FAST 74F13 Schmitt Trigger

Dual 4-Input NAND Schmitt Trigger

FAST Products

Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74F13	7.8 ns	5.5 mA

DESCRIPTION

The 74F13 contains two 4-input NAND gates which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have greater noise margin than conventional NAND gates. Each circuit contains a 4-input Schmitt trigger followed by a Darlington level shifter and a phase splitter driving a TTL totem-pole output. The Schmitt trigger uses positive feedback to effectively speed-up slow input transitions, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the positive-going and negative-going input threshold (typically 800mv) is determined by resistor ratios and is essentially insensitive to temperature and supply voltage variations. As long as three inputs remain at a more positive voltage than VT_max, the gate will respond in the transition of the other input as shown in Waveform 1.

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE V _{CC} = 5V±10%; T _A = 0°C to +70°C
14-Pin Plastic DIP	N74F13N
14-Pin Plastic SO	N74F13D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOADVALUE HIGH/LOW
D _{na'} D _{nb'} D _{nc'} D _{nd}	Data inputs	1.0/1.0	20μ A /0.6mA
ā₀, ā₁	Data outputs	50/33	1.0mA/20mA

NOTE:

One (1.0) FAST Unit Load is defined as: 20µA in the High state and 0.6mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

March 28, 1989

6-23

853-0330-96148

Schmitt Trigger

FAST 74F13

LOGIC DIAGRAM

FUNCTION TABLE

	OUTPUT			
D _{na}	D _{nb}	D _{na}	D _{nb}	ā
L	х	Х	X	Н
x	L	×	×	Н
x	х	L	x	н
×	x	x	L	н
н	н	н	Н	L

H = High voltage level L = Low voltage level

X = Don't care

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
v _{cc}	Supply voltage	-0.5 to +7.0	V
V _{IN}	Input voltage	-0.5 to +7.0	V,
I _{IN}	Input current	-30 to +5	mA
V _{OUT}	Voltage applied to output in High output state	-0.5 to +V _{CC}	V
I _{OUT}	Current applied to output in Low output state	40	mA
T _A	Operating free-air temperature range	0 to +70	°C
T _{STG}	Storage temperature	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	Min	Nom	Max	UNIT	
v _{cc}	Supply voltage	4.5	5.0	5.5	٧	
I _K	Input clamp current			-18	mA	
Гон	High-level output current			-1	mA	
lor	Low-level output current			20	mA	
T _A	Operating free-air temperature range	0		70	°C	

Schmitt Trigger

FAST 74F13

(Over recommended operating free-air temperature range unless otherwise noted.) DC ELECTRICAL CHARACTERISTICS

	PARAMETER		TEST CONDITIONS ¹			LIMITS		
SYMBOL						Typ ²	Max	UNIT
V _{T+}	Positive-going threshold		V _{CC} =5.0V			1.7	2.0	٧
٧ _۲ .	Negative-going threshold		V _{CC} =5.0V		0.7	0.9	1.1	٧
ΔV _T	Hysteresis (V _{T+} - V _{T-})		V _{CC} =5.0V		0.4	0.8		٧
	High-level output voltage		V _{CC} =MIN,	±10%V _{CC}	2.5			V
V _{ОН}			V _I =V _{T-MIN} , I _{OH} =MAX	±5%V _{CC}	2.7	3.4		٧
	Low-level output voltage		V _{CC} =MIN,	±10%V _{CC}		0.30	0.50	V
V _{OL}			VI=VT+MAX, IOL =MAX	±5%V _{CC}		0.30	0.50	V
V _{IK}	Input clamp voltage		V _{CC} = MIN, I _I = I _{IK}			-0.73	-1.2	٧
I _{T+}	Input current at positive-goin	ng threshold	V _{CC} =5.0V, V _I = V _{T+}			0		μА
I _{T-}	Input current at negative-go	ing threshold	V _{CC} =5.0V, V _I = V _T .			-350		μА
1,	Input current at maximum in	put voltage	V _{CC} =MAX, V _I = 7.0V				100	μА
I _{IH}	High-level input current Low-level input current		V _{CC} =MAX, V _I = 2.7V				20	μА
I _{IL}			V _{CC} =MAX, V _I = 0.5V				-0.6	mA
1 _{os}	Short circuit output current ³		V _{CC} =MAX		-60		-150	mA
	Supply current (total) CCH CCL			V _{IN} =GND		4.5	8.5	mA
cc			V _{CC} =MAX			7.0	10.0	mA

NOTES:

6-25 March 28, 1989

^{1.} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.

All typical values are at V_{CC} = 55°C.
 Not more than one output should be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

			LIMITS					
SYMBOL	PARAMETER	TEST CONDITION	T _A = +25°C V _{CC} = 5V C _L = 50pF R _L = 500Ω			$\begin{split} T_{A} &= 0^{\circ}\text{C to } + 70^{\circ}\text{C} \\ V_{CC} &= 5\text{V} \pm 10\% \\ C_{L} &= 50\text{pF} \\ R_{L} &= 500\Omega \end{split}$		UNIT
			Min	Тур	Max	Min	Max]
t _{PLH} t _{PHL}	Propagation delay D _{na} , D _{nb} , D _{nc} , D _{nd} to Q _n	Waveform 1	4.0 9.0	5.5 11.0	7.0 13.5	4.0 9.0	8.0 13.5	ns

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

DEFINITIONS

R_I = Load resistor; see AC CHARACTERISTICS for value.

C_L = Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.

R_T = Termination resistance should be equal to Z_{OUT} of pulse generators.

V_M = 1.5V Input Pulse Definition

	FAMILY	INF	PUT PULSE F	REQUIR	EMENT	S	
	Amici	Amplitude	Rep. Rate	t _w	t _{TLH}	t _{THL}	l
	74F	3.0V	1MHz	500ns	2.5ns	2.5ns	