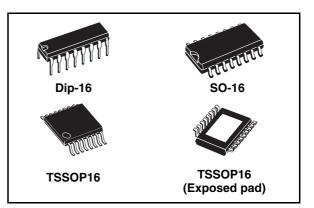


STP08CDC596

8-Bit constant current Led sink driver with full outputs detection


General features

- 8 constant current output channels
- Adjustable output current through one external resistor
- Open and short line, short to GND, short to V-LED supply error detection
- Serial data in/parallel data out
- Serial out change state on the falling edges of clock
- Output current: 20-120mA
- 3.3V micro driver-able
- 25MHz clock frequency
- Available in high thermal TSSOP exposed pad.

Description

The STP08CDC596 is a monolithic, mediumvoltage, low current power 8-bit shift register designed for LED panel display. The STP08CDC596 contains a 8-bit serial-in, parallelout shift register that feeds a 8-bitD-type storage register. In the output stage, eight regulated current sources were designed to provide 15-120mA constant current to drive the LEDs. The STP08CDC596 contains the built-IN error detection feature. The device performs this additional function without any increase of the pin number and any change of the pin function, if compared to the standard device without error detection. Consequently, choosing this device does not mean to change the footprint on the board.

Order codes

To perform this functionality mode, the device needs a digital key coming from the Microprocessor. The STP08CDC596 is able to detect: open and short on the LED line, short to GND, short to LED voltage supply. The data mapping of output channels status detection is provided by a feedback from the serial output to the Microprocessor.

Trough an external resistor, users may adjust the STP08CDC596 output current, controlling the light intensity of LEDs.

The STP08CDC596 guarantees 16V output driving capability, allowing users to connect more LEDs in series. The high clock frequency, 25 MHz, also satisfies the system requirement of high volume data transmission.

The device is offered in DIP-16, SO-16, TSSOP-16 and TSSOP-16 Exposed Pad packages.

The STP08CDC596 is well suitable for traffic display signs where the detection feature is strongly required.

Part Number	Temperature range	Package	Packaging
STP08CDC596B1	-40°C to 125°C	DIP-16	25 part per tube
STP08CDC596M	-40°C to 125°C	SO-16 (Tube)	50 parts per tube
STP08CDC596MTR	-40°C to 125°C	SO-16 (Tape & Reel)	2500 parts per reel
STP08CDC596TTR	-40°C to 125°C	TSSOP16 (Tape & Reel)	2500 parts per reel
STP08CDC596XTTR	-40°C to 125°C	TSSOP16 Exposed pad (Tape & Reel)	2500 parts per reel

August 2006

Contents

1	Sumr	Summary description						
	1.1	Pin connection and description 3						
2	Block	c diagram						
3	Maxir	num rating						
	3.1	Absolute maximum ratings 5						
	3.2	Thermal data						
	3.3	Recommended operating conditions 6						
4	Elect	rical characteristics7						
5	Switc	hing characteristics						
6	Equiv	valent circuit of inputs and outputs						
7	Timir	ng diagram						
8	Test	circuit						
9	Runn	ing the detection mode 16						
	9.1	Phase one: "entering in detection mode" 16						
	9.2	Phase two: "error detection" 17						
	9.3	Phase three: "resuming to normal mode"						
	9.4	Condition in order to get a successfully detection condition 19						
10	Туріс	al characteristics						
11	Packa	age mechanical data 21						
12	Revis	sion history						

1 Summary description

Table 1. Current accuracy

Output voltage	Current	Output current	
Output voltage	Between bits	Between ICs	Output current
≥0.7V	(Typ) ±3%	±10%	20 to 120mA

1.1 Pin connection and description

Figure 1. Connections diagram

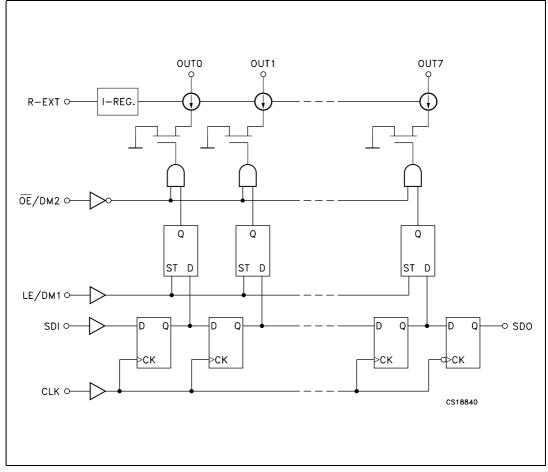

GND		16 V _{DD}
SDI	C 2	15 R-EXT
CLK	[] 3	14] SDO
LE/DM1	[4	13] OE/DM2
OUTO	[5	12 OUT7
OUT1	6	11] OUT6
OUT2	[7	10] OUT5
OUT3	8	9] OUT4
	CS1	9730

Table 2. Pin description

PIN N°	Symbol	Name and function			
1	GND	Ground terminal			
2	SDI	Serial data input terminal			
3	CLK	Clock input terminal			
4	LE/DM1	Latch input terminal			
5-12	OUT 0-7	Output terminal			
13	OE/DM2	Output enable input terminal (active low)			
14	SDO	Serial data out terminal			
15	R-EXT	Constant current programming			
16	V _{DD}	5V Supply voltage terminal			

2 Block diagram

3 Maximum rating

Stressing the device above the rating listed in the "Absolute Maximum Ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

3.1 Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DD}	Supply voltage I _{GND}	0 to 7	V
Vo	Output voltage	-0.5 to 16	V
Ι _Ο	Output current	120	mA
VI	Input voltage	-0.4 to V _{DD} +0.4	V
I _{GND}	GND terminal current	980	mA
f _{CLK}	Clock frequency	25	MHz
T _{OPR}	Operating temperature range	-40 to +125	°C
T _{STG}	Storage temperature range	-55 to +150	°C

Table 3. Absolute maximum ratings

3.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	Package	Value	Unit
		DIP-16	90	
	thJA Thermal resistance junction-ambient	SO-16	125	
R _{thJA}		TSSOP-16	140	°C/W
		TSSOP-16 Exposed Pad	38 (1)	

1. The exposed pad should be soldered directly to the PCB to realize the thermal benefits.

3.3 Recommended operating conditions

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V_{DD}	Supply voltage		3.3		5.5	V
V _O	Output voltage				16.0	V
Ι _Ο	Output current	OUTn	15		120	mA
I _{OH}	Output current	SERIAL-OUT			+1	mA
I _{OL}	Output current	SERIAL-OUT			-1	mA
V _{IH}	Input voltage		0.7V _{DD}		V _{DD} +0.3	V
V_{IL}	Input voltage		-0.3		0.3V _{DD}	V
t _{wLAT}	LE/DM1 pulse width			10	20	ns
t _{wCLK}	CLK pulse width			10	20	ns
t _{wEN}	$\overline{\text{OE}}$ /DM2 pulse width ⁽¹⁾	V _{DD} = 3.0 to 5.0V		120	400	ns
t _{SETUP(D)}	Setup time for DATA	VDD - 0.0 10 0.0 V		5	20	ns
t _{HOLD(D)}	Hold time for DATA			4	15	ns
t _{SETUP(L)}	Setup time for LATCH			8	15	ns
f _{CLK}	Clock frequency ⁽²⁾				25	MHz

Table 5. Recommended operating conditions

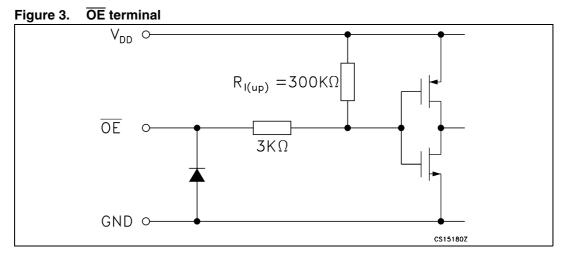
1. If the device is connected in cascade, it may not be possible achieve the maximum data transfer. Please considered the timings carefully.

2. In normal mode the $\overline{\text{OE}}/\text{DM2}$ must remain low at least two clock cycles.

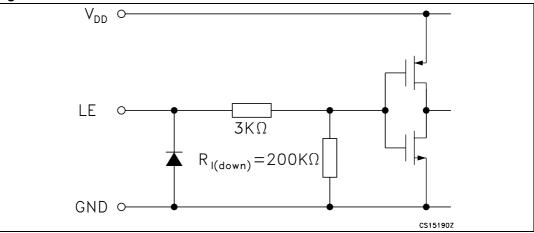
4 Electrical characteristics

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{IH}	Input voltage high level		0.7V _{DD}		V _{DD}	V
V _{IL}	Input voltage low level		GND		0.3V _{DD}	V
I _{OH}	Output leakage current	V _{OH} = 16V			10	μA
V _{OL}	Output voltage (Serial-OUT)	I _{OL} = 1mA			0.4	V
V _{OH}	Output voltage (Serial-OUT)	I _{OH} = -1mA	V _{DD} -0.4V			V
I _{OL1}	Outra di cumant	$V_{O} = 0.7 VR_{EXT} = 910 \ \Omega$	18.8	20.9	24.00	mA
I _{OL2}	Output current	$V_{O} = 0.7 VR_{EXT} = 360 \ \Omega$	46.00	51.5	56.5	mA
ΔI_{OL1}	Output current error between	$V_{O} = 0.7 VR_{EXT} = 910 \Omega$		± 2	± 5	%
ΔI_{OL2}	bit (All Output ON)	$V_{O} = 0.7 VR_{EXT} = 360 \Omega$		± 1	± 4	%
R _{SIN(up)}	Pull-up resistor		150	300	600	KΩ
R _{SIN(down)}	Pull-down resistor		100	200	400	KΩ
I _{DD(OFF1)}		R _{EXT} = OPEN OUT 0 to 7 = OFF		0.45	0.7	
I _{DD(OFF2)}	Supply current (OFF)	$R_{EXT} = 910 \Omega$ OUT 0 to 7 = OFF		3.0	6.0	
I _{DD(OFF3)}		$R_{EXT} = 360 \Omega$ OUT 0 to 7 = OFF		8.2	12.0	mA
I _{DD(ON1)}	Supply surrent (ON)	$R_{EXT} = 910 \Omega$ OUT 0 to 7 = ON		3.1	6.2	
I _{DD(ON2)}	Supply current (ON)	$R_{EXT} = 360 \Omega$ OUT 0 to 7 = ON		8.4	12.8	

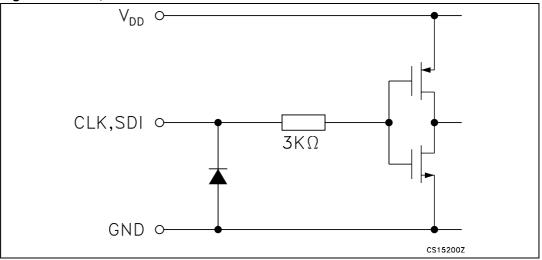
Table 6. Electrical characteristics ($V_{DD} = 5V$, T = 25°C, unless otherwise specified.)

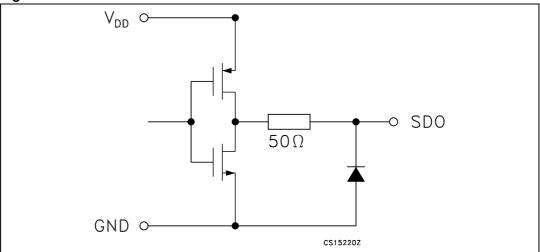


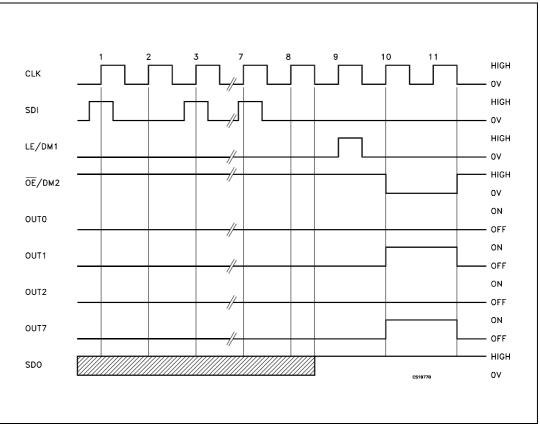
5 Switching characteristics


Table 7. Switching Characteristics (V_{DD} = 3.3V to 5.5V, T = $25^{\circ}C$, unless otherwise specified.)

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _{PLH1}	Propagation delay time, CLK-OUTn, $\overline{LE}/DM1 = H$, $\overline{OE}/DM2 = L$			180	280	ns
t _{PLH2}	Propagation delay time, $\overline{\text{LE}}/\text{DM1}$ - $\overline{\text{OUTn}}$, $\overline{\text{OE}}/\text{DM2}$ = L			150	280	ns
t _{PLH3}	Propagation delay time, OE/DM2-OUTn, LE/DM1 = H			140	280	ns
t _{PLH}	Propagation delay time, CLK-SDO	$V_{DD} = 3V$ $V_{IH} = V_{DD}$		25	35	ns
t _{PHL1}	Propagation delay time, <u>CLK-OUTn</u> , <u>LE</u> /DM1 = H, <u>OE</u> /DM2 = L	$V_{IL} = GND \qquad C_L = 13pF$ $I_O = 40mA \qquad V_L = 3V$ $R_{EXT} = 470\Omega \qquad R_L = 65 \Omega$		30	60	ns
t _{PHL2}	Propagation delay time, $\overline{\text{LE}}/\text{DM1}$ - $\overline{\text{OUTn}}$, $\overline{\text{OE}}/\text{DM2}$ = L			30	50	ns
t _{PHL3}	Propagation delay time, OE/DM2-OUTn, LE/DM1 = H			35	70	ns
t _{PHL}	Propagation delay time, CLK-SDO			30	40	ns
t _r	Output rise time			220		ns
t _f	Output fall time			20		ns

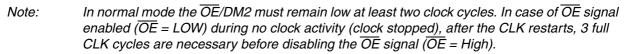
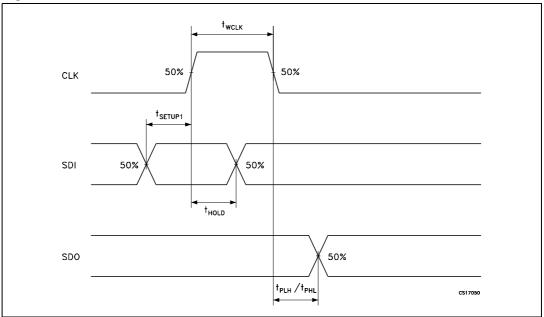
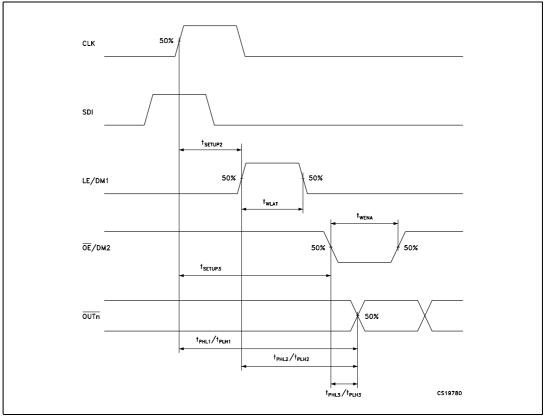

6 Equivalent circuit of inputs and outputs

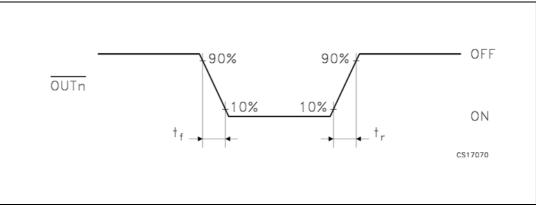


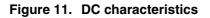


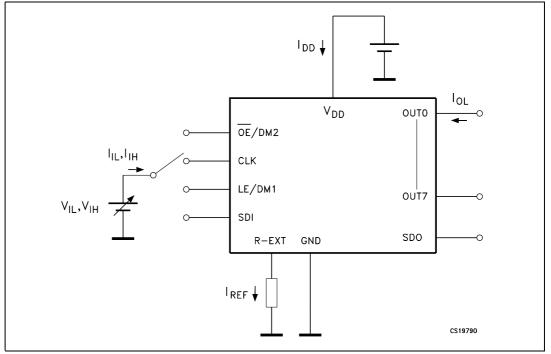
7 Timing diagram

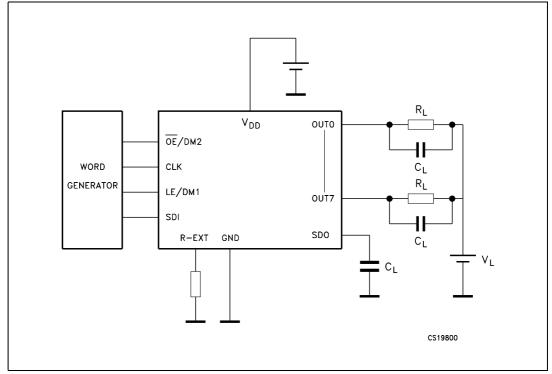
Figure 7. Timing diagram


Figure 8. Clock, serial-in, serial-out




Figure 10. Outputs



8 Test circuit

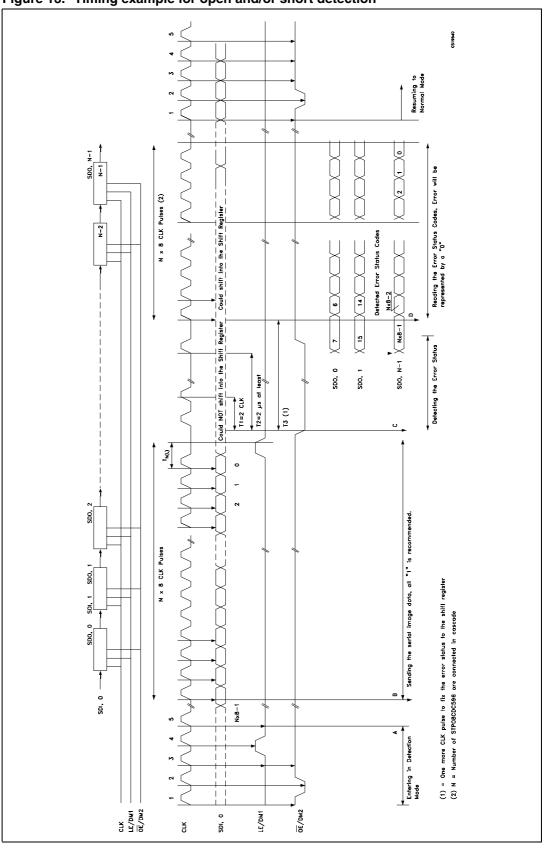
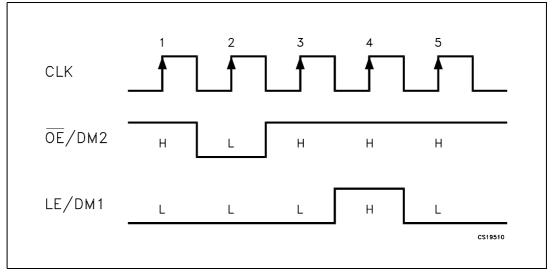


Figure 13. Timing example for open and/or short detection

9 Running the detection mode

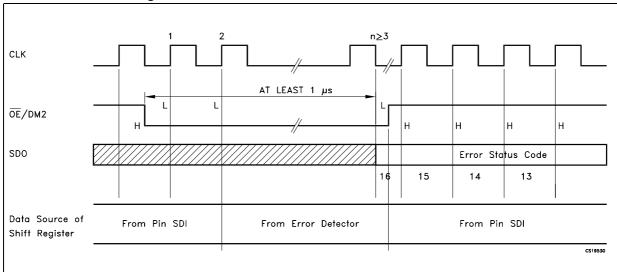

9.1 Phase one: "entering in detection mode"

From the "Normal Mode" condition the device can switch to the "Error Mode" by a logic sequence on the OE/DM2 and LE/DM1 pins as showed in the following table and diagram:

Table 8. Entering in detection	truth table
--------------------------------	-------------

CLK	1 °	2 °	3 °	4 °	5°
OE/DM2	Н	L	Н	Н	Н
LE/DM1	L	L	L	Н	L

Table 9. Entering in detection timing diagram



After these five CLK cycles the device goes into the "Error Detection Mode" and at the 6^{th} rise front of CLK the SDI data are ready for the sampling.

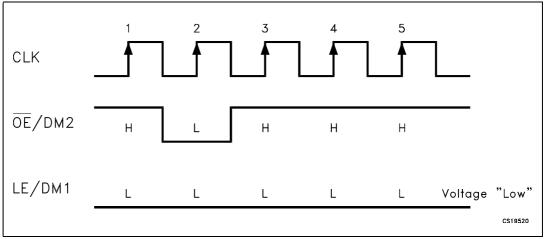
9.2 Phase two: "error detection"

The eight data bits must be set "1" in order to set ON all the outputs during the detection. The data are latched by LE/DM1 and after that the outputs are ready for the detection process. When the Micro controller switches the OE/DM2 to LOW, the device drives the LEDs in order to analyze if an OPEN or SHORT condition has occurred.

Table 10. Detection diagram

The LEDs status will be detected at least in 2 microseconds and after this time the microcontroller puts OE in HIGH state and the output data detection result will go to the microprocessor via SDO.

The detection data format is the same of data in normal mode. As soon as all the detection data bits are available on the serial line, the device may go back to normal mode operation.


9.3 Phase three: "resuming to normal mode"

The sequence for re-entering in normal mode is showed in the following Table and diagram:

CLK	1 °	2 °	3 °	4 °	5°				
OE/DM2	Н	L	Н	Н	Н				
LE/DM1	L	L	L	L	L				

Table 11. Resuming to normal mode timing diagram

Table 12. Resuming to normal mode timing diagram

Note:

For proper device operation the "Entering in detection" sequence must be follow by a "Resume Mode" sequence, isn't possible to insert consecutive equal sequence.

9.4 Condition in order to get a successfully detection condition

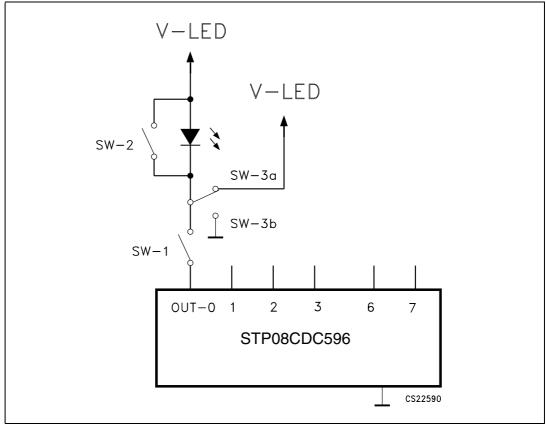

SW-1 or SW-3b	Open line or output short to GND detected	==> l _{ODEC} ⊴0.5 x l _O	No error detected	==> I _{ODEC} ≥ 0.5 x I _O		
SW-2 or SW-3a	Short on LED or short to V-LED detected	==> V _O ≥ 2.4 V	No error detected	==> V _O ≤2.2 V		

Table 13. Detection condition (V_{DD} = 3.3 to 5 V Temp. Range -40 to 85°C)

Note:

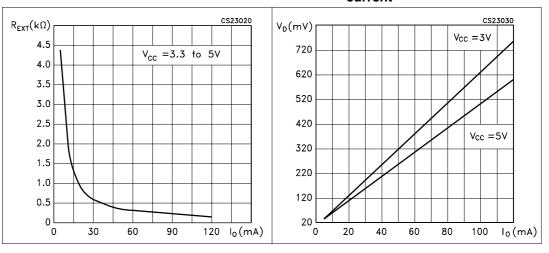
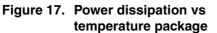

Where: I_O = the output current programmed by the R_{EXT}, I_{ODEC} = the detected output current in detection mode.

Figure 14. Detection circuit

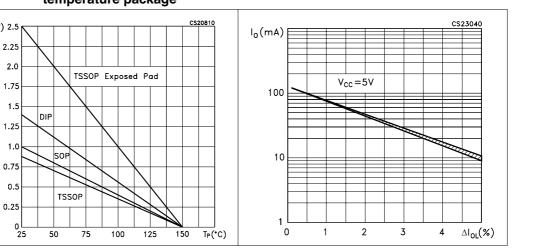


57

Typical characteristics 10

Figure 15. Output current-REXT resistor Figure 16. Dropout voltage vs output current

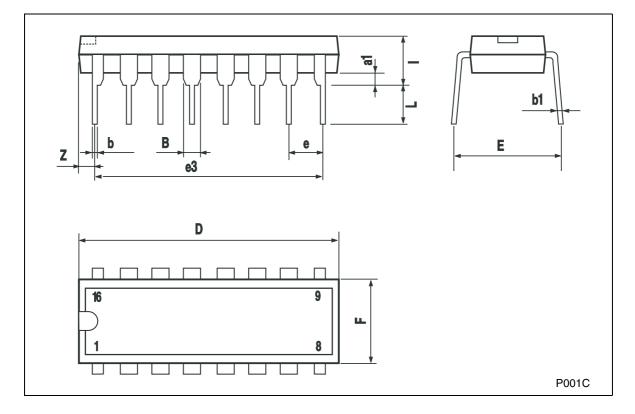
P_D (W) 2.5


2.25 2.0

1.5

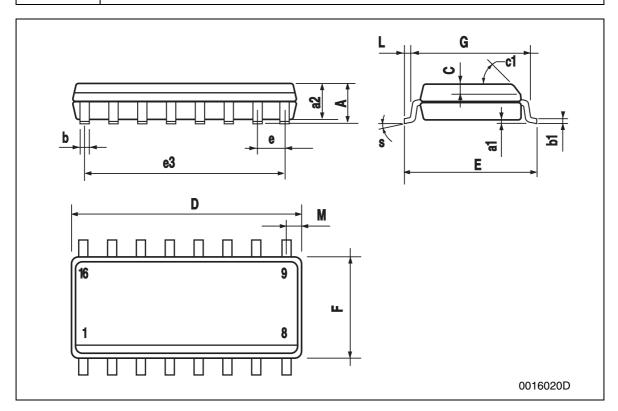
1.0

0.75

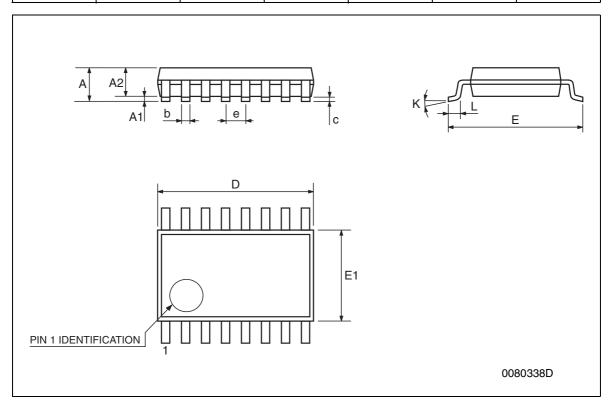

11 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

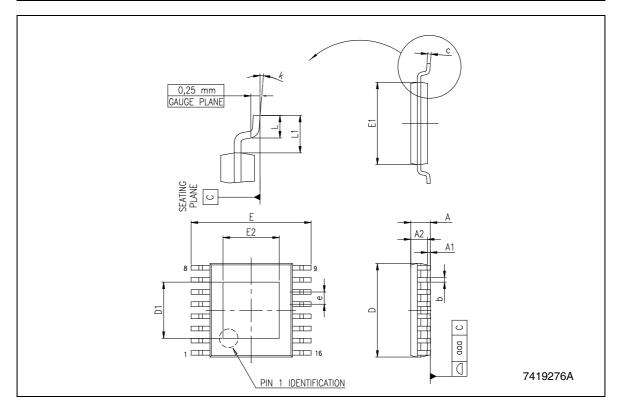
Г


Plastic DIP-16 (0.25) MECHANICAL DATA						
DIM.		mm.		inch		
DIW.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

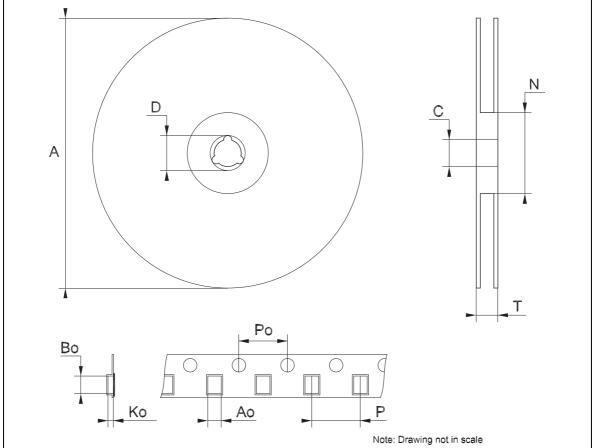
Г


		mm.		inch		
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX
A			1.75			0.068
a1	0.1		0.25	0.004		0.010
a2			1.64			0.063
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		•
D	9.8		10	0.385		0.393
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024

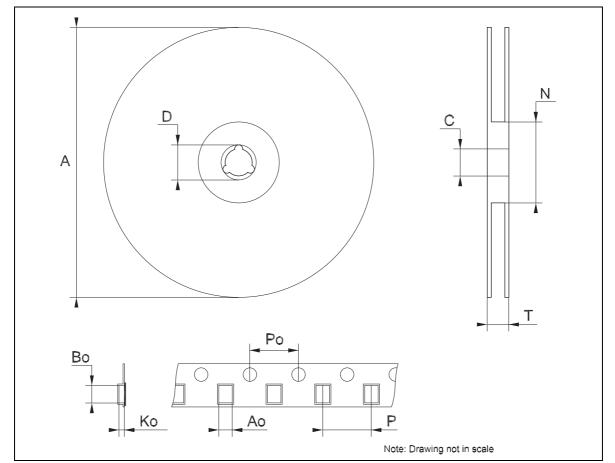
57


Г

	TSSOP16 MECHANICAL DATA						
DIM		mm.			inch		
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.	
А			1.2			0.047	
A1	0.05		0.15	0.002	0.004	0.006	
A2	0.8	1	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.0079	
D	4.9	5	5.1	0.193	0.197	0.201	
Е	6.2	6.4	6.6	0.244	0.252	0.260	
E1	4.3	4.4	4.48	0.169	0.173	0.176	
е		0.65 BSC			0.0256 BSC		
К	0°		8°	0°		8°	
L	0.45	0.60	0.75	0.018	0.024	0.030	


57

	TSSOP16 EXPOSED PAD MECHANICAL DATA						
DIM		mm.			inch		
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.	
А			1.2			0.047	
A1			0.15		0.004	0.006	
A2	0.8	1	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.0089	
D	4.9	5	5.1	0.193	0.197	0.201	
D1	1.7			0.067			
E	6.2	6.4	6.6	0.244	0.252	0.260	
E1	4.3	4.4	4.5	0.169	0.173	0.177	
E2	1.5			0.059			
е		0.65			0.0256		
К	0°		8°	0°		8°	
L	0.45	0.60	0.75	0.018	0.024	0.030	



Г

	Tape & Reel TSSOP16 MECHANICAL DATA						
DIM		mm.			inch		
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.	
А			330			12.992	
С	12.8		13.2	0.504		0.519	
D	20.2			0.795			
Ν	60			2.362			
Т			22.4			0.882	
Ao	6.7		6.9	0.264		0.272	
Во	5.3		5.5	0.209		0.217	
Ko	1.6		1.8	0.063		0.071	
Po	3.9		4.1	0.153		0.161	
Р	7.9		8.1	0.311		0.319	

	Tape & Reel SO-16 MECHANICAL DATA						
DIM		mm.			inch		
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.	
A			330			12.992	
С	12.8		13.2	0.504		0.519	
D	20.2			0.795			
N	60			2.362			
Т			22.4			0.882	
Ao	6.45		6.65	0.254		0.262	
Во	10.3		10.5	0.406		0.414	
Ko	2.1		2.3	0.082		0.090	
Po	3.9		4.1	0.153		0.161	
Р	7.9		8.1	0.311		0.319	

12 Revision history

Date	Revision	Changes
15-Jun-2005	1	First release
11-Oct-2005	2	Minor revision, no content change
2-Aug-2006	3	New template, block diagram <i>Figure 2 on page 4</i> and equivalent circuit <i>Section 6 on page 9</i> updated, added TSSOP-16 Exposed Pad package.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

