

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

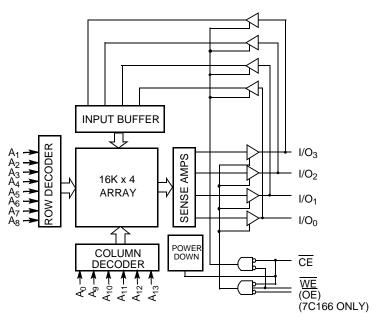
The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

16K x 4 Static RAM

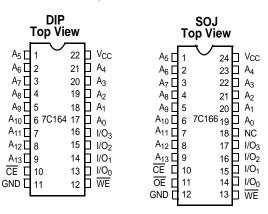
Features

- High speed
 - 15 ns
- Output enable (OE) feature (CY7C166)
- CMOS for optimum speed/power
- · Low active power
 - 633 mW
- · Low standby power
 - 110 mW
- · TTL-compatible inputs and outputs
- · Automatic power-down when deselected
- CY7C164 is available in non Pb-free 22-pin (300-Mil)
 Molded DIP, CY7C166 in non Pb-free 24-pin Molded SOJ

Functional Description


The CY7C164 and CY7C166 are high-performance CMOS static RAMs organized as 16,384 by 4 bits. Easy memory expansion is provided by an active LOW Chip Enable (CE) and tri-state drivers. The CY7C166 has an active LOW Output Enable (OE) feature. Both devices have an automatic power-down feature, reducing the power consumption by 65% when deselected.

Writing to the device is accomplished when the Chip Enable ($\overline{\text{CE}}$) and Write $\underline{\text{En}}$ able ($\overline{\text{WE}}$) inputs are both LOW (and the Output Enable ($\overline{\text{OE}}$) is LOW for the CY7C166). Data on the four input/output pins (I/O₀ through I/O₃) is written into the memory location specified on the address pins (A₀ through A₁₃).


Reading the device is accomplished by taking Chip Enable (CE) LOW (and OE LOW for CY7C166), while Write Enable (WE) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the four data I/O pins.

The I/O pins stay in a high-impedance state when Chip Enable (CE) is HIGH (or Output Enable (OE) is HIGH for CY7C166). A die coat is used to insure alpha immunity.

Logic Block Diagram

Pin Configurations

Selection Guide

	CY7C164-15 CY7C166-15	CY7C164-25 CY7C166-25
Maximum Access Time (ns)	15	25
Maximum Operating Current (mA)	115	105
Maximum CMOS Standby Current (mA)	20	20

Maximum Ratings

(Above which the useful life may be i lines, not tested.)	mpaired. For user guide-
Storage Temperature	65°C to +150°C
Ambient Temperature with Power Applied	55°C to +125°C
Supply Voltage to Ground Potential	0.5V to +7.0V
DC Voltage Applied to Outputs in High Z State ^[1]	0.5V to +7.0V
DC Input Voltage ^[1]	0.5V to +7.0V

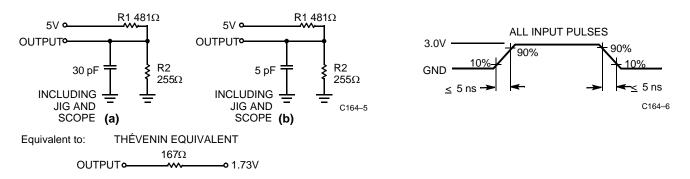
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	. >2001V
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0°C to +70°C	5V ± 10%

Electrical Characteristics Over the Operating Range

				-15		-25	
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$	2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC}	2.2	V _{CC}	V
V _{IL}	Input LOW Voltage[1]		-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$	- 5	+5	- 5	+5	μΑ
l _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Output Disabled	- 5	+5	- 5	+5	μΑ
I _{CC}	V _{CC} Operating Supply Current	V _{CC} = Max., I _{OUT} = 0 mA		115		105	mA
I _{SB1}	Automatic CE Power-Down Current ^[2]	Max. V_{CC} , $\overline{CE} \ge V_{IH}$, Min. Duty Cycle = 100%		40		20	mA
I _{SB2}	Automatic CE Power-Down Current ^[2]	Max. V_{CC} , $\overline{CE} \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$		20		20	mA


Capacitance^[3]

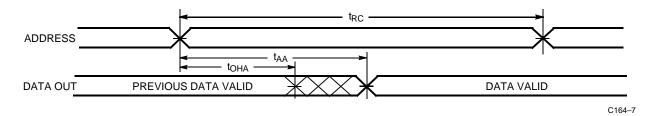
Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	10	pF

- Minimum voltage is equal to -3.0V for pulse durations less than 30 ns.
 A pull-up resistor to V_{CC} on the CE input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given.
 Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Switching Characteristics Over the Operating Range^[4]

			CY7C164-15 CY7C166-15			164-25 166-25	
Parameter	Description		Min.	Max.	Min.	Max.	Unit
READ CYCLE	·						
t _{RC}	Read Cycle Time		15		25		ns
t _{AA}	Address to Data Valid			15		25	ns
t _{OHA}	Output Hold from Address Change		3		5		ns
t _{ACE}	CE LOW to Data Valid			15		25	ns
t _{DOE}	OE LOW to Data Valid	7C166		10		12	ns
t _{LZOE}	OE LOW to Low Z	7C166	3		3		ns
t _{HZOE}	OE HIGH to High Z	7C166		8		10	ns
t _{LZCE}	CE LOW to Low Z ^[5]		3		5		ns
t _{HZCE}	CE HIGH to High Z ^[5, 6]			8		10	ns
t _{PU}	CE LOW to Power-Up		0		0		ns
t _{PD}	CE HIGH to Power-Down			15		20	ns
WRITE CYCLE ^{[7}	7		•	•	•	•	•
t _{WC}	Write Cycle Time		15		20		ns
t _{SCE}	CE LOW to Write End		12		20		ns
t _{AW}	Address Set-Up to Write End		12		20		ns
t _{HA}	Address Hold from Write End		0		0		ns
t _{SA}	Address Set-Up to Write Start		0		0		ns
t _{PWE}	WE Pulse Width		12		15		ns
t _{SD}	Data Set-Up to Write End		10		10		ns
t _{HD}	Data Hold from Write End		0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[5]		5		5		ns
t _{HZWE}	WE LOW to High Z ^[5, 6]			7		7	ns


Notes:

- 4. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified lo_L/l_{OH} and 30-pF load capacitance.
 5. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} for any given device. These parameters are guaranteed by design and not 100% tested.
 6. t_{HZCE} and t_{HZWE} are specified with C_L = 5 pF as in part (b) in AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
 7. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

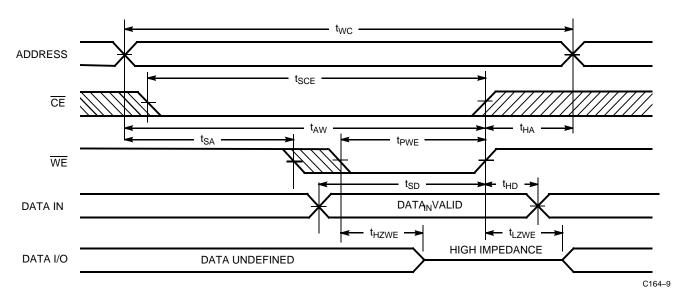
Switching Waveforms

Read Cycle No. 1^[8,9]

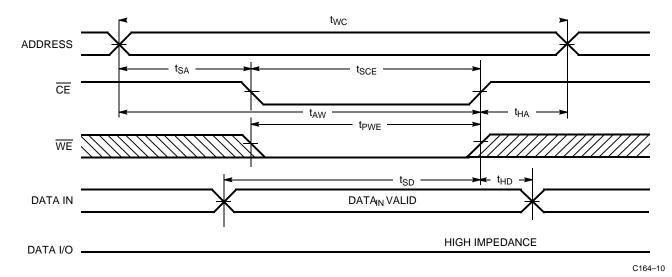
Read Cycle No. $2^{[8,10]}$

- Notes:

 8. WE is HIGH for read cycle.

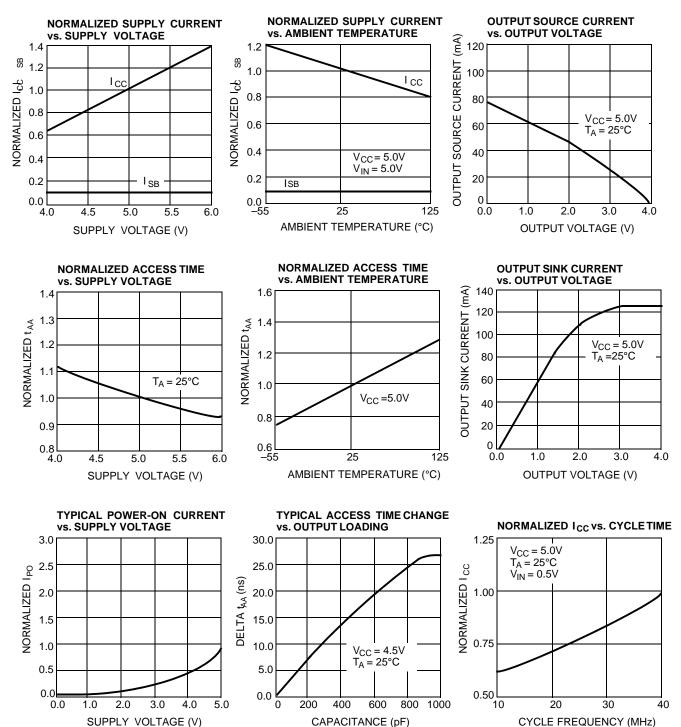

 9. Device is continuously selected, CE = V_{IL}.(CY7C166: OE = V_{IL} also).

 10. Address valid prior to or coincident with CE transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1(WE Controlled)^[7,11]


Write Cycle No. 2(CE Controlled)[7,11,12]

Notes: 11. CY7C166 only: Data I/O will be high-impedance if $\overline{OE} = V_{IH}$. 12. If \overline{CE} goes HIGH simultaneously with \overline{WE} HIGH, the output remains in a high-impedance state.

Typical DC and AC Characteristics

CY7C164 Truth Table

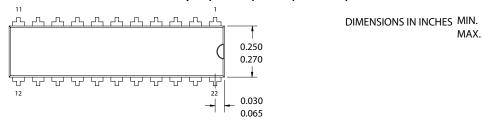
CE	WE	Input/Output	Mode	Power
Н	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	Data Out	Read	Active (I _{CC})
L	L	Data In	Write	Active (I _{CC})

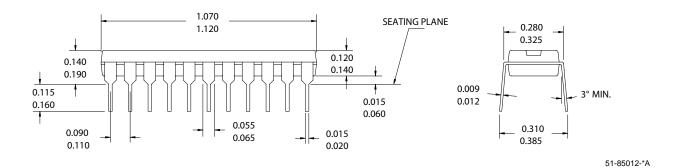
CY7C166 Truth Table

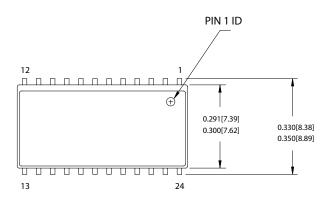
CE	WE	OE	Input/Output	Mode	Power
Н	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	L	Data Out	Read	Active (I _{CC})
L	L	Н	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Select/Output Disabled	Active (I _{CC})

Address Designators

Address Name	Address Function	CY 7C164 Pin Number	CY7C166 Pin Number
A5	Х3	1	1
A6	X4	2	2
A7	X5	3	3
A8	X6	4	4
A9	X7	5	5
A10	Y5	6	6
A11	Y4	7	7
A12	Y0	8	8
A13	Y1	9	9
A0	Y2	17	19
A1	Y3	18	20
A2	X0	19	21
A3	X1	20	22
A4	X2	21	23

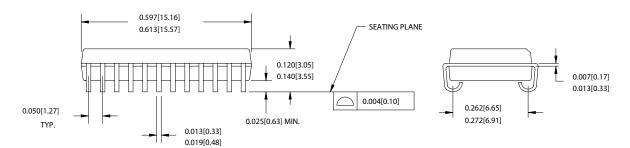

Ordering Information


Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
15	CY7C164-15PC	51-85012	22-pin (300-Mil) Molded DIP	Commercial
	CY7C166-15VC	51-85030	24-pin (300-Mil) Molded SOJ	
25	CY7C164-25PC	51-85012	22-pin (300-Mil) Molded DIP	Commercial
	CY7C166-25VC	51-85030	24-pin (300-Mil) Molded SOJ	


Package Diagrams

22-pin (300-Mil) PDIP (51-85012)

24-pin (300-mil) SOJ (51-85030)



DIMENSIONS IN INCHES[MM]

MIN. MAX.

REFERENCE JEDEC MO-088
PACKAGE WEIGHT 0.75gms

PART #			
V24.3 STANDARD PKG.			
VZ24.3 LEAD FREE PKG.			

51-85030-*B

Document History Page

Document Title: CY7C164/CY7C166 16K x 4 Static RAM Document Number: 38-05025				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	106811	09/10/01	SZV	Change from Spec number: 38-00032 to 38-05025
*A	486744	See ECN	NXR	Removed 20 ns and 35 ns speed bin from Product offering Removed 24-pin (300-Mil) Molded DIP package Changed the description of I _{IX} from Input Load Current to Input Leakage Current in DC Electrical Characteristics table Removed I _{OS} parameter from DC Electrical Characteristics table Updated the ordering information table