FAST 74F13 Schmitt Trigger Dual 4-Input NAND Schmitt Trigger ## **FAST Products** # **Product Specification** | TYPE | TYPICAL PROPAGATION DELAY | TYPICAL SUPPLY CURRENT (TOTAL) | |-------|---------------------------|--------------------------------| | 74F13 | 7.8 ns | 5.5 mA | ## DESCRIPTION The 74F13 contains two 4-input NAND gates which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have greater noise margin than conventional NAND gates. Each circuit contains a 4-input Schmitt trigger followed by a Darlington level shifter and a phase splitter driving a TTL totem-pole output. The Schmitt trigger uses positive feedback to effectively speed-up slow input transitions, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the positive-going and negative-going input threshold (typically 800mv) is determined by resistor ratios and is essentially insensitive to temperature and supply voltage variations. As long as three inputs remain at a more positive voltage than VT_max, the gate will respond in the transition of the other input as shown in Waveform 1. ## ORDERING INFORMATION | PACKAGES | COMMERCIAL RANGE V _{CC} = 5V±10%; T _A = 0°C to +70°C | |--------------------|---| | 14-Pin Plastic DIP | N74F13N | | 14-Pin Plastic SO | N74F13D | # INPUT AND OUTPUT LOADING AND FAN-OUT TABLE | PINS | DESCRIPTION | 74F(U.L.)
HIGH/LOW | LOADVALUE
HIGH/LOW | |--|--------------|-----------------------|-----------------------| | D _{na'} D _{nb'} D _{nc'} D _{nd} | Data inputs | 1.0/1.0 | 20μ A /0.6mA | | ā₀, ā₁ | Data outputs | 50/33 | 1.0mA/20mA | # NOTE: One (1.0) FAST Unit Load is defined as: 20µA in the High state and 0.6mA in the Low state. # PIN CONFIGURATION # LOGIC SYMBOL # LOGIC SYMBOL (IEEE/IEC) March 28, 1989 6-23 853-0330-96148 # Schmitt Trigger **FAST 74F13** # **LOGIC DIAGRAM** # **FUNCTION TABLE** | | OUTPUT | | | | |-----------------|-----------------|-----------------|-----------------|---| | D _{na} | D _{nb} | D _{na} | D _{nb} | ā | | L | х | Х | X | Н | | x | L | × | × | Н | | x | х | L | x | н | | × | x | x | L | н | | н | н | н | Н | L | H = High voltage level L = Low voltage level X = Don't care # ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.) | SYMBOL | PARAMETER | RATING | UNIT | |------------------|--|--------------------------|------| | v _{cc} | Supply voltage | -0.5 to +7.0 | V | | V _{IN} | Input voltage | -0.5 to +7.0 | V, | | I _{IN} | Input current | -30 to +5 | mA | | V _{OUT} | Voltage applied to output in High output state | -0.5 to +V _{CC} | V | | I _{OUT} | Current applied to output in Low output state | 40 | mA | | T _A | Operating free-air temperature range | 0 to +70 | °C | | T _{STG} | Storage temperature | -65 to +150 | °C | ## RECOMMENDED OPERATING CONDITIONS | SYMBOL | PARAMETER | Min | Nom | Max | UNIT | | |-----------------|--------------------------------------|-----|-----|-----|------|--| | v _{cc} | Supply voltage | 4.5 | 5.0 | 5.5 | ٧ | | | I _K | Input clamp current | | | -18 | mA | | | Гон | High-level output current | | | -1 | mA | | | lor | Low-level output current | | | 20 | mA | | | T _A | Operating free-air temperature range | 0 | | 70 | °C | | # Schmitt Trigger **FAST 74F13** #### (Over recommended operating free-air temperature range unless otherwise noted.) DC ELECTRICAL CHARACTERISTICS | | PARAMETER | | TEST CONDITIONS ¹ | | | LIMITS | | | |------------------|---|---------------|---|----------------------|-----|------------------|------|------| | SYMBOL | | | | | | Typ ² | Max | UNIT | | V _{T+} | Positive-going threshold | | V _{CC} =5.0V | | | 1.7 | 2.0 | ٧ | | ٧ _۲ . | Negative-going threshold | | V _{CC} =5.0V | | 0.7 | 0.9 | 1.1 | ٧ | | ΔV _T | Hysteresis (V _{T+} - V _{T-}) | | V _{CC} =5.0V | | 0.4 | 0.8 | | ٧ | | | High-level output voltage | | V _{CC} =MIN, | ±10%V _{CC} | 2.5 | | | V | | V _{ОН} | | | V _I =V _{T-MIN} , I _{OH} =MAX | ±5%V _{CC} | 2.7 | 3.4 | | ٧ | | | Low-level output voltage | | V _{CC} =MIN, | ±10%V _{CC} | | 0.30 | 0.50 | V | | V _{OL} | | | VI=VT+MAX, IOL =MAX | ±5%V _{CC} | | 0.30 | 0.50 | V | | V _{IK} | Input clamp voltage | | V _{CC} = MIN, I _I = I _{IK} | | | -0.73 | -1.2 | ٧ | | I _{T+} | Input current at positive-goin | ng threshold | V _{CC} =5.0V, V _I = V _{T+} | | | 0 | | μА | | I _{T-} | Input current at negative-go | ing threshold | V _{CC} =5.0V, V _I = V _T . | | | -350 | | μА | | 1, | Input current at maximum in | put voltage | V _{CC} =MAX, V _I = 7.0V | | | | 100 | μА | | I _{IH} | High-level input current Low-level input current | | V _{CC} =MAX, V _I = 2.7V | | | | 20 | μА | | I _{IL} | | | V _{CC} =MAX, V _I = 0.5V | | | | -0.6 | mA | | 1 _{os} | Short circuit output current ³ | | V _{CC} =MAX | | -60 | | -150 | mA | | | Supply current (total) CCH CCL | | | V _{IN} =GND | | 4.5 | 8.5 | mA | | cc | | | V _{CC} =MAX | | | 7.0 | 10.0 | mA | # NOTES: 6-25 March 28, 1989 ^{1.} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. All typical values are at V_{CC} = 55°C. Not more than one output should be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{OS} tests should be performed last. # **AC ELECTRICAL CHARACTERISTICS** | | | | LIMITS | | | | | | |--------------------------------------|---|----------------|--|-------------|-------------|---|-------------|------| | SYMBOL | PARAMETER | TEST CONDITION | T _A = +25°C
V _{CC} = 5V
C _L = 50pF
R _L = 500Ω | | | $\begin{split} T_{A} &= 0^{\circ}\text{C to } + 70^{\circ}\text{C} \\ V_{CC} &= 5\text{V} \pm 10\% \\ C_{L} &= 50\text{pF} \\ R_{L} &= 500\Omega \end{split}$ | | UNIT | | | | | Min | Тур | Max | Min | Max |] | | t _{PLH}
t _{PHL} | Propagation delay D _{na} , D _{nb} , D _{nc} , D _{nd} to Q _n | Waveform 1 | 4.0
9.0 | 5.5
11.0 | 7.0
13.5 | 4.0
9.0 | 8.0
13.5 | ns | # **AC WAVEFORMS** # **TEST CIRCUIT AND WAVEFORMS** # **DEFINITIONS** R_I = Load resistor; see AC CHARACTERISTICS for value. C_L = Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value. R_T = Termination resistance should be equal to Z_{OUT} of pulse generators. V_M = 1.5V Input Pulse Definition | | FAMILY | INF | PUT PULSE F | REQUIR | EMENT | S | | |--|--------|-----------|-------------|----------------|------------------|------------------|---| | | Amici | Amplitude | Rep. Rate | t _w | t _{TLH} | t _{THL} | l | | | 74F | 3.0V | 1MHz | 500ns | 2.5ns | 2.5ns | |