

MOS INTEGRATED CIRCUIT μPD44165084A, 44165094A, 44165184A, 44165364A

18M-BIT QDR[™]II SRAM 4-WORD BURST OPERATION

Description

The μ PD44165084A is a 2,097,152-word by 8-bit, the μ PD44165094A is a 2,097,152-word by 9-bit, the μ PD44165184A is a 1,048,576-word by 18-bit and the μ PD44165364A is a 524,288-word by 36-bit synchronous quad data rate static RAM fabricated with advanced CMOS technology using full CMOS six-transistor memory cell.

The µPD44165084A, µPD44165094A, µPD44165184A and µPD44165364A integrate unique synchronous peripheral circuitry and a burst counter. All input registers controlled by an input clock pair (K and K#) are latched on the positive edge of K and K#.

These products are suitable for application which require synchronous operation, high speed, low voltage, high density and wide bit configuration.

These products are packaged in 165-pin PLASTIC BGA.

Features

- 1.8 ± 0.1 V power supply
- 165-pin PLASTIC BGA (13 x 15)
- HSTL interface
- PLL circuitry for wide output data valid window and future frequency scaling
- Separate independent read and write data ports with concurrent transactions
- 100% bus utilization DDR READ and WRITE operation
- Four-tick burst for reduced address frequency
- Two input clocks (K and K#) for precise DDR timing at clock rising edges only
- Two output clocks (C and C#) for precise flight time
- and clock skew matching-clock and data delivered together to receiving device
- Internally self-timed write control
- Clock-stop capability. Normal operation is restored in 1,024 cycles after clock is resumed.
- User programmable impedance output
- <R> Fast clock cycle time : 3.3 ns (300 MHz) , 3.7 ns (270 MHz) , 4.0 ns (250 MHz) , 5.0 ns (200 MHz)
 - Simple control logic for easy depth expansion
 - JTAG boundary scan

<R>

• Operating ambient temperature : Commercial T_A = 0 to +70°C (-E33, -E40, -E50)

Industrial $T_A = -40$ to +85°C (-E37Y, -E40Y, -E50Y)

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

The mark <R> shows major revised points.

© NEC Electronics Corporation 2006

The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.

Ordering Information

(1) Operating Ambient Temperature $T_A = 0$ to +70°C

Part number	Cycle	Clock	Organization	Package	Operating
	Time	Frequency	(word x bit)		Ambient
	ns	MHz			Temperature
μPD44165084AF5-E33-EQ2	3.3	300	2M x 8-bit	165-pin PLASTIC	Commercial
μPD44165084AF5-E40-EQ2	4.0	250		BGA (13 x 15)	(T _A = 0 to +70°C)
μPD44165084AF5-E50-EQ2	5.0	200			
μPD44165094AF5-E33-EQ2	3.3	300	2M x 9-bit		
μPD44165094AF5-E40-EQ2	4.0	250			
μPD44165094AF5-E50-EQ2	5.0	200			
μPD44165184AF5-E33-EQ2	3.3	300	1M x 18-bit		
μPD44165184AF5-E40-EQ2	4.0	250			
μPD44165184AF5-E50-EQ2	5.0	200			
μPD44165364AF5-E33-EQ2	3.3	300	512K x 36-bit		
μPD44165364AF5-E40-EQ2	4.0	250			
μPD44165364AF5-E50-EQ2	5.0	200			
μPD44165084AF5-E33-EQ2-A	3.3	300	2M x 8-bit	165-pin PLASTIC	
μPD44165084AF5-E40-EQ2-A	4.0	250		BGA (13 x 15)	
μPD44165084AF5-E50-EQ2-A	5.0	200			
μPD44165094AF5-E33-EQ2-A	3.3	300	2M x 9-bit	Lead-free	
μPD44165094AF5-E40-EQ2-A	4.0	250			
μPD44165094AF5-E50-EQ2-A	5.0	200			
μPD44165184AF5-E33-EQ2-A	3.3	300	1M x 18-bit		
μPD44165184AF5-E40-EQ2-A	4.0	250			
μPD44165184AF5-E50-EQ2-A	5.0	200			
μPD44165364AF5-E33-EQ2-A	3.3	300	512K x 36-bit		
μPD44165364AF5-E40-EQ2-A	4.0	250			
μPD44165364AF5-E50-EQ2-A	5.0	200			

Remarks 1. QDR Consortium standard package size is 13 x 15 and 15 x 17.

The footprint is commonly used.

2. Products with -A at the end of the part number are lead-free products.

<R> (2) Operating Ambient Temperature T_A = -40 to +85°C

Part number	Cycle	Clock	Organization	Package	Operating
	Time	Frequency	(word x bit)		Ambient
	ns	MHz			Temperature
μPD44165084AF5-E37Y-EQ2	3.7	270	2M x 8-bit	165-pin PLASTIC	Industrial
μPD44165084AF5-E40Y-EQ2	4.0	250		BGA (13 x 15)	(T _A = −40 to +85°C)
μPD44165084AF5-E50Y-EQ2	5.0	200			
μPD44165094AF5-E37Y-EQ2	3.7	270	2M x 9-bit		
μPD44165094AF5-E40Y-EQ2	4.0	250			
μPD44165094AF5-E50Y-EQ2	5.0	200			
μPD44165184AF5-E37Y-EQ2	3.7	270	1M x 18-bit		
μPD44165184AF5-E40Y-EQ2	4.0	250			
μPD44165184AF5-E50Y-EQ2	5.0	200			
μPD44165084AF5-E37Y-EQ2-A	3.7	270	2M x 8-bit	165-pin PLASTIC	
μPD44165084AF5-E40Y-EQ2-A	4.0	250		BGA (13 x 15)	
μPD44165084AF5-E50Y-EQ2-A	5.0	200			
μPD44165094AF5-E37Y-EQ2-A	3.7	270	2M x 9-bit	Lead-free	
μPD44165094AF5-E40Y-EQ2-A	4.0	250			
μPD44165094AF5-E50Y-EQ2-A	5.0	200			
μPD44165184AF5-E37Y-EQ2-A	3.7	270	1M x 18-bit		
μPD44165184AF5-E40Y-EQ2-A	4.0	250			
μPD44165184AF5-E50Y-EQ2-A	5.0	200			

Remarks 1. QDR Consortium standard package size is 13 x 15 and 15 x 17.

The footprint is commonly used.

2. Products with -A at the end of the part number are lead-free products.

Pin Configurations

165-pin PLASTIC BGA (13 x 15) (Top View) [μΡD44165084A] 2M x 8-bit

_	1	2	3	4	5	6	7	8	9	10	11
Α	CQ#	Vss	A	W#	NW1#	K#	NC	R#	A	Vss	CQ
в	NC	NC	NC	Α	NC	к	NW0#	Α	NC	NC	Q3
с	NC	NC	NC	Vss	Α	NC	Α	Vss	NC	NC	D3
D	NC	D4	NC	Vss	Vss	Vss	Vss	Vss	NC	NC	NC
Е	NC	NC	Q4	VDDQ	Vss	Vss	Vss	VDDQ	NC	D2	Q2
F	NC	NC	NC	VDDQ	VDD	Vss	VDD	VDDQ	NC	NC	NC
G	NC	D5	Q5	VDDQ	VDD	Vss	VDD	VDDQ	NC	NC	NC
н	DLL#	VREF	VDDQ	VDDQ	VDD	Vss	VDD	VDDQ	VDDQ	VREF	ZQ
J	NC	NC	NC	VDDQ	VDD	Vss	VDD	VDDQ	NC	Q1	D1
к	NC	NC	NC	VDDQ	VDD	Vss	VDD	VDDQ	NC	NC	NC
L	NC	Q6	D6	VDDQ	Vss	Vss	Vss	VDDQ	NC	NC	Q0
М	NC	NC	NC	Vss	Vss	Vss	Vss	Vss	NC	NC	D0
Ν	NC	D7	NC	Vss	Α	Α	Α	Vss	NC	NC	NC
Ρ	NC	NC	Q7	Α	А	С	Α	Α	NC	NC	NC
R	TDO	тск	А	А	А	C#	Α	Α	А	TMS	TDI

А	: Address inputs	DLL#	: DLL/PLL disable
D0 to D7	: Data inputs	TMS	: IEEE 1149.1 Test input
Q0 to Q7	: Data outputs	TDI	: IEEE 1149.1 Test input
R#	: Read input	TCK	: IEEE 1149.1 Clock input
W#	: Write input	TDO	: IEEE 1149.1 Test output
NW0#, NW1#	: Nibble Write data select	VREF	: HSTL input reference input
K, K#	: Input clock	Vdd	: Power Supply
C, C#	: Output clock	VddQ	: Power Supply
CQ, CQ#	: Echo clock	Vss	: Ground
ZQ	: Output impedance matching	NC	: No connection

- 2. Refer to Package Drawing for the index mark.
- **3.** 2A, 7A and 10A are expansion addresses: 10A for 36Mb, 2A for 72Mb and 7A for 144Mb. 2A and 10A of this product can also be used as NC.

165-pin PLASTIC BGA (13 x 15) (Top View) [μΡD44165094A]

2M x 9-bit

_	1	2	3	4	5	6	7	8	9	10	11
Α	CQ#	Vss	A	W#	NC	K#	NC	R#	Α	Vss	CQ
в	NC	NC	NC	Α	NC	к	BW0#	Α	NC	NC	Q4
с	NC	NC	NC	Vss	Α	NC	Α	Vss	NC	NC	D4
D	NC	D5	NC	Vss	Vss	Vss	Vss	Vss	NC	NC	NC
Е	NC	NC	Q5	VDDQ	Vss	Vss	Vss	VDDQ	NC	D3	Q3
F	NC	NC	NC	VDDQ	VDD	Vss	VDD	VDDQ	NC	NC	NC
G	NC	D6	Q6	VDDQ	VDD	Vss	VDD	VDDQ	NC	NC	NC
н	DLL#	VREF	VDDQ	VDDQ	VDD	Vss	VDD	VDDQ	VDDQ	VREF	ZQ
J	NC	NC	NC	VDDQ	VDD	Vss	VDD	VDDQ	NC	Q2	D2
к	NC	NC	NC	VDDQ	VDD	Vss	VDD	VDDQ	NC	NC	NC
L	NC	Q7	D7	VDDQ	Vss	Vss	Vss	VDDQ	NC	NC	Q1
м	NC	NC	NC	Vss	Vss	Vss	Vss	Vss	NC	NC	D1
Ν	NC	D8	NC	Vss	Α	Α	Α	Vss	NC	NC	NC
Ρ	NC	NC	Q8	Α	Α	С	Α	A	NC	D0	Q0
R	TDO	тск	Α	Α	Α	C#	Α	А	Α	TMS	TDI

А	: Address inputs	DLL#	: DLL/PLL disable
D0 to D8	: Data inputs	TMS	: IEEE 1149.1 Test input
Q0 to Q8	: Data outputs	TDI	: IEEE 1149.1 Test input
R#	: Read input	TCK	: IEEE 1149.1 Clock input
W#	: Write input	TDO	: IEEE 1149.1 Test output
BW0#	: Byte Write data select	VREF	: HSTL input reference input
K, K#	: Input clock	Vdd	: Power Supply
C, C#	: Output clock	VddQ	: Power Supply
CQ, CQ#	: Echo clock	Vss	: Ground
ZQ	: Output impedance matching	NC	: No connection

- 2. Refer to Package Drawing for the index mark.
- **3.** 2A, 7A and 10A are expansion addresses: 10A for 36Mb, 2A for 72Mb and 7A for 144Mb. 2A and 10A of this product can also be used as NC.

165-pin PLASTIC BGA (13 x 15) (Top View) [μPD44165184A] 1M x 18-bit

_	1	2	3	4	5	6	7	8	9	10	11
Α	CQ#	Vss	NC	W#	BW1#	K#	NC	R#	Α	Vss	CQ
в	NC	Q9	D9	Α	NC	к	BW0#	Α	NC	NC	Q8
с	NC	NC	D10	Vss	Α	NC	Α	Vss	NC	Q7	D8
D	NC	D11	Q10	Vss	Vss	Vss	Vss	Vss	NC	NC	D7
Е	NC	NC	Q11	VDDQ	Vss	Vss	Vss	VDDQ	NC	D6	Q6
F	NC	Q12	D12	VDDQ	VDD	Vss	VDD	VDDQ	NC	NC	Q5
G	NC	D13	Q13	VDDQ	VDD	Vss	VDD	VDDQ	NC	NC	D5
н	DLL#	VREF	VDDQ	VDDQ	VDD	Vss	VDD	VDDQ	VDDQ	VREF	ZQ
J	NC	NC	D14	VDDQ	VDD	Vss	VDD	VDDQ	NC	Q4	D4
к	NC	NC	Q14	VDDQ	VDD	Vss	VDD	VDDQ	NC	D3	Q3
L	NC	Q15	D15	VDDQ	Vss	Vss	Vss	VDDQ	NC	NC	Q2
м	NC	NC	D16	Vss	Vss	Vss	Vss	Vss	NC	Q1	D2
Ν	NC	D17	Q16	Vss	Α	Α	Α	Vss	NC	NC	D1
Ρ	NC	NC	Q17	Α	Α	С	Α	Α	NC	D0	Q0
R	TDO	тск	А	Α	А	C#	Α	Α	Α	TMS	TDI

А	: Address inputs	DLL#	: DLL/PLL disable
D0 to D17	: Data inputs	TMS	: IEEE 1149.1 Test input
Q0 to Q17	: Data outputs	TDI	: IEEE 1149.1 Test input
R#	: Read input	TCK	: IEEE 1149.1 Clock input
W#	: Write input	TDO	: IEEE 1149.1 Test output
BW0#, BW1#	: Byte Write data select	VREF	: HSTL input reference input
K, K#	: Input clock	Vdd	: Power Supply
C, C#	: Output clock	VddQ	: Power Supply
CQ, CQ#	: Echo clock	Vss	: Ground
ZQ	: Output impedance matching	NC	: No connection

- 2. Refer to Package Drawing for the index mark.
- **3.** 2A, 3A and 10A are expansion addresses: 3A for 36Mb, 10A for 72Mb and 2A for 144Mb. 2A and 10A of this product can also be used as NC.

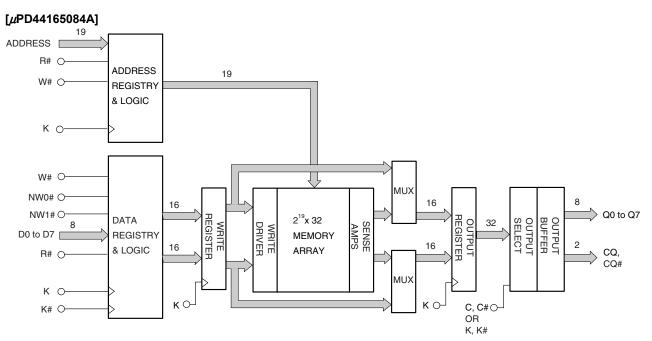
165-pin PLASTIC BGA (13 x 15) (Top View) [μPD44165364A] 512K x 36-bit

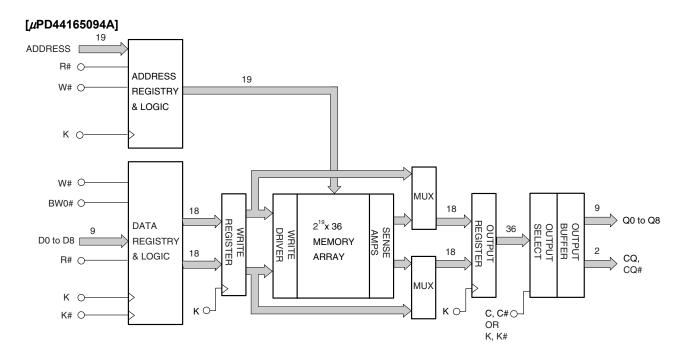
_	1	2	3	4	5	6	7	8	9	10	11
Α	CQ#	Vss	NC	W#	BW2#	K#	BW1#	R#	NC	Vss	CQ
в	Q27	Q18	D18	A	BW3#	к	BW0#	A	D17	Q17	Q8
с	D27	Q28	D19	Vss	Α	NC	Α	Vss	D16	Q7	D8
D	D28	D20	Q19	Vss	Vss	Vss	Vss	Vss	Q16	D15	D7
Е	Q29	D29	Q20	VDDQ	Vss	Vss	Vss	VDDQ	Q15	D6	Q6
F	Q30	Q21	D21	VDDQ	VDD	Vss	VDD	VDDQ	D14	Q14	Q5
G	D30	D22	Q22	VDDQ	VDD	Vss	VDD	VDDQ	Q13	D13	D5
н	DLL#	VREF	VDDQ	VDDQ	VDD	Vss	VDD	VDDQ	VDDQ	VREF	ZQ
J	D31	Q31	D23	VDDQ	VDD	Vss	VDD	VDDQ	D12	Q4	D4
к	Q32	D32	Q23	VDDQ	VDD	Vss	VDD	VDDQ	Q12	D3	Q3
L	Q33	Q24	D24	VDDQ	Vss	Vss	Vss	VDDQ	D11	Q11	Q2
м	D33	Q34	D25	Vss	Vss	Vss	Vss	Vss	D10	Q1	D2
N	D34	D26	Q25	Vss	Α	Α	Α	Vss	Q10	D9	D1
Ρ	Q35	D35	Q26	A	Α	С	Α	A	Q9	D0	Q0
R	TDO	тск	А	Α	А	C#	А	Α	А	TMS	TDI

А	: Address inputs	DLL#	: DLL/PLL disable
D0 to D35	: Data inputs	TMS	: IEEE 1149.1 Test input
Q0 to Q35	: Data outputs	TDI	: IEEE 1149.1 Test input
R#	: Read input	TCK	: IEEE 1149.1 Clock input
W#	: Write input	TDO	: IEEE 1149.1 Test output
BW0# to BW3#	: Byte Write data select	VREF	: HSTL input reference input
K, K#	: Input clock	Vdd	: Power Supply
C, C#	: Output clock	VddQ	: Power Supply
CQ, CQ#	: Echo clock	Vss	: Ground
ZQ	: Output impedance matching	NC	: No connection

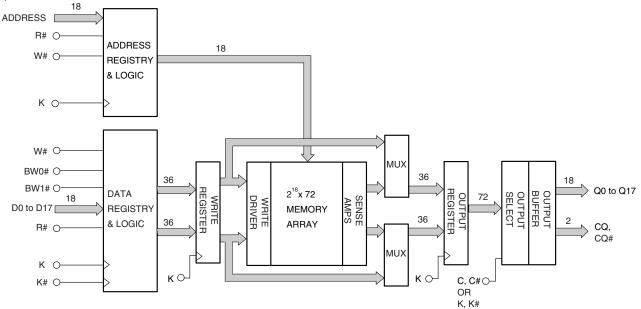
- 2. Refer to Package Drawing for the index mark.
- 3. 3A, 9A and 10A are expansion addresses: 9A for 36Mb, 3A for 72Mb and 10A for 144Mb.2A and 10A of this product can also be used as NC.

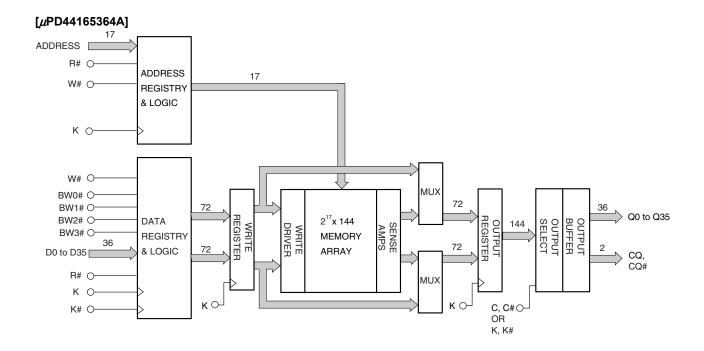
Pin Identification


Symbol	Description
A	Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of K. All transactions operate on a burst of four words (two clock periods of bus activity). These inputs are ignored when device is deselected, i.e., NOP (R# = W# = HIGH).
D0 to Dxx	Synchronous Data Inputs: Input data must meet setup and hold times around the rising edges of K and K# during WRITE operations. See Pin Configurations for ball site location of individual signals. x8 device uses D0 to D7. x9 device uses D0 to D8. x18 device uses D0 to D17. x36 device uses D0 to D35.
Q0 to Qxx	Synchronous Data Outputs: Output data is synchronized to the respective C and C# or to K and K# rising edges if C and C# are tied HIGH. Data is output in synchronization with C and C# (or K and K#), depending on the R# command. See Pin Configurations for ball site location of individual signals. x8 device uses Q0 to Q7. x9 device uses Q0 to Q8. x18 device uses Q0 to Q17. x36 device uses Q0 to Q35.
R#	Synchronous Read: When LOW this input causes the address inputs to be registered and a READ cycle to be initiated. This input must meet setup and hold times around the rising edge of K. If a READ command (R# = LOW) is input, an input of R# on the subsequent rising edge of K is ignored.
W#	Synchronous Write: When LOW this input causes the address inputs to be registered and a WRITE cycle to be initiated. This input must meet setup and hold times around the rising edge of K. If a WRITE command (W# = LOW) is input, an input of W# on the subsequent rising edge of K is ignored.
BWx# NWx#	Synchronous Byte Writes (Nibble Writes on x8): When LOW these inputs cause their respective byte or nibble to be registered and written during WRITE cycles. These signals must meet setup and hold times around the rising edges of K and K# for each of the two rising edges comprising the WRITE cycle. See Pin Configurations for signal to data relationships. x8 device uses NW0#, NW1#. x9 device uses BW0#. x18 device uses BW0#, BW1#. x36 device uses BW0# to BW3#. See Byte Write Operation for relation between BWx#, NWx# and Dxx.
K, K#	Input Clock: This input clock pair registers address and control inputs on the rising edge of K, and registers data on the rising edge of K and the rising edge of K#. K# is ideally 180 degrees out of phase with K. All synchronous inputs must meet setup and hold times around the clock rising edges.
C, C#	Output Clock: This clock pair provides a user controlled means of tuning device output data. The rising edge of C# is used as the output timing reference for first and third output data. The rising edge of C is used as the output reference for second and fourth output data. Ideally, C# is 180 degrees out of phase with C. When use of K and K# as the reference instead of C and C#, then fixed C and C# to HIGH. Operation cannot be guaranteed unless C and C# are fixed to HIGH (i.e. toggle of C and C#).

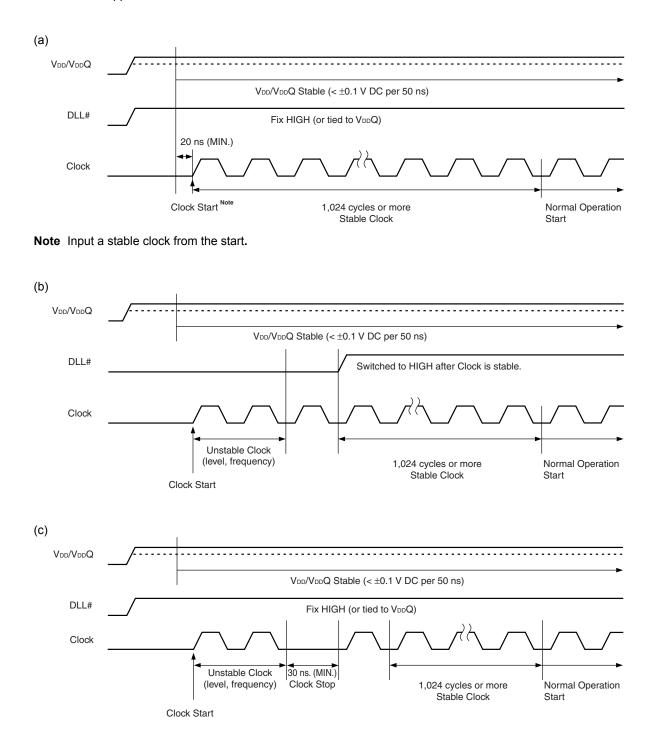


(2/2)


	Symbol	Description
	CQ, CQ#	Synchronous Echo Clock Outputs. The rising edges of these outputs are tightly matched to the synchronous data outputs and can be used as a data valid indication. These signals run freely and do not stop when Q tristates. If C and C# are stopped (if K and K# are stopped in the single clock mode), CQ and CQ# will also stop.
<r></r>	ZQ	Output Impedance Matching Input: This input is used to tune the device outputs to the system data bus impedance. Q, CQ and CQ# output impedance are set to 0.2 x RQ, where RQ is a resistor from this bump to ground. The output impedance can be minimized by directly connect ZQ to V _{DD} Q. This pin cannot be connected directly to GND or left unconnected. The output impedance is adjusted every 1,024 cycles upon power-up to account for drifts in supply voltage and temperature. After replacement for a resistor, the new output impedance is reset by implementing power-on sequence.
<r></r>	DLL#	DLL/PLL Disable: When debugging the system or board, the operation can be performed at a clock frequency slower than TKHKH (MAX.) without the DLL/PLL circuit being used, if DLL# = LOW. The AC/DC characteristics cannot be guaranteed. For normal operation, DLL# must be HIGH and it can be connected to $V_{DD}Q$ through a 10 k Ω or less resistor.
	TMS TDI	IEEE 1149.1 Test Inputs: 1.8 V I/O level. These balls may be left Not Connected if the JTAG function is not used in the circuit.
	ТСК	IEEE 1149.1 Clock Input: 1.8 V I/O level. This pin must be tied to V _{ss} if the JTAG function is not used in the circuit.
	TDO	IEEE 1149.1 Test Output: 1.8 V I/O level.
	VREF	HSTL Input Reference Voltage: Nominally VDDQ/2. Provides a reference voltage for the input buffers.
	Vdd	Power Supply: 1.8 V nominal. See Recommended DC Operating Conditions and DC Characteristics for range.
	VddQ	Power Supply: Isolated Output Buffer Supply. Nominally 1.5 V. 1.8 V is also permissible. See Recommended DC Operating Conditions and DC Characteristics for range.
	Vss	Power Supply: Ground
<r></r>	NC	No Connect: These signals are not connected internally.


Block Diagram

[µPD44165184A]



Power-on Sequence

The following timing charts show the recommended power-on sequence, i.e., when starting the clock after $V_{DD}/V_{DD}Q$ stable and when starting the clock before $V_{DD}/V_{DD}Q$ stable.

1. Clock starts after VDD/VDDQ stable

The clock is supplied from a controller.

2. Clock starts before VDD/VDDQ stable

The clock is supplied from a clock generator.

Truth Table

Operation	CLK	R#	W#		D or Q				
WRITE cycle	$L\toH$	Н	L	Data in					
Load address, input write data on two					Input data	D _A (A+0)	D _A (A+1)	D _A (A+2)	D _A (A+3)
consecutive K and K# rising edge					Input clock	K(t+1) ↑	K#(t+1) ↑	K(t+2) ↑	K#(t+2) ↑
READ cycle	$L\toH$	L	х	Data out					
Load address, read data on two					Output data	Q _A (A+0)	Q _A (A+1)	Q _A (A+2)	Q _A (A+3)
consecutive C and C# rising edge					Output clock	C#(t+1) ↑	C(t+2) ↑	C#(t+2) ↑	C(t+3) ↑
NOP (No operation)	$L\toH$	Η	Н	D = X, Q = High-Z					
Clock stop	Stopped	Х	х	Previous	Previous state				

Remarks 1. H : HIGH, L : LOW, \times : don't care, \uparrow : rising edge.

- 2. Data inputs are registered at K and K# rising edges. Data outputs are delivered at C and C# rising edges except if C and C# are HIGH then data outputs are delivered at K and K# rising edges.
- **3.** R# and W# must meet setup/hold times around the rising edge (LOW to HIGH) of K and are registered at the rising edge of K.
- 4. This device contains circuitry that ensure the outputs to be in high impedance during power-up.
- 5. Refer to state diagram and timing diagrams for clarification.
- **6.** It is recommended that K = K# = C = C# when clock is stopped. This is not essential but permits most rapid restart by overcoming transmission line charging symmetrically.
- **7.** If R# was LOW to initiate the previous cycle, this signal becomes a don't care for this WRITE operation however it is strongly recommended that this signal is brought HIGH as shown in the truth table.
- 8. W# during write cycle and R# during read cycle were HIGH on previous K clock rising edge. Initiating consecutive READ or WRITE operations on consecutive K clock rising edges is not permitted. The device will ignore the second request.

Byte Write Operation

[*µ*PD44165084A]

Operation	К	K#	NW0#	NW1#
Write D0 to D7	$L\toH$	-	0	0
	_	$L\toH$	0	0
Write D0 to D3	$L\toH$	Ι	0	1
	_	$L\toH$	0	1
Write D4 to D7	$L\toH$	Ι	1	0
	_	$L\toH$	1	0
Write nothing	$L\toH$	Ι	1	1
	_	$L\toH$	1	1

Remarks 1. H : HIGH, L : LOW, \rightarrow : rising edge.

 Assumes a WRITE cycle was initiated. NW0# and NW1# can be altered for any portion of the BURST WRITE operation provided that the setup and hold requirements are satisfied.

[*µ*PD44165094A]

Operation	К	K#	BW0#
Write D0 to D8	$L\toH$	-	0
	_	$L\toH$	0
Write nothing	$L\toH$	_	1
	_	$L\toH$	1

Remarks 1. H : HIGH, L : LOW, \rightarrow : rising edge.

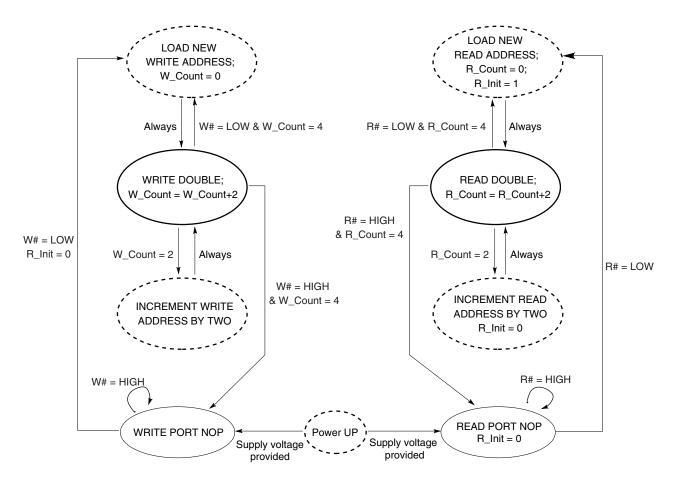
2. Assumes a WRITE cycle was initiated. BW0# can be altered for any portion of the BURST WRITE operation provided that the setup and hold requirements are satisfied.

[*µ*PD44165184A]

Operation	К	K#	BW0#	BW1#
Write D0 to D17	$L\toH$	_	0	0
	_	$L\toH$	0	0
Write D0 to D8	$L\toH$	_	0	1
	_	$L\toH$	0	1
Write D9 to D17	$L\toH$	_	1	0
	_	$L\toH$	1	0
Write nothing	$L\toH$	_	1	1
	-	$L\toH$	1	1

Remarks 1. H : HIGH, L : LOW, \rightarrow : rising edge.

 Assumes a WRITE cycle was initiated. BW0# and BW1# can be altered for any portion of the BURST WRITE operation provided that the setup and hold requirements are satisfied.


[*µ*PD44165364A]

Operation	К	K#	BW0#	BW1#	BW2#	BW3#
Write D0 to D35	$L\toH$	-	0	0	0	0
	_	$L\toH$	0	0	0	0
Write D0 to D8	$L\toH$	1	0	1	1	1
	_	$L\toH$	0	1	1	1
Write D9 to D17	$L\toH$	-	1	0	1	1
	-	$L\toH$	1	0	1	1
Write D18 to D26	$L\toH$	Ι	1	1	0	1
	-	$L\toH$	1	1	0	1
Write D27 to D35	$L\toH$	-	1	1	1	0
	_	$L\toH$	1	1	1	0
Write nothing	$L\toH$	-	1	1	1	1
	-	$L\toH$	1	1	1	1

Remarks 1. H : HIGH, L : LOW, \rightarrow : rising edge.

 Assumes a WRITE cycle was initiated. BW0# to BW3# can be altered for any portion of the BURST WRITE operation provided that the setup and hold requirements are satisfied.

Bus Cycle State Diagram

- Remarks 1. The address is concatenated with two additional internal LSBs to facilitate burst operation. The address order is always fixed as: xxx...xxx+0, xxx...xxx+1, xxx...xxx+2, xxx...xxx+3. Bus cycle is terminated at the end of this sequence (burst count = 4).
 - Read and write state machines can be active simultaneously. Read and write cannot be simultaneously initiated. Read takes precedence.
 - 3. State machine control timing is controlled by K.

Electrical Specifications

Absolute Maximum Ratings

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	Vdd		-0.5		+2.5	V
Output supply voltage	VddQ		-0.5		Vdd	V
Input voltage	Vin		-0.5		VDD + 0.5 (2.5 V MAX.)	V
Input / Output voltage	Vi/o		-0.5		VDDQ + 0.5 (2.5 V MAX.)	V
Operating ambient temperature	Та	Commercial	0		+70	°C
		Industrial	-40		+85	
Storage temperature	Tstg		-55		+125	°C

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended DC Operating Conditions

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Supply voltage	Vdd		1.7		1.9	V	
Output supply voltage	VddQ		1.4		Vdd	V	1
Input HIGH voltage	VIH (DC)		Vref + 0.1		VDDQ + 0.3	V	1, 2
Input LOW voltage	VIL (DC)		-0.3		Vref – 0.1	V	1, 2
Clock input voltage	VIN		-0.3		VDDQ + 0.3	V	1, 2
Reference voltage	VREF		0.68		0.95	V	

Notes 1. During normal operation, VDDQ must not exceed VDD.

2. Power-up: VIH \leq VDDQ + 0.3 V and VDD \leq 1.7 V and VDDQ \leq 1.4 V for $t \leq$ 200 ms

Recommended AC Operating Conditions

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Input HIGH voltage	VIH (AC)		Vref + 0.2		-	V	1
Input LOW voltage	VIL (AC)		_		Vref – 0.2	V	1

Note 1. Overshoot: VIH (AC) \leq VDD + 0.7 V (2.5 V MAX.) for $t \leq$ TKHKH/2

Undershoot: VIL $_{(AC)} \geq -$ 0.5 V for $t \leq TKHKH/2$

Control input signals may not have pulse widths less than TKHKL (MIN.) or operate at cycle rates less than TKHKH (MIN.).

<R> DC Characteristics (VDD = 1.8 ± 0.1 V)

Parameter	Symbol		Test condition		MIN.	TYP.		MAX.		Unit	Note
							x8, x9	x18	x36		
Input leakage current	Iц				-2	-		+2		μA	
I/O leakage current	Ilo				-2	I		+2		μA	
Operating supply	IDD	Note1	Commercial	-E33			520	610	790	mA	
current			(T _A = 0 to +70°C)	-E40			460	530	680		
(Read cycle/				-E50			410	460	580		
Write cycle)			Industrial	-E37Y			500	580	Ι		
			(T _A = -40 to +85°C)	-E40Y			480	550	-		
				-E50Y			430	480	-		
Standby supply	ISB1	Note1	Commercial	-E33			300	300	300	mA	
current			(T _A = 0 to +70°C)	-E40			280	280	280		
(NOP)				-E50			260	260	260		
			Industrial	-E37Y			310	310	Ι		
			(T _A = -40 to +85°C)	-E40Y			300	300	-		
				-E50Y			280	280	-		
Output HIGH voltage	VOH(Low)	Іон ≤ 0.1 m	A		VDDQ - 0.2	1		VddQ		V	4, 5
	Vон	Note2			VDDQ/2-0.12	-	VD	DQ/2+0	.12		4, 5
Output LOW voltage	VOL(Low)	$IOL \le 0.1 \text{ mA}$	A		Vss	_		0.2		V	4, 5
	Vol	Note3			VDDQ/2-0.12	-	VD	DQ/2+0	.12		4, 5

Notes 1. $V_{IN} \leq V_{IL} \text{ or } V_{IN} \geq V_{IH}, I_{I/O} = 0 \text{ mA}, Cycle = MAX.$

- 2. Outputs are impedance-controlled. | IOH | = (VDDQ/2)/(RQ/5) ±15% for values of 175 $\Omega \le RQ \le 350 \Omega$.
- 3. Outputs are impedance-controlled. IoL = (VDDQ/2)/(RQ/5) ±15% for values of 175 $\Omega \le RQ \le 350 \Omega$.
- 4. AC load current is higher than the shown DC values.
- 5. HSTL outputs meet JEDEC HSTL Class I standards.

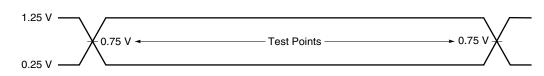
Capacitance (T_A = 25°C, f = 1 MHz)

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
Input capacitance (Address, Control)	CIN	VIN = 0 V		4	5	pF
Input / Output capacitance	Ci/o	VI/O = 0 V		6	7	pF
(D, Q, CQ, CQ#)						
Clock Input capacitance	Cclk	Vclk = 0 V		5	6	pF

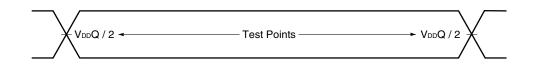
Remark These parameters are periodically sampled and not 100% tested.

Thermal Resistance

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
Thermal resistance	heta j-a			25.1		°C/W
(junction – ambient)						
Thermal resistance	heta j-c			2.8		°C/W
(junction – case)						

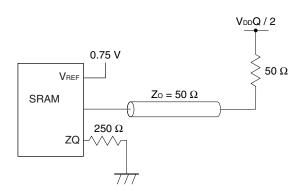

Remark These parameters are simulated under the condition of air flow velocity = 1 m/s.

NEC


AC Characteristics (VDD = $1.8 \pm 0.1 \text{ V}$)

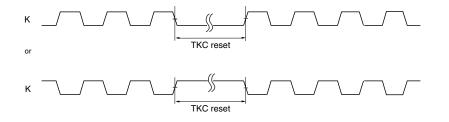
AC Test Conditions (VDD = $1.8 \pm 0.1 \text{ V}$, VDDQ = 1.4 V to VDD)

Input waveform (Rise / Fall time \leq 0.3 ns)



Output waveform

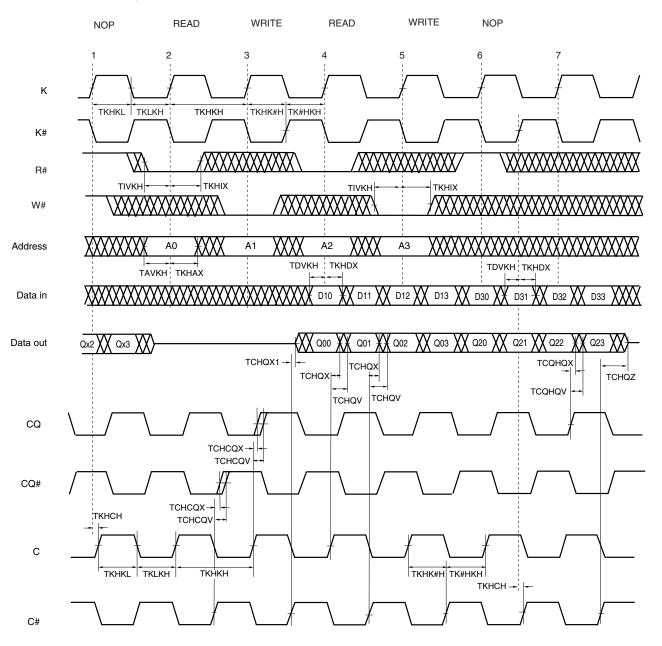
Output load condition


Figure 1. External load at test

<R> Read and Write Cycle

Parameter		Symbol		33		37Y	-	-E40Y		-E50Y	Unit	Note
			(300	,	· ·	MHz)	,	MHz)	``	MHz)	-	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Clock		TRUCK		<u> </u>				. <i>.</i>			r	
Average Clock cycle	1	TKHKH	3.3	8.4	3.7	8.4	4.0	8.4	5.0	8.4	ns	1
Clock phase jitter (K,	,	TKC var	-	0.2	-	0.2	-	0.2	-	0.2	ns	2
Clock HIGH time (K,		TKHKL	1.32	-	1.5	-	1.6	-	2.0	-	ns	
Clock LOW time (K, H	,	TKLKH	1.32	-	1.5	-	1.6	-	2.0	-	ns	
Clock HIGH to Clock: (K \rightarrow K#, C \rightarrow C#)	# HIGH	TKHK#H	1.49	-	1.7	-	1.8	-	2.2	-	ns	
Clock# HIGH to Cloc	k HIGH	TK#HKH	1.49	_	1.7	_	1.8	_	2.2	_	ns	
$(K\#\rightarrow K, C\#\rightarrow C)$		110/1101	1.40		1.7		1.0		2.2		110	
Clock to data clock	270 to 300 MHz	ТКНСН	0	1.45	_	-	_	_	_	_	ns	
(K→C, K#→C#)	250 to 270 MHz		0	1.65	0	1.65	_	_	_	_	1	
	200 to 250 MHz		0	1.8	0	1.8	0	1.8	_	_	-	
	167 to 200 MHz		0	2.3	0	2.3	0	2.3	0	2.3	1	
	133 to 167 MHz		0	2.8	0	2.8	0	2.8	0	2.8		
	< 133 MHz		0	3.55	0	3.55	0	3.55	0	3.55		
DLL/PLL lock time (K	, C)	TKC lock	1,024	_	1,024	-	1,024	_	1,024	_	Cycle	3
K static to DLL/PLL r	K static to DLL/PLL reset		30	_	30	-	30	_	30	_	ns	4
		TKC reset										
Output Times									-			
C, C# HIGH to output valid		TCHQV	-	0.45	-	0.45	-	0.45	-	0.45	ns	
C, C# HIGH to output hold		TCHQX	- 0.45	-	-0.45	-	- 0.45	-	- 0.45	-	ns	
C, C# HIGH to echo	clock valid	TCHCQV	-	0.45	-	0.45	-	0.45	-	0.45	ns	
C, C# HIGH to echo	clock hold	TCHCQX	- 0.45	-	-0.45	-	- 0.45	-	- 0.45	-	ns	
CQ, CQ# HIGH to ou	tput valid	TCQHQV	-	0.27	-	0.3	-	0.3	-	0.35	ns	5
CQ, CQ# HIGH to ou	tput hold	TCQHQX	- 0.27	-	- 0.3	-	- 0.3	-	- 0.35	-	ns	5
C HIGH to output Hig	h-Z	TCHQZ	-	0.45	-	0.45	-	0.45	-	0.45	ns	
C HIGH to output Lov	v-Z	TCHQX1	- 0.45	-	-0.45	-	- 0.45	-	- 0.45	-	ns	
Setup Times					1	1	T		1	1	T	
Address valid to K ris	0 0	TAVKH	0.4	-	0.5	-	0.5	-	0.6	-	ns	6
Control inputs (R#, W edge	/#) valid to K rising	TIVKH	0.4	-	0.5	-	0.5	-	0.6	-	ns	6
Data inputs and write	data select	TDVKH	0.3	-	0.35	-	0.35	-	0.4	-	ns	6
inputs (BWx#, NWx#) valid to K, K#												
rising edge												
Hold Times		1										
K rising edge to addr	ess hold	TKHAX	0.4	_	0.5	_	0.5	_	0.6	_	ns	6
K rising edge to conti hold		ткніх	0.4	-	0.5	-	0.5	-	0.6	-	ns	6
K, K# rising edge to c	lata inputs and	TKHDX	0.3	_	0.35	_	0.35	_	0.4	_	ns	6
write data select inpu	•											-
hold												

- <R> Notes 1. When debugging the system or board, these products can operate at a clock frequency slower than TKHKH (MAX.) without the DLL/PLL circuit being used, if DLL# = LOW. Read latency (RL) is changed to 1.5 clock in this operation. The AC/DC characteristics cannot be guaranteed, however.
 - Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge. TKC var (MAX.) indicates a peak-to-peak value.
 - 3. VDD slew rate must be less than 0.1 V DC per 50 ns for DLL/PLL lock retention.
 DLL/PLL lock time begins once VDD and input clock are stable.
 It is recommended that the device is kept NOP (R# = W# = HIGH) during these cycles.
 - **4.** K input is monitored for this operation. See below for the timing.

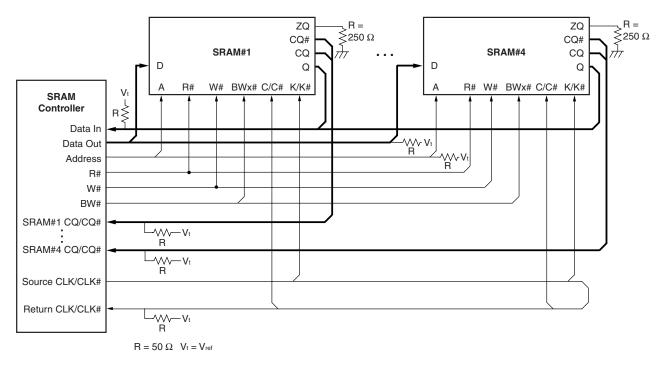

- 5. Echo clock is very tightly controlled to data valid / data hold. By design, there is a \pm 0.1 ns variation from echo clock to data. The data sheet parameters reflect tester guardbands and test setup variations.
- **6.** This is a synchronous device. All addresses, data and control lines must meet the specified setup and hold times for all latching clock edges.

Remarks 1. This parameter is sampled.

- 2. Test conditions as specified with the output loading as shown in AC Test Conditions unless otherwise noted.
- 3. Control input signals may not be operated with pulse widths less than TKHKL (MIN.).
- 4. If C, C# are tied HIGH, K, K# become the references for C, C# timing parameters.
- **5.** VDDQ is 1.5 V DC.

<R>

<R> Read and Write Timing


Remarks 1. Q00 refers to output from address A0+0.

Q01 refers to output from the next internal burst address following A0,i.e.,A0+1.

- Outputs are disabled (high impedance) 3.5 clocks after the last READ (R# = LOW) is input in the sequences of [READ]-[NOP]-[NOP], [READ]-[WRITE]-[NOP] and [READ]-[NOP]-[WRITE].
- In this example, if address A2 = A1, data Q20 = D10, Q21 = D11, Q22 = D12 and Q23 = D13.
 Write data is forwarded immediately as read results.

<R>

Application Example

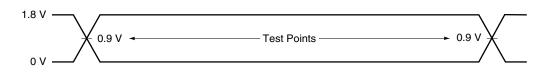
Remark AC specifications are defined at the condition of SRAM outputs, CQ, CQ# and Q with termination.

JTAG Specification

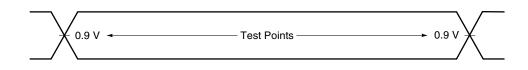
These products support a limited set of JTAG functions as in IEEE standard 1149.1.

Test Access Port (TAP) Pins

Pin name	Pin assignments	Description
тск	2R	Test Clock Input. All input are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK.
TMS	10R	Test Mode Select. This is the command input for the TAP controller state machine.
ТОІ	11R	Test Data Input. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP controller state machine and the instruction that is currently loaded in the TAP instruction.
TDO	1R	Test Data Output. This is the output side of the serial registers placed between TDI and TDO. Output changes in response to the falling edge of TCK.

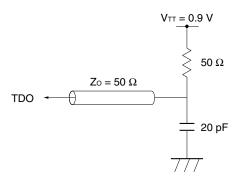

Remark The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held HIGH for five rising edges of TCK. The TAP controller state is also reset on the SRAM POWER-UP.

JTAG DC Characteristics (VDD = 1.8 ± 0.1 V, unless otherwise noted)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
JTAG Input leakage current	Iц	$0 \ V \leq V_{\text{IN}} \leq V_{\text{DD}}$	-5.0	-	+5.0	μA
JTAG I/O leakage current	Ilo	$0 \ V \leq V_{\text{IN}} \leq V_{\text{DD}} Q \ ,$	-5.0	_	+5.0	μA
		Outputs disabled				
JTAG input HIGH voltage	Vін		1.3	_	VDD+0.3	V
JTAG input LOW voltage	VIL		-0.3	_	+0.5	V
JTAG output HIGH voltage	Voh1	Іонс = 100 дА	1.6	_	-	V
	Voh2	Іонт = 2 m A	1.4	_	-	V
JTAG output LOW voltage	Vol1	IOLC = 100 μA	_	_	0.2	V
	Vol2	IOLT = 2 mA	_	_	0.4	V

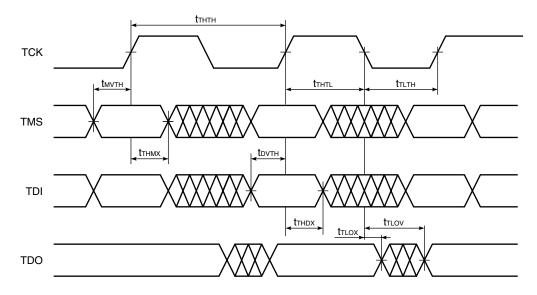
JTAG AC Test Conditions

Input waveform (Rise / Fall time ≤ 1 ns)



Output waveform

Output load



<R> JTAG AC Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Clock						
Clock cycle time	tтнтн		50	_	_	ns
Clock frequency	fтғ		_	_	20	MHz
Clock HIGH time	tтнт∟		20	_	_	ns
Clock LOW time	tтьтн		20	-	-	ns
Output time						
TCK LOW to TDO unknown	t⊤Lox		0	-	-	ns
TCK LOW to TDO valid	t tlov		_	_	10	ns
Setup time						
TMS setup time	tмvтн		5	-	-	ns
TDI valid to TCK HIGH	tovтн		5	-	-	ns
Capture setup time	tcs		5	_	_	ns
Hold time						
TMS hold time	tтнмх		5	_	_	ns
TCK HIGH to TDI invalid	t thdx		5	_	_	ns
Capture hold time	tсн		5	_	_	ns

JTAG Timing Diagram

Scan Register Definition (1)

Register name	Description
Instruction register	The instruction register holds the instructions that are executed by the TAP controller when it is moved into the run-test/idle or the various data register state. The register can be loaded when it is placed between the TDI and TDO pins. The instruction register is automatically preloaded with the IDCODE instruction at power-up whenever the controller is placed in test-logic-reset state.
Bypass register	The bypass register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAMs TAP to another device in the scan chain with as little delay as possible.
ID register	The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit code when the controller is put in capture-DR state with the IDCODE command loaded in the instruction register. The register is then placed between the TDI and TDO pins when the controller is moved into shift-DR state.
Boundary register	The boundary register, under the control of the TAP controller, is loaded with the contents of the RAMs I/O ring when the controller is in capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to shift-DR state. Several TAP instructions can be used to activate the boundary register. The Scan Exit Order tables describe which device bump connects to each boundary register location. The first column defines the bit's position in the boundary register. The second column is the name of the input or I/O at the bump and the third column is the bump number.

Scan Register Definition (2)

Register name	Bit size	Unit	
Instruction register	3	bit	
Bypass register	1	bit	
ID register	32	bit	
Boundary register	107	bit	

ID Register Definition

Part number	Organization	ID [31:28] vendor revision no.	ID [27:12] part no.	ID [11:1] vendor ID no.	ID [0] fix bit
μPD44165084A	2M x 8	XXXX	0000 0000 0000 1111	00000010000	1
μPD44165094A	2M x 9	XXXX	0000 0000 0101 0010	0000010000	1
μPD44165184A	1M x 18	XXXX	0000 0000 0001 0000	00000010000	1
μPD44165364A	512K x 36	XXXX	0000 0000 0001 0001	0000010000	1

SCAN Exit Order

Bit		Bump			
no.	x8	x9	x18	x36	ID
1		С	#		6R
2		C	2		6P
3		A	Ą		6N
4		A	4		7P
5		ŀ	4		7N
6		A	4		7R
7		A	Ą		8R
8		A	4		8P
9		A	4	1	9R
10	NC	Q0	Q0	Q0	11P
11	NC	D0	D0	D0	10P
12	NC	NC	NC	D9	10N
13	NC	NC	NC	Q9	9P
14	NC	NC	Q1	Q1	10M
15	NC	NC	D1	D1	11N
16	NC	NC	NC	D10	9M
17	NC	NC	NC	Q10	9N
18	Q0	Q1	Q2	Q2	11L
19	D0	D1	D2	D2	11M
20	NC	NC	NC	D11	9L
21	NC	NC	NC	Q11	10L
22	NC	NC	Q3	Q3	11K
23	NC	NC	D3	D3	10K
24	NC	NC	NC	D12	9J
25	NC	NC	NC	Q12	9K
26	Q1	Q2	Q4	Q4	10J
27	D1	D2	D4	D4	11J
28		Z	Q	i	11H
29	NC	NC	NC	D13	10G
30	NC	NC	NC	Q13	9G
31	NC	NC	Q5	Q5	11F
32	NC	NC	D5	D5	11G
33	NC	NC	NC	D14	9F
34	NC	NC	NC	Q14	10F
35	Q2	Q3	Q6	Q6	11E
36	D2	D3	D6	D6	10E

init intermation intermatintermation intermation intermation intermation i						
NCNCNCD1510D38NCNCNCQ159E39NCNCQ7Q710C40NCNCD7D711D41NCNCD7D169C42NCNCNCQ169D43Q3Q4Q8Q811B44D3D4D8D811C45NCNCNCQ1710B46NCNCNCQ1710B47NCQ1710B48NCNCNCQ1710B49AAANC9A5011A49AAANC9A50 </td <td>Bit</td> <td></td> <td>Signal</td> <td>name</td> <td>i</td> <td>Bump</td>	Bit		Signal	name	i	Bump
38NCNCNCQ159E39NCNCQ7Q710C40NCNCD7D711D41NCNCNCD169C42NCNCNCQ169D43Q3Q4Q8Q811B44D3D4D8D811C45NCNCNCD179B46NCNCNCQ1710B47 $- \mathbb{C} \mathbb{V} \mathbb{V} \mathbb{V}$ 11A10B48 $- \mathbb{C} \mathbb{V} \mathbb{V} \mathbb{V}$ 11A48 $- \mathbb{C} \mathbb{V} \mathbb{V} \mathbb{V}$ 11A49AAANC50 $- \mathbb{V} \mathbb{V} \mathbb{V} \mathbb{V}$ 88B51 $- \mathbb{V} \mathbb{V} \mathbb{V} \mathbb{V} \mathbb{V}$ 8853 $- \mathbb{V} \mathbb{V} \mathbb{V} \mathbb{V} \mathbb{V}$ 80054NCNCNC8W0#55NW0#BW0#BW0#7A56 $- \mathbb{V} \mathbb{V} \mathbb{V} \mathbb{V} \mathbb{V} \mathbb{V} \mathbb{V} \mathbb{V}$	no.	x8 x9 x18 x36			ID	
39NCNCQ7Q710C40NCNCD7D711D41NCNCD7D169C42NCNCNCQ169D43Q3Q4Q8Q811B44D3D4D8D811C45NCNCNCQ1710B46NCNCNCQ1710B47NCNCQ1710B47NCQ1710B48NCNCQ1710B49AAANC9A5011A48ANC9A50 </td <td>37</td> <td>NC</td> <td>NC</td> <td>NC</td> <td>D15</td> <td>10D</td>	37	NC	NC	NC	D15	10D
40NCNCD7D711D41NCNCNCD169C42NCNCNCQ169D43Q3Q4Q8Q811B44D3D4D8D811C45NCNCNCD179B46NCNCNCQ1710B47 $X > X > X > X > X > X > X > X > X > X $	38	NC	NC	NC	Q15	9E
41NCNCNCD169C42NCNCNCQ169D43Q3Q4Q8Q811B44D3D4D8D179B46NCNCNCD179B46NCNCNCD179B47 $\nabla - \nabla -$	39	NC	NC	Q7	Q7	10C
42NCNCQ169D43Q3Q4Q8Q811B44D3D4D8D811C45NCNCNCD179B46NCNCNCQ1710B47 $\nabla \subset \nabla \subseteq \nabla$ 11A10B47 $\nabla \subset \nabla \subseteq \nabla$ 11A48 $\nabla \subset \nabla \subseteq \nabla$ 11A49AAANC50 $\nabla \subset X$ NC9A51 $\nabla \subset X$ 8B51 $\nabla \subset X$ 6C53 $\nabla \subset X$ 8W1#54NCNCNC55NW0#BW0#BW0#56 $\nabla \subset Y$ 6B57 $\nabla \subset Y$ 6B58NCNCNC69NW1#NCBW1#63AANC64 $\nabla \Box X$ 4A65 $\nabla \Box Y$ 4B66NCNCQ9613AA64 $\nabla \Box X$ 4A65 A A66NCNCQ967NCNC68NCNC69NCNC69NCNC69NCNC70NCQ1071NC74NC75NC76NC77NC783079NC70NC70NC7	40	NC	NC	D7	D7	11D
43 Q3 Q4 Q8 Q8 11B 44 D3 D4 D8 D8 11C 45 NC NC NC D17 9B 46 NC NC NC Q17 10B 47 $- C \cup U = U = U = U$ 11A 48 $- C \cup U = U = U = U$ 11A 49 A A A NC 9A 50 $- U = U = U = U = U = U$ 11A 14P 9A A A NC 9A 51 $- U = U = U = U = U = U = U = U = U = U $	41	NC	NC	NC	D16	9C
444D3D4D8D811C45NCNCNCD179B46NCNCQ1710B47 $X = V = V = V$ 11A48 $V = V = V = V$ 11A49AAANC9A50 $V = V = V = V$ 8B51 $V = V = V = V$ 8C52 $V = V = V = V$ 6C53 $V = V = V = V$ 6C54NCNCNCBW1#55NW0#BW0#BW0#7B56 $V = V = V = V = V$ 6B57 $V = V = V = V = V$ 6A58NCNCNCBW3#59NW1#NCBW1#BW2#63AANCNC64 $V = V = V = V = V = V = V$ 4A63AANCNC64 $V = V = V = V = V = V = V = V = V$ 1A65 $NC = NC = V = V = V = V = V = V = V = V = V = $	42	NC	NC	NC	Q16	9D
45NCNCNCD179B46NCNCQ1710B47 \bigvee \bigvee 11A48 \bigvee \bigvee I1A49AAANC9A50 \checkmark \checkmark NC9A50 \checkmark \checkmark 7C52 \bigcirc \checkmark 7C52 \bigvee \land 8053 \bigvee NCNCBW1#54NCNCNCBW1#55NW0# \lor \blacksquare 6B56 \bigvee \lor \blacksquare 6B57 \bigvee \land \blacksquare \blacksquare 58NCNCNC \blacksquare \blacksquare 59NW1#NC \blacksquare \blacksquare \blacksquare 61 \frown \checkmark \checkmark \blacksquare 63AANCNC \blacksquare 64 \bigcirc \bigcirc \blacksquare \blacksquare 65 \land \land \square \blacksquare 66NCNC \square \blacksquare 68NCNC \blacksquare \blacksquare 68NCNC \blacksquare \blacksquare 69NCNC \blacksquare \blacksquare 69NC \land \blacksquare \blacksquare 69NC \land \blacksquare \blacksquare 69NC \land \blacksquare \blacksquare 69 \land \land \blacksquare \blacksquare 61 \frown \frown \blacksquare \blacksquare 62 \blacksquare \blacksquare \blacksquare \blacksquare 63 \blacksquare \land <t< td=""><td>43</td><td>Q3</td><td>Q4</td><td>Q8</td><td>Q8</td><td>11B</td></t<>	43	Q3	Q4	Q8	Q8	11B
46NCNCQ1710B47 $\cdots \Box \subseteq \Box$	44	D3	D4	D8	D8	11C
47 $\bigcirc CQUITE 11A 48 \bigcirc CUUITE Internal 49 A A A NC 9A 50 \bigcirc FUUTE 8B 51 \bigcirc VUETE 7C 52 \bigcirc VUETE 6C 53 \bigcirc VUETE 8A 54 NC NC NC 8W1# 55 NW0# BW0# BW0# BW0# 7B 56 \bigcirc VETE 6B 7B 7C 57 NC NC NC 8W3# 7B 56 \bigvee VETE 6A 7B 7B 7B 57 \bigvee VETE K# 6A 7B 7B 56 NC NC NC BW3# 7B 57 \bigvee VETE 6A 7A 7B 7B 58 NC NC NC BW3# 5B 7B 59 NW1# NC BW1# BW2# 5A 6A 61 \bigvee VETE VETE 4A 7D $	45	NC	NC	NC	D17	9B
48 $internal 49 A A A NC 9A 50 internal R NC 9A 50 internal R R NC 9A 50 internal R R R R 51 internal R R R R 52 internal R R R R 53 imternal R R R R 54 NC NC NC BW1# R R 55 NW0# BW0# BW0# BW0# R R 56 imternal Imternal R R R R 57 imternal Imternal R $	46	NC	NC	NC	Q17	10B
49 A A A NC 9A 50 $ $	47		С	Q		11A
50 $- + + + + = - + + = - + - + + + + + + + $	48		-	-		Internal
51 \overrightarrow{A} 7C 52 \overrightarrow{NC} \overrightarrow{R} 6C 53 \overrightarrow{R} 8A 54 NC NC NC BW1# 7A 55 NW0 BW0# BW0# BW0# 7B 56 \overrightarrow{K} 6B 7B 57 \overrightarrow{K} 6A 58 NC NC NC BW3# 5B 59 NW1# NC BW1# BW2# 5A 60 \overrightarrow{K} 4A 6A 5B 5C 61 \overrightarrow{K} \overrightarrow{K} 5C 5C 5C 62 \overrightarrow{K} \overrightarrow{K} 5C 5C 5C 63 A A NC NC 3A 64 \overrightarrow{U} \overrightarrow{L} 1A 5B 65 \overrightarrow{CQ} \overrightarrow{R} 1A 3A 66 NC NC Q9 Q18 2B 67 NC NC Q27 1C 68 NC NC Q10	49	А	А	А	NC	9A
52 NUC 6C 53 $R = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	50		8B			
R = R + R + R + R + R + R + R + R + R +	51		7C			
54 NC NC BW1# 7A 55 NW0# BW0# BW0# BW0# 7B 56 $- K = 0000000000000000000000000000000000$	52		6C			
55 NW0# BW0# BW0# BW0# BW0# GB 56 $- K = 10^{-10} - $	53		8A			
56 $+$ 68 57 $ -$	54	NC	7A			
57 $K = 1 $ 6A 58 NC NC NC BW3# 5B 59 NW1# NC BW1# BW2# 5A 60 $V = 1 $ $W = 1 $ $W = 1 $ $A $ 61 $V = 1 $ $V = 1 $ $A $ 61 $V = 1 $ $V = 1 $ $A $ 62 $V = 1 $ $V = 1 $ $A $ 63 A A NC NC $A $ 64 $V = 1 $ $V = 1 $ $1 $ $1 $ 65 $V = 0 $ $V = 1 $ $1 $ $1 $ 66 NC NC $Q $ $Q $ $2 $ 67 NC NC $Q $ $Q $ $3 $ 68 NC NC $Q $ $Q $ $1 $ 69 NC NC $Q $ $Q $ $3 $ 70 NC $N $ $Q $ $2 $ $1 $ 71	55	NW0#	BW0#	BW0#	BW0#	7B
58 NC NC NC BW3# 5B 59 NW1# NC BW1# BW2# 5A 60 $$	56		ł	<		6B
59 NW1# NC BW1# BW2# $5A$ 60 $$	57		ĸ	#		6A
60 $\forall \forall \# \forall f = 10^{-1} f = 1$	58	NC	NC	NC	BW3#	5B
61 \bigcirc \bigcirc $5C$ 62 \bigcirc \checkmark $4B$ 63 A A NC NC $3A$ 64 \bigcirc $DL \sqcup \#$ 1H 65 \bigcirc $C \bigcirc \#$ 1A 66 NC NC $Q9$ $Q18$ $2B$ 67 NC NC $D9$ $D18$ $3B$ 68 NC NC NC $D27$ $1C$ 69 NC NC NC $Q27$ $1B$ 70 NC NC $Q10$ $Q19$ $3D$ 71 NC NC $D10$ $D19$ $3C$	59	NW1#	NC	BW1#	BW2#	5A
62 $$	60		V	/#		4A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	61		/	4		5C
64 DLL# 1H 65 CQ# 1A 66 NC NC Q9 Q18 2B 67 NC NC D9 D18 3B 68 NC NC NC D27 1C 69 NC NC NC Q27 1B 70 NC NC Q10 Q19 3D 71 NC NC D10 D19 3C	62		/	4		4B
65 CQ# 1A 66 NC NC Q9 Q18 2B 67 NC NC D9 D18 3B 68 NC NC NC D27 1C 69 NC NC NC Q27 1B 70 NC NC Q10 Q19 3D 71 NC NC D10 D19 3C	63	А	А	NC	NC	ЗA
66 NC NC Q9 Q18 2B 67 NC NC D9 D18 3B 68 NC NC NC D27 1C 69 NC NC NC Q27 1B 70 NC NC Q10 Q19 3D 71 NC NC D10 D19 3C	64		DL	.L#		1H
67 NC NC D9 D18 3B 68 NC NC NC D27 1C 69 NC NC NC Q27 1B 70 NC NC Q10 Q19 3D 71 NC NC D10 D19 3C	65		1A			
68 NC NC NC D27 1C 69 NC NC NC Q27 1B 70 NC NC Q10 Q19 3D 71 NC NC D10 D19 3C	66	NC	NC	Q9	Q18	2B
69 NC NC NC Q27 1B 70 NC NC Q10 Q19 3D 71 NC NC D10 D19 3C	67	NC	NC	D9	D18	3B
70 NC NC Q10 Q19 3D 71 NC NC D10 D19 3C	68	NC	NC	NC	D27	1C
71 NC NC D10 D19 3C	69	NC	NC	NC	Q27	1B
	70	NC	NC	Q10	Q19	3D
72 NC NC NC D28 1D	71	NC	NC	D10	D19	3C
	72	NC	NC	NC	D28	1D

Bit		Signal	name		Bump
no.	x8	ID			
73	NC	NC	NC	Q28	2C
74	Q4	Q5	Q11	Q20	3E
75	D4	D5	D11	D20	2D
76	NC	NC	NC	D29	2E
77	NC	NC	NC	Q29	1E
78	NC	NC	Q12	Q21	2F
79	NC	NC	D12	D21	3F
80	NC	NC	NC	D30	1G
81	NC	NC	NC	Q30	1F
82	Q5	Q6	Q13	Q22	3G
83	D5	D6	D13	D22	2G
84	NC	NC	NC	D31	1J
85	NC	NC	NC	Q31	2J
86	NC	NC	Q14	Q23	ЗК
87	NC	NC	D14	D23	3J
88	NC	NC	NC	D32	2K
89	NC	NC	NC	Q32	1K
90	Q6	Q7	Q15	Q24	2L
91	D6	D7	D15	D24	3L
92	NC	NC	NC	D33	1M
93	NC	NC	NC	Q33	1L
94	NC	NC	Q16	Q25	3N
95	NC	NC	D16	D25	3M
96	NC	NC	NC	D34	1N
97	NC	NC	NC	Q34	2M
98	Q7	Q8	Q17	Q26	3P
99	D7	D8	D17	D26	2N
100	NC	NC	NC	D35	2P
101	NC	1P			
102		3R			
103		4R			
104		4P			
105	A				5P
106		1	4		5N
107		ŀ	4		5R

JTAG Instructions

Instructions	Description
EXTEST	The EXTEST instruction allows circuitry external to the component package to be tested. Boundary- scan register cells at output pins are used to apply test vectors, while those at input pins capture test results. Typically, the first test vector to be applied using the EXTEST instruction will be shifted into the boundary scan register using the PRELOAD instruction. Thus, during the update-IR state of EXTEST, the output drive is turned on and the PRELOAD data is driven onto the output pins.
IDCODE	The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in capture-DR mode and places the ID register between the TDI and TDO pins in shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any time the controller is placed in the test-logic-reset state.
BYPASS	When the BYPASS instruction is loaded in the instruction register, the bypass register is placed between TDI and TDO. This occurs when the TAP controller is moved to the shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.
SAMPLE / PRELOAD	SAMPLE / PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is loaded in the instruction register, moving the TAP controller into the capture-DR state loads the data in the RAMs input and Q pins into the boundary scan register. Because the RAM clock(s) are independent from the TAP clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents while the input buffers are in transition (i.e., in a metastable state). Although allowing the TAP to sample metastable input will not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input data capture setup plus hold time (tcs plus tcH). The RAMs clock inputs need not be paused for any other TAP operation except capturing the I/O ring contents into the boundary scan register. Moving the controller to shift-DR state then places the boundary scan register between the TDI and TDO pins.
SAMPLE-Z	If the SAMPLE-Z instruction is loaded in the instruction register, all RAM Q pins are forced to an inactive drive state (high impedance) and the boundary register is connected between TDI and TDO when the TAP controller is moved to the shift-DR state.

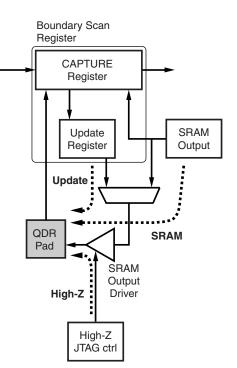
JTAG Instruction Coding

IR2	IR1	IR0	Instruction	Note
0	0	0	EXTEST	
0	0	1	IDCODE	
0	1	0	SAMPLE-Z	1
0	1	1	RESERVED	2
1	0	0	SAMPLE / PRELOAD	
1	0	1	RESERVED	2
1	1	0	RESERVED	2
1	1	1	BYPASS	

Notes 1. TRISTATE all Q pins and CAPTURE the pad values into a SERIAL SCAN LATCH.

2. Do not use this instruction code because the vendor uses it to evaluate this product.

Output Pin States of CQ, CQ# and Q

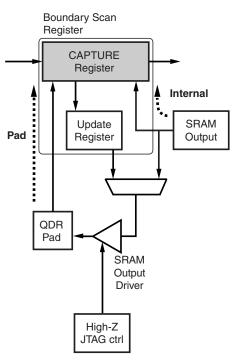

Instructions	Control-Register Status	Output Pin Status	
		CQ, CQ#	Q
EXTEST	0	Update	High-Z
	1	Update	Update
IDCODE	0	SRAM	SRAM
	1	SRAM	SRAM
SAMPLE-Z	0	High-Z	High-Z
	1	High-Z	High-Z
SAMPLE	0	SRAM	SRAM
	1	SRAM	SRAM
BYPASS	0	SRAM	SRAM
	1	SRAM	SRAM

Remark The output pin statuses during each instruction vary according to the Control-Register status (value of Boundary Scan Register, bit no. 48).

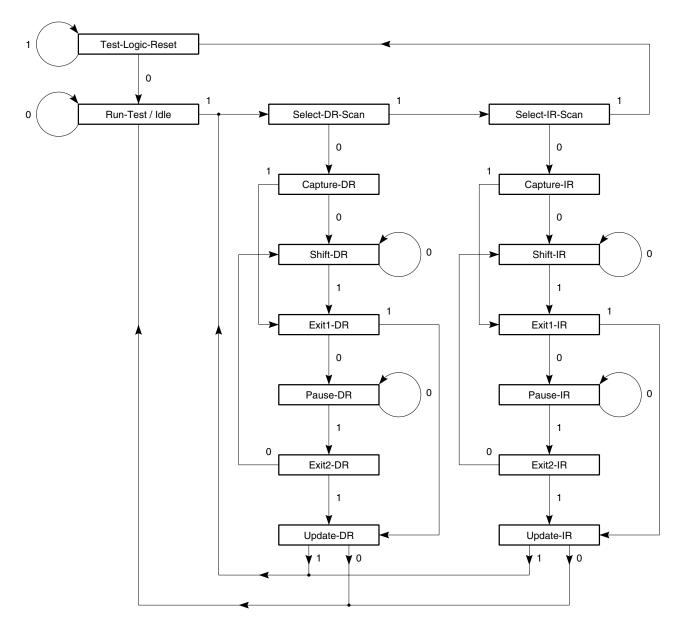
There are three statuses:

- Update : Contents of the "Update Register" are output to the output pin (QDR Pad).
- SRAM : Contents of the SRAM internal output "SRAM Output" are output to the output pin (QDR Pad).
- High-Z : The output pin (QDR Pad) becomes high impedance by controlling of the "High-Z JTAG ctrl".

The Control-Register status is set during Update-DR at the EXTEST or SAMPLE instruction.


Boundary Scan Register Status of Output Pins CQ, CQ# and Q

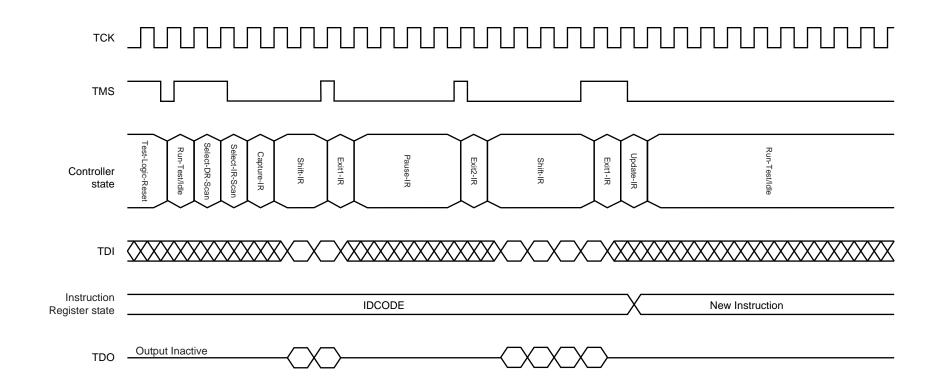
Instructions	SRAM Status	Boundary Scan Register Status		Note
		CQ, CQ#	Q	
EXTEST	READ (Low-Z)	Pad	Pad	
	NOP (High-Z)	Pad	Pad	
IDCODE	READ (Low-Z)	_	_	No definition
	NOP (High-Z)	_	_	
SAMPLE-Z	READ (Low-Z)	Pad	Pad	
	NOP (High-Z)	Pad	Pad	
SAMPLE	READ (Low-Z)	Internal	Internal	
	NOP (High-Z)	Internal	Pad	
BYPASS	READ (Low-Z)	_	_	No definition
	NOP (High-Z)	_	_	

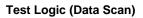

Remark The Boundary Scan Register statuses during execution each instruction vary according to the instruction code and SRAM operation mode.

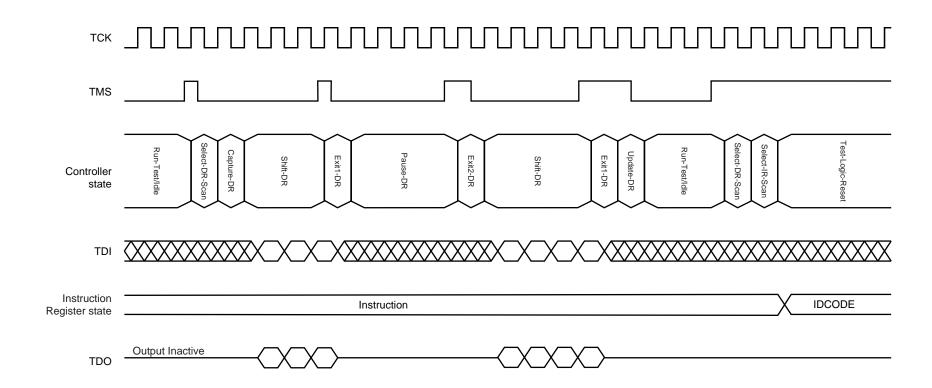
There are two statuses:

- Pad : Contents of the output pin (QDR Pad) are captured in the "CAPTURE Register" in the Boundary Scan Register.
- Internal : Contents of the SRAM internal output "SRAM Output" are captured in the "CAPTURE Register" in the Boundary Scan Register.

TAP Controller State Diagram

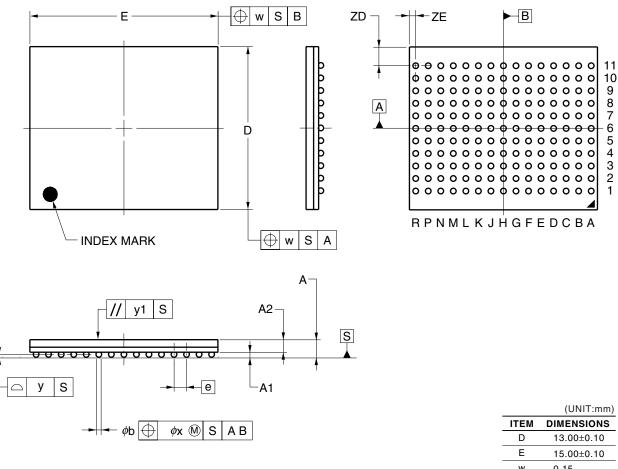



Disabling the Test Access Port


It is possible to use this device without utilizing the TAP. To disable the TAP Controller without interfering with normal operation of the device, TCK must be tied to Vss to preclude mid level inputs. TDI and TMS may be left open but fix them to V_{DD} via a resistor of about 1 k Ω when the TAP controller is not used. TDO should be left unconnected also when the TAP controller is not used.

/*u*PD44165084A, 44165094A, 44165184A, 44165364A

Test Logic Operation (Instruction Scan)



Data Sheet M17771EJ3V0DS

Package Drawing

165-PIN PLASTIC BGA (13x15)

TIEM	DIMENSIONS
D	13.00±0.10
E	15.00±0.10
w	0.15
е	1.00
Α	1.40±0.11
A1	0.40±0.05
A2	1.00
b	0.50±0.05
x	0.08
У	0.10
y1	0.20
ZD	1.50
ZE	0.50
	P165F5-100-EQ2

Recommended Soldering Condition

Please consult with our sales offices for soldering conditions of these products.

Types of Surface Mount Devices

μPD44165084AF5-EQ2	: 165-pin PLASTIC BGA (13 x 15)
μPD44165094AF5-EQ2	: 165-pin PLASTIC BGA (13 x 15)
μPD44165184AF5-EQ2	: 165-pin PLASTIC BGA (13 x 15)
μPD44165364AF5-EQ2	: 165-pin PLASTIC BGA (13 x 15)
μPD44165084AF5-EQ2-A	: 165-pin PLASTIC BGA (13 x 15)
μPD44165094AF5-EQ2-A	: 165-pin PLASTIC BGA (13 x 15)
μPD44165184AF5-EQ2-A	: 165-pin PLASTIC BGA (13 x 15)
μPD44165364AF5-EQ2-A	: 165-pin PLASTIC BGA (13 x 15)

Revision History

Edition/	Pa	ige	Type of	Location	Description
Date	This	Previous	revision		(Previous edition \rightarrow This edition)
	edition	edition			
3rd edition/	Throughout	Throughout	Addition		-E37Y, -E40Y, -E50Y (Industrial)
Feb. 2007	p.9	pp.7, 8	Modification	Pin Identification ZQ, DLL#, NC	Text has been modified.
	p.22	p.21	Modification	Read and Write Cycle	Note 1 has been modified.
			Addition		Note 4 has been added.
	p.23	p.22	Addition	Read and Write Timing	TCQHQX has been added.
			Modification		Remark 2 has been modified.
	p.27	p.26	Modification	JTAG AC Characteristics	JTAG AC Characteristics has been modified.

NOTES FOR CMOS DEVICES -

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to V_{DD} or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

④ STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

5 POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

6 INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

QDR RAMs and Quad Data Rate RAMs comprise a new series of products developed by Cypress Semiconductor, Renesas, IDT, NEC Electronics, and Samsung.

- The information in this document is current as of February, 2007. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

M8E 02.11-1