conditions and limits as subgroup 9, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and for the following: $\mathrm{t}_{\mathrm{PLH} 1}$ and $\mathrm{t}_{\text {PHL } 1}=3$ to 35 ns ; $\mathrm{t}_{\text {PLH5 }}$ and $\mathrm{t}_{\text {PHL5 }}=3$ to $39 \mathrm{~ns} ; \mathrm{t}_{\text {PZH3 }}, \mathrm{t}_{\text {PZL3 }}$, and $\mathrm{t}_{\text {PHZ3 }}=3$ to 53 ns ; $\mathrm{t}_{\text {PLZ3 }}=3$ to 45 ns . Same tests, terminal conditions and limits as subgroup 10 , except $T_{C}=-55^{\circ} \mathrm{C}$.																											
11																												

1) Case X and 2 pins not referenced are NC.

2/ IIL limits shall be as follows:

Test	Min/Max limits (mA) for circuits							
	A	B	C	D	E	F	G	
$\mathrm{I}_{\mathrm{L} 1}$	$-.15 /-.38$	$-.16 /-.40$	$-.20 /-.44$	$0 /-.30$	$0 /-.20$	$-.12 /-.36$	$0 /-.15$	
$\mathrm{I}_{\mathrm{LL} 2}$ test 27	$0 /-.20$	$-.16 /-.40$	$-.20 /-.44$	$0 /-.30$	$0 /-.10$	$-.12 /-.36$	$0 /-.15$	
$\mathrm{I}_{\mathrm{LL} 2}$ test 28	$0 /-.20$	$-.32 /-.80$	$-.32 /-.80$	$0 /-.60$	$0 / / .10$	$-.24 /-.72$	$0 /-.15$	

3/ Ios limits for circuits B, C, D, F, and G are -15 to -100 mA .
A 4/ Inputs: $\mathrm{A} \geq 2.5 \mathrm{~V}$ minimum, $\mathrm{B} \leq 0.4 \mathrm{~V}$ maximum
Outputs: Output voltages shall be either:
a. $H=2.5$ volts minimum and $L=0.4$ volt maximum when using a high speed checker double comparator, or
b. $H \geq 1.5$ volts and $L \leq 1.5$ volts when using a high speed checker single comparator.
b. Attributes data only is required for subgroups 7 and 8 .
c.

TABLE III. Group A inspection for device type 08.

Subgroup	Symbol	$\begin{array}{\|c} \text { MIL-STD- } \\ 883 \\ \text { method } \end{array}$	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Limits		Unit
			$\begin{gathered} \text { Cases } 1 / 1 \\ 2, X \end{gathered}$	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20				
			Test no.	1G	B	1C3	1 C 2	1C1	$1 \mathrm{C0}$	1Y	GND	2 Y	2 C 0	2C1	2 C 2	2 C 3	A	2G	V_{cc}		Min	Max	
$\begin{array}{\|c\|} \hline 1 \\ \hline \mathrm{~T}=25^{\circ} \mathrm{C} \end{array}$	V_{OH}	3006	1	0.7 V	0.7 V				2.0 V	-1 mA	GND						0.7 V		4.5 V	1 Y	2.4		V
			2		0.7 V						"	-1 mA	2.0 V				0.7 V	0.7 V	"	$2 Y$	2.4		
	VoL	3007	3	0.7 V	2.0 V	0.7 V				4 mA	"						2.0 V		"	1 Y		0.4	"
			4		2.0 V						"	4 mA				0.7 V	2.0 V	0.7 V	"	2 Y		0.4	"
	$\mathrm{V}_{1 \mathrm{C}}$		5	$-18 \mathrm{~mA}$							"								"	1G		-1.5	"
			6		-18 mA						"								"	B		"	"
			7			-18 mA					"								"	1 C 3		"	"
			8				$-18 \mathrm{~mA}$				"								"	1 C 2		"	"
			9					-18 mA			"								"	1C1		"	"
			10						-18 mA		"								"	1 C 0		"	"
			11								"		-18 mA						"	2 C 0		"	"
			12								"			-18 mA					"	2 C 1		"	"
			13								"				$-18 \mathrm{~mA}$				"	2 C 2		"	"
			14								"					$-18 \mathrm{~mA}$			"	2 C 3		"	"
			15								"						$-18 \mathrm{~mA}$		"	A		"	"
			16								"							$-18 \mathrm{~mA}$	"	2G		"	"
	$I_{\text {LL1 }}$	3009	17	0.4 V							"								5.5 V	1G	$\underline{2 /}$	$\underline{2 /}$	mA
			18		0.4 V						"								"	B			"
			19	GND	5.5 V	0.4 V					"						5.5 V		"	1 C 3	"	"	"
			20	"	5.5 V		0.4 V				"						GND		"	1C2	"	"	"
			21	"	GND			0.4 V			"						5.5 V		"	1 C 1	"	"	"
			22	"	"				0.4 V		"						GND		"	1 C 0	"	"	"
			23		"						"		0.4 V				GND	GND	"	2 C 0	"	"	"
			24		"						"			0.4 V			5.5 V		"	2 C 1	"	"	"
			25		5.5 V						"				0.4 V		GND	"	"	2 C 2	"	"	"
			26		5.5 V						"					0.4 V	5.5 V	"	"	2 C 3	"	"	"
			27								"						0.4 V		"	A	"	"	"
			28								"							0.4 V	"	2G	"	"	"
	${ }_{1+1}$	3010	29	2.7 V							"								"	1G		20	$\mu \mathrm{A}$
			30		2.7 V						"								"	B		"	
			31		GND	2.7 V	"				"						GND		"	1 C 3		"	"
			32		GND		2.7 V				"						5.5 V		"	1 C 2		"	"
			33		5.5 V			2.7 V			"						GND		"	1 C 1		"	"
			34		"				2.7 V		"						5.5 V		"	1 C 0		"	"
			35		"						"		2.7 V				5.5 V		"	2 C 0		"	"
			36		"						"			2.7 V			GND		"	2 C 1		"	"
			37		GND						"				2.7 V		5.5 V		"	2 C 2		"	"
			38		GND						"					2.7 V	GND		"	2 C 3		"	"
			39								"						2.7 V		"	A		"	"
			40								"							2.7 V	"	2G		"	"
	$\mathrm{I}_{\mathrm{H} 2}$		41	7.0 V							"								"	1G		100	"
			42		7.0 V						"								"	B			"
			43		GND	7.0 V					"						GND		"	1 C 3		"	"
			44		GND		7.0 V				"						5.5 V		"	1 C 2		"	"
			45		5.5 V			7.0 V			"						GND		"	1 C 1		"	"
			46		"				7.0 V		"						5.5 V		"	1 C 0		"	"
			47		"						"		7.0 V				5.5 V		"	2 C 0		"	"
			48		"						"			7.0 V			GND		"	2 C 1		"	"
			49		GND						"				7.0 V		5.5 V		"	2 C 2		"	"
			50		GND						"					7.0 V	GND		"	2 C 3		"	"
			51								"						7.0 V		"	A		"	"
			52								"							7.0 V	"	2G		"	"

TABLE III. Group A inspection for device type 08 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$; low $\leq 0.7 \mathrm{~V}$; or open).

		MIL-STD-	$\begin{gathered} \text { Cases } \\ \mathrm{E}, \mathrm{~F} \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
Subgroup	Symbol	883 method	$\begin{gathered} \text { Cases } 1 / 1 \\ 2, X \end{gathered}$	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal			Unit
			Test no.	1G	B	1C3	1 C 2	1C1	$1 \mathrm{C0}$	1 Y	GND	2 Y	2 C 0	2 C 1	2 C 2	2 C 3	A	2G	V_{cc}		Min	Max	
1	Iozh		53	2.0 V	0.7 V				0.7 V	2.7 V	GND						0.7 V		5.5 V	1 Y		20	$\mu \mathrm{A}$
$\mathrm{Tc}=25^{\circ} \mathrm{C}$			54		0.7 V						"	2.7 V	0.7 V				0.7 V	2.0 V	"	$2 Y$		20	"
	lozl		55	2.0 V	2.0 V	2.0 V				0.4 V	"						2.0 V		"	1 Y		-20	"
			56		2.0 V						"	0.4 V				2.0 V	2.0 V	2.0 V	"	$2 Y$		-20	"
	los	3011	57	GND	GND				5.5 V	GND	"						GND		"	1 Y	-30	-130	mA
	3/	3011	58								"	GND	5.5 V					GND	"	2 Y	-30	-130	
	$\mathrm{I}_{\text {cc1 }}$	3005	59	GND	"	GND	GND	GND	GND		"		GND	GND	GND	GND	"	GND	"	V_{cc}		12	"
	ICCO	3005	60	5.5 V	"	GND	GND	GND	GND		"		GND	GND	GND	GND	"	5.5 V	"	V_{cc}		14	"
2	Same te	ests, termina	a conditions	and limit	as subgr	p 1, exc	$\mathrm{T}_{\mathrm{C}}=+$	$5^{\circ} \mathrm{C}$ and	$V_{\text {Ic }}$ tests	mitted.													
3	Same tests, terminal conditions and limits as subgroup 1, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ and $\mathrm{V}_{1 \mathrm{C}}$ tests omitted.																						
7TC $=25^{\circ} \mathrm{C}$	Functional tests	3014	61	B	B	A	A	A	B	L	GND	L	B	A	A	A	B	B	5.0 V	All	4/		
			62	"	"	B	B	B	B	L	"	L	B	B	B	B	"	"		Outputs			
			63	"	"	"	"	"	A	H	"	H	A	"	"	"	"	"	"	"			
			64	"	"	"	"	"	"	L	"	L		"	"	"	A	"	"	"			
			65	"	"	"	"	A	"	H	"	H	"	A	"	"	A	"	"	"			
			66	"	"	"	"	"	"	H	"	H	"	"	"	"	B	"	"	"			
			67	"	A	"	"	"	"	L	"	L	"	"	"	"	"	"	"	"			
			68	"		"	A	"	"	H	"	H	"	"	A	"	"	"	"	"			
			69	"	"	"	"	"	"	L	"	L	"	"	"	"	A	"	"	"			
			70	"	"	A	"	"	"	H	"	H	"	"	"	A	A	"	"	"			
8																							
$\begin{gathered} 9 \\ \mathrm{Tc}=25^{\circ} \mathrm{C} \end{gathered}$	Repeat subgroup 7 tests at $\mathrm{Tc}=+125^{\circ} \mathrm{C}$ and $\mathrm{Tc}=-55^{\circ} \mathrm{C}$. tplut 10003								IN	OUT	GND						GND		5.0 V	$1 \mathrm{Co} \mathrm{to} \mathrm{1Y}$	3	30	ns
		(Fig. 4)	72	-	GND			IN			"						5.0 V			1 C 1 to 1Y	"		
			73	"	5.0 V		IN			"	"						GND		"	1 C 2 to 1 Y	"	"	"
			74	"	5.0 V	IN				"	"						5.0 V		"	1 C 3 to 1 Y	"	"	"
			75		GND						"	OUT	IN				GND	GND	"	2 C 0 to 2 Y	"	"	"
			76		GND						"	"		IN			5.0 V	,	"	2 C 1 to 2 Y	"	"	"
			77		5.0 V						"	"			IN		GND	"	"	2 C 2 to 2 Y	"	"	"
	$\mathrm{t}_{\text {PHL1 }}$		78		5.0 V						"	"				IN	5.0 V	"	"	2 C 3 to 2 Y	"	"	"
			79	GND	GND				IN	OUT	"						GND		"	$1 \mathrm{C0}$ to 1 Y	"	25	"
			80	"	GND			IN			"						5.0 V		"	1C1 to 1Y	"		"
			81	"	5.0 V		IN				"						GND		"	1 C 2 to 1 Y	"	"	"
			82	"	5.0 V	IN				OUT	"						5.0 V		"	1 C 3 to 1 Y	"	"	"
			83		GND						"	OUT	IN				GND	GND	"	2 C 0 to 2 Y	"	"	"
			84		GND						"			IN			5.0 V		"	2C1 to 2Y	"	"	"
			85		5.0 V						"	"			IN		GND	"	"	2 C 2 to 2 Y	"	"	"
			86		5.0 V						"	"				IN	5.0 V	"	"	2 C 3 to 2 Y	"	"	"
	tref		87	GND	GND			5.0 V	GND	OUT	"						IN		"	A to 1 Y	"	50	"
			88		GND						"	OUT	GND	5.0 V			IN	GND	"	A to 2Y	"		"
			89	GND	IN		5.0 V		GND	OUT	"						GND		"	B to 1 Y	"	"	"
			90		IN						"	OUT	GND		5.0 V		GND	GND	"	B to 2Y	"	"	"
	$\mathrm{t}_{\text {PHL5 }}$		91	GND	GND			GND	5.0 V	OUT	"						IN		"	A to 1 Y	"	37	"
			92		GND						"	OUT	5.0 V	GND			IN	GND	"	A to 2 Y	"	"	"
			93	GND	IN		GND		5.0 V	OUT	"						GND		"	B to 1 Y	"	"	"
			94		IN						"	OUT	5.0 V		GND		GND	GND	"	B to 2 Y	"	"	"

See footnotes at end of device type 08.

TABLE III. Group A inspection for device type 08 - Continued.

Subgroup	Symbol	$\begin{aligned} & \text { MIL-STD- } \\ & 883 \\ & \text { method } \end{aligned}$	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Limits		Unit
			$\begin{gathered} \text { Cases }{ }^{1 /} \\ 2, \mathrm{X} \end{gathered}$	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20				
			Test no.	1G	B	1 C 3	1C2	1C1	1 C 0	1Y	GND	2 Y	2 C 0	2 C 1	2 C 2	2 C 3	A	2G	V_{cc}		Min	Max	
$\begin{gathered} 9 \\ \mathrm{TC}=25^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{t}_{\text {PZH3 }}$	$\begin{gathered} 3003 \\ \hline \text { (Fig. 4) } \end{gathered}$	95	IN	5.0 V	5.0 V				OUT	GND						5.0 V		5.0 V	1G to 1Y	3	46	ns
			96		5.0 V						"	OUT				5.0 V	5.0 V	IN		2G to 2Y		46	
	tpzı3	"	97	IN	GND				GND	OUT	"						GND		"	1G to 1Y	"	28	"
			98		GND						"	OUT	GND				GND	IN	"	2G to 2 Y	"	28	"
	$\mathrm{t}_{\text {PHZ3 }}$	"	99	IN	5.0 V	5.0 V				OUT	"						5.0 V		"	1 G to 1 Y	"	46	"
		"	100		5.0 V						"	OUT				5.0 V	5.0 V	IN	"	2G to 2 Y	"	46	"
	$\mathrm{t}_{\text {PLZ3 }}$	"	101	IN	GND				GND	OUT	"						GND		"	1 G to 1 Y	"	32	"
			102		GND						"	OUT	GND				GND	IN	"	2 G to 2Y	"	32	"

Same tests, terminal conditions and limits as subgroup 9, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and limits as follows:
$\mathrm{t}_{\text {PLH } 1}=3$ to $45 \mathrm{~ns} ; \mathrm{t}_{\text {PHL }}=3$ to $38 \mathrm{~ns} ; \mathrm{t}_{\text {PLH } 5}=3$ to $75 \mathrm{~ns} ; \mathrm{t}_{\text {PHL5 }}=3$ to 56 ns ;
$\mathrm{t}_{\text {PZH3 }}=3$ to $69 \mathrm{~ns} ; \mathrm{t}_{\text {PZL }}=3$ to 42 ns , and $\mathrm{t}_{\text {PHZ3 }}=3$ to $69 \mathrm{~ns} ; \mathrm{t}_{\text {PLZ3 }}=3$ to 48 ns .
11 Same tests, terminal conditions and limits as subgroup 10 , except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$.

1/ Case X and 2 pins not referenced are NC.
2/ IL limits shall be as follows:

Test	Min/Max limits (mA) for circuits						
	A	B	C	D	E	F	G
$\mathrm{l}_{1 L 1}$	$\begin{gathered} 18 \text { through } 27 \\ -.12 /-.36 \\ \text { except test } \\ 28 \text { and } 17 \\ -.001 /-.15 \end{gathered}$	-. $12 /$-. 36	-.12/-. 36	-.03/-. 30	Test 18 and 27 $\text { -. } 12 /-.36$ Test 17 and 28 $\text { -. 16/-. } 40$ Tests 19 through 26 $\text { -. 16/-. } 40$	-. $12 /$-. 36	0/. 15

3/ I Ios limits for circuits B, D, E, F, and G are -15 to -100 mA
4/ Inputs: $\mathrm{A} \geq 2.4 \mathrm{~V}$ minimum, $\mathrm{B} \leq 0.4 \mathrm{~V}$ maximum
Outputs. Output voltages shall be either
a. $H=2.5$ volts minimum and $L=0.4$ volt maximum when using a high speed checker double comparator, or
b. $\mathrm{H} \geq 1.5$ volts and $\mathrm{L} \leq 1.5$ volts when using a high speed checker single comparator.
c. Attributes data only is required for subgroups 7 and 8 .

TABLE III. Group A inspection for device type 09
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$; low $\leq 0.7 \mathrm{~V}$; or open).

क

See footnotes at end of device type 09.

TABLE III. Group A inspection for device type 09 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$; low $\leq 0.7 \mathrm{~V}$; or open).

Subgroup	Symbol	MIL-STD-883method	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Limits		Unit					
			$\begin{array}{\|c\|} \hline \text { Cases } 1 / \\ 2, \mathrm{x} \end{array}$	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20									
			Test no.	B2	A2	A1	B1	C2	D2	D1	GND	C1	WS	$\overline{\mathrm{CP}}$	QD	QC	QB	QA	V_{cc}		Min	Max						
2	Same tests, terminal conditions and limits as subgroup 1, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and $\mathrm{V}_{1 \mathrm{C}}$ tests omitted.																											
3	Same tests, terminal conditions and limits as subgroup 1, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ and $\mathrm{V}_{1 \mathrm{C}}$ tests omitted.																											
7 TC $=25^{\circ} \mathrm{C}$	($\begin{aligned} & \text { Func- } \\ & \text { tional } \\ & \text { tests }\end{aligned}$	3014	54	A	A	B	B	A	A	B	GND	B	B	A	L	L	L	L	5.0 V	All								
		"	55	"	"	"	"	"	"	"	"	"	"	B	"	"	"		"	ouputs								
		"	56	"	"	"	"	"	"	"	"	"	"	A	"	"	"	"	"	"								
		"	57	"	"	A	A	"	"	A	"	A	"	A	"	"	"	"	"	"								
		"	58	"	"	"	"	"	"	"	"	"	"	B	H	H	H	H	"	"								
		"	59	"	"	"	"	"	"	"	"	"	"	A	"	"	"	"	"	"								
		"	60	"	"	B	B	"	"	B	"	B	"	A	"	"	"	"	"	"								
		"	61	"	"	B	B	"	"	B	"	B	"	B	L	L	L	L	"	"								
		"	62	"	"	A	A	"	"	A	"	A	"	"	"	"	"	"	"	"		5/						
		"	63	"	"	B	B	"	"	B	"	B	"	"	"	"	"	"	"	"								
		,	64	"	"	"		"	"		"	"	"	A	"	"	"	"	"	"								
		"	65	"	"	"	"	"	"	"	"	"	A		"	"	"	"	"	"								
		"	66	"	"	A	A	"	"	A	"	A		"	"	"	"	"	"	"								
		"	67	"	"	"	"	"	"	"	"	"	"	B	H	H	H	H	"	"								
		"	68	"	"	"	"	"	"	"	"	"	"	A		"			"	"								
		"	69	B	B	"	"	B	B	"	"	$"$	"	A	"	"	"	"	\cdots	"								
		"	70	B	B	"	"	B	B	"	"	"	"	B	L	L	L	L	"	"								
		"	71	A	A	"	"	A	A	"	"	"	"	-	"	"			"	"								
		"	72	B	B	"	"	B	B	"	"	"	"	"	"	"	"	"	"	"								
8	Repeat subgroup 7 tests at $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$.																											
TC $=25^{\circ} \mathrm{C}$	${ }_{\text {tpLH1 }}$	3003	73		IN						GND		5.5 V	IN				OUT	5.0 V	$\overline{\mathrm{CP}}$ to QA	3	33	ns					
		Fig. 4	74	IN							"		"	"			OUT		"	$\overline{\mathrm{CP}}$ to QB	"	"	"					
		"	75					IN			"		"	"		OUT			"	$\overline{\mathrm{CP}}$ to QC	"	"	"					
		"	76						IN		"		"	"	OUT				"	$\overline{\mathrm{CP}}$ to QD	"	"	"					
	$\mathrm{t}_{\text {PLL1 }}$	"	77		IN						"		"	"				OUT	"	$\overline{\mathrm{CP}}$ to QA	"	37	"					
		"	78	IN							"		"	"			OUT		"	$\overline{\mathrm{CP}}$ to QB	"	"	"					
		"	79					IN			"		"	"		OUT			"	$\overline{\mathrm{CP}}$ to QC	"	"	"					
		"	80						IN		"		"	"	OUT				"	$\overline{C P}$ to QD	"	"	"					
10	Same tests, terminal conditions and limits as subgroup 9 , except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and limits as follows: $\mathrm{t}_{\mathrm{PLH} 1}=3$ to 43 ns ; $\mathrm{t}_{\text {PLL } 1}=3$ to 48 ns . Same tests, terminal conditions and limits as subgroup 10, except $T_{C}=-55^{\circ} \mathrm{C}$.																											
11																												

1/ Case X and 2 pins not referenced are NC.
2/ Apply normal clock pulse.
2/ Apply normal clock pulse.
3/ IL limits shall be as follows:

	Min/Max limits (mA) for circuits						
Test	A	B	C	D	E	F	G
$\mathrm{l}_{\text {LL1 }}$	-. $16 /-.40$	-	-	$-.16 /-.40$ except $-.03 /-.30$ test 27 and 28	$\begin{gathered} \hline-.16 /-.40 \\ \text { except } \\ -.12 /-.36 \\ \text { test } 27 \text { and } 28 \end{gathered}$	-.12/-. 36	-

[^2]Outputs: $\mathrm{H} \geq 1.5$ volts, $\mathrm{L} \leq 1.5$.

MIL-M-38510/309E

5. PACKAGING

5.1 Packaging requirements. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD personnel, these personnel need to contact the responsible packaging activity to ascertain requisite packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Department of Defense Agency, or within the Military Department's System Command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.
6. NOTES
6.1 Intended use. Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.
6.2 Acquisition requirements. Acquisition documents should specify the following:
a. Title, number, and date of the specification.
b. Complete part number (see 1.2).
c. Requirements for delivery of one copy of the quality conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
d. Requirements for certificate of compliance, if applicable.
e. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable.
f. Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
g. Requirements for product assurance options.
h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
j. Requirements for "JAN" marking.
6.3 Superseding information. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.
6.4 Qualification. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199.
6.5 Abbreviations, symbols, and definitions. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and as follows:

GND	Ground zero voltage potential.
$\mathrm{V}_{\text {IN }}$	Voltage level at an input terminal.
$V_{\text {IC }}$	Input clamp voltage.
1 l	Current flowing into an input terminal.
$t_{\text {PHZ }}$	Output disable time (of a three-state output) from high level. The time between the specified reference points on the input and output voltage waveforms with the three-state output changing from the defined high level to a high-impedance (off) state.
tplz	Output disable time (of a three-state output) from low level. The time between the specified reference points on the input and output voltage waveforms with the three-state output changing from the defined low level to a high-impedance (off) state.
tpzh	Output enable time (of a three-state output) to high level. The time between the specified reference points on the input and output voltage waveforms with the three-state output changing from a high-impedance (off) state to the defined low level.
tp	Output enable time (of a three-state output) to low level. The time between the specified reference points on the input and output voltage waveforms with the three-state output changing from a high-impedance (off) state to the defined low level.

6.6 Logistic support. Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming should not affect the part number.
6.7 Substitutability. The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-38510 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Military device type	Generic-industry type
01	54 LS 151
02	54 LS 153
03	54 LS 157
04	54 LS 158
05	54 LS 251
06	54 LS 257 B
07	54 LS 258 B
08	54 LS 253
09	54 LS 298

MIL-M-38510/309E

6.8 Manufacturers' designation. Manufacturers' circuits, which form a part of this specification, are designated as shown in table IV herein.

TABLE IV. Manufacturer's designator.

Device type	CIRCUITS						
	A	B	C	D	E	F	G
	Texas Instruments	Advanced Micro Devices	Raytheon	Signetics	Motorola	Fairchild	National
01	X	X	X	X	X	X	X
02	X	X	X	X	X	X	X
03	X	X	X	X	X	X	X
04	X	X	X	X	X	X	X
05	X	X	X	X	X	X	X
06	X	X	X	X	X	X	X
07	X	X	X	X	X	X	X
08	X	X	X	X	X	X	X
09	X	X	X	X	X	X	X

6.9 Changes from previous issue. Asterisks are not used in this revision to identify changes with respect to the previous issue due to the extensiveness of the changes.

```
Custodians:
    Army - CR
    Navy - EC
    Air Force - 11
    DLA - CC
```

 Preparing activity:
 DLA - CC
 Review activities:
Army - MI, SM
Navy - AS, CG, MC, SH, TD
Air Force-03, 19, 99

STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL

INSTRUCTIONS

1. The preparing activity must complete blocks $1,2,3$, and 8 . In block 1 , both the document number and revision letter should be given.
2. The submitter of this form must complete blocks $4,5,6$, and 7 , and send to preparing activity.
3. The preparing activity must provide a reply within 30 days from receipt of the form

NOTE: This form may not be used to request copies of documents, nor to request waivers, or clarification of requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements.
\(\left.$$
\begin{array}{|l|l|l|}\hline \text { I RECOMMEND A CHANGE: } & \begin{array}{c}\text { 1. DOCUMENT NUMBER } \\
\text { MIL-M-38510/309E }\end{array}
$$ \& 2. DOCUMENT DATE (YYYYMMDD)

2003-04-10\end{array}\right]\)| 3. DOCUMENT TITLE |
| :--- |
| MICROCIRCUITS, DIGITAL, BIPOLAR LOW-POWER SCHOTTKY TTL, SELECTOR/MULTIPLEXER, WITH THREE STATE |
| OUTPUTS, MONOLITHIC SILICON |

5. REASON FOR RECOMMENDATION

a. NAME (Last, First Middle Initial)	b. ORGANIZATION
c. ADDRESS (Inc/ude Zip Code)	d. TELEPHONE (Include Area Code) 7. DATE SUBMITTED (1) Commercial (YYYYMMDD) (2) DSN (If applicable)
8. PREPARING ACTIVITY	
a. NAME Defense Supply Center, Columbus	b. TELEPHONE (Include Area Code (1) Commercial 614-692-0536 (2) DSN 850-0536
c. ADDRESS (Include Zip Code) DSCC-VA P. O. Box 3990 Columbus, Ohio 43216-5000	IF YOU DO NOT RECEIVE A REPLY WITHIN 45 DAYS, CONTACT: Defense Standardization Program Office (DLSC-LM) 8725 John J. Kingman Road, Suite 2533 Fort Belvoir, Virginia 22060-6221 Telephone (703)767-6888 DSN 427-6888

[^0]: Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, P. O. Box 3990, Columbus, OH 43216-5000, by using the self addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

[^1]: 1/ Must withstand the added P_{D} due to short-circuit test (e.g., los).
 $\underline{\underline{2} /}$ Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with MIL-PRF-38535.
 3/ Device will fanout in both high and low levels to the specified number of data inputs on the same device type as that being tested.

[^2]: Apply $\geq 3.0 \mathrm{~V}$ pulse, then ground, then measure.
 5/ Inputs: $\mathrm{A} \geq 2.5 \mathrm{~V}$ minimum, $\mathrm{B} \leq 0.4 \mathrm{~V}$ maximum.

