DATA SHEET

# MOS INTEGRATED CIRCUIT $\mu$ PD464318AL, 464336AL

# 4M-BIT BI-CMOS SYNCHRONOUS FAST STATIC RAM 256K-WORD BY 18-BIT / 128K-WORD BY 36-BIT HSTL INTERFACE / REGISTER-REGISTER / LATE WRITE

#### Description

The  $\mu$ PD464318AL is a 262,144 words by 18 bits, and the  $\mu$ PD464336AL is a 131,072 words by 36 bits synchronous static RAM fabricated with advanced Bi-CMOS technology using N-channel memory cell.

This technology and unique peripheral circuits make the  $\mu$ PD464318AL and  $\mu$ PD464336AL a high-speed device. The  $\mu$ PD464318AL and  $\mu$ PD464336AL are suitable for applications which require high-speed, low voltage, highdensity memory and wide bit configuration, such as cache and buffer memory.

These are packaged in a 119-pin plastic BGA (Ball Grid Array).

#### Features

- Fully synchronous operation
- HSTL Input / Output levels
- Fast clock access time : 2.0 ns / 250 MHz, 2.3 ns / 225 MHz, 2.5 ns / 200 MHz
- Asynchronous output enable control : /G
- Byte write control : /SBa (DQa1-9), /SBb (DQb1-9), /SBc (DQc1-9), /SBd (DQd1-9)
- Common I/O using three-state outputs
- Internally self-timed write cycle
- Late write with 1 dead cycle between Read-Write
- User-configurable outputs :

Controlled impedance outputs or push-pull outputs

- Boundary scan (JTAG) IEEE 1149.1 compatible
- 3.3 V (Chip) / 1.5V (I/O) supply
- 119 bump BGA package, 1.27 mm pitch, 14 mm x 22 mm
- Sleep mode : ZZ(Enables sleep mode, active high)

#### **Ordering Information**

| Part number       | Access time | Clock frequency | Package             |
|-------------------|-------------|-----------------|---------------------|
| μPD464318ALS1-A4  | 2.0 ns      | 250 MHz         | 119-pin plastic BGA |
| μPD464318ALS1-A44 | 2.3 ns      | 225 MHz         |                     |
| μPD464318ALS1-A5  | 2.5 ns      | 200 MHz         |                     |
| μPD464336ALS1-A4  | 2.0 ns      | 250 MHz         |                     |
| μPD464336ALS1-A44 | 2.3 ns      | 225 MHz         |                     |
| μPD464336ALS1-A5  | 2.5 ns      | 200 MHz         |                     |

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

Document No. M13508EJ2V0DSJ1 (2nd edition) Date Published December 2000 NS CP(K) Printed in Japan The mark **\*** shows major revised points.

6

SA2

NC

SA3

DQa9

NC

DQa7

NC

DQa5

Vdd

NC

DQa3

NC

DQa2

NC

SA4

SA5

NC

7

VddQ

NC

NC

NC

DQa8 VddQ

DQa6

NC

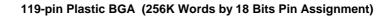
VddQ

DQa4

NC

VddQ NC

DQa1


NC

ZZ

VddQ

#### **Pin Configurations**

/xxx indicates active low signal.



|      | [ μPD464318ALS1 ] |      |     |         |      |      |                                   |      |      |         |     |      |
|------|-------------------|------|-----|---------|------|------|-----------------------------------|------|------|---------|-----|------|
|      |                   |      | Во  | ttom Vi | ew   |      |                                   |      | Тс   | op View |     |      |
|      |                   |      |     |         |      |      | A B C D E F G H J K L M N P R T U |      | )    | 3 4 5   |     |      |
| 7    | 6                 | 5    | 4   | 3       | 2    | 1    |                                   | 1    | 2    | 3       | 4   | 5    |
| VddQ | SA2               | SA6  | NC  | SA9     | SA12 | VddQ | А                                 | VddQ | SA12 | SA9     | NC  | SA6  |
| NC   | NC                | SA16 | NC  | SA17    | NC   | NC   | В                                 | NC   | NC   | SA17    | NC  | SA16 |
| NC   | SA3               | SA7  | Vdd | SA10    | SA13 | NC   | С                                 | NC   | SA13 | SA10    | Vdd | SA7  |
| NC   | DQa9              | Vss  | ZQ  | Vss     | NC   | DQb1 | D                                 | DQb1 | NC   | Vss     | ZQ  | Vss  |
| DQa8 | NC                | Vss  | /SS | Vss     | DQb2 | NC   | Е                                 | NC   | DQb2 | Vss     | /SS | Vss  |
| VddQ | DQa7              | Vss  | /G  | Vss     | NC   | VddQ | F                                 | VddQ | NC   | Vss     | /G  | Vss  |
| DQa6 | NC                | Vss  | NC  | /SBb    | DQb3 | NC   | G                                 | NC   | DQb3 | /SBb    | NC  | Vss  |
| NC   | DQa5              | Vss  | NC  | Vss     | NC   | DQb4 | н                                 | DQb4 | NC   | Vss     | NC  | Vss  |
| VddQ | Vdd               | Vref | Vdd | Vref    | Vdd  | VddQ | J                                 | VddQ | Vdd  | Vref    | Vdd | Vref |
| DQa4 | NC                | Vss  | К   | Vss     | DQb5 | NC   | К                                 | NC   | DQb5 | Vss     | К   | Vss  |
| NC   | DQa3              | /SBa | /K  | Vss     | NC   | DQb6 | L                                 | DQb6 | NC   | Vss     | /K  | /SBa |
| VddQ | NC                | Vss  | /SW | Vss     | DQb7 | VddQ | М                                 | VddQ | DQb7 | Vss     | /SW | Vss  |
| NC   | DQa2              | Vss  | SA1 | Vss     | NC   | DQb8 | Ν                                 | DQb8 | NC   | Vss     | SA1 | Vss  |
| DQa1 | NC                | Vss  | SA0 | Vss     | DQb9 | NC   | Р                                 | NC   | DQb9 | Vss     | SA0 | Vss  |
| NC   | SA4               | M2   | Vdd | M1      | SA14 | NC   | R                                 | NC   | SA14 | M1      | Vdd | M2   |
| ZZ   | SA5               | SA8  | NC  | SA11    | SA15 | NC   | т                                 | NC   | SA15 | SA11    | NC  | SA8  |
| VddQ | NC                | TDO  | тск | TDI     | TMS  | VddQ | U                                 | VddQ | TMS  | TDI     | тск | TDO  |

[ µPD464318ALS1 ]

#### Pin Name and Functions [µPD464318ALS1]

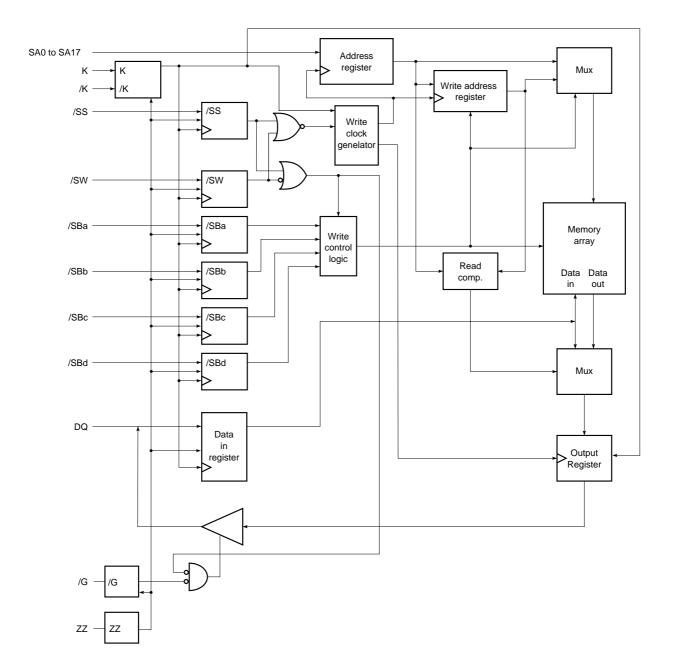
| Pin name     | Description                       | Function                          |
|--------------|-----------------------------------|-----------------------------------|
| Vdd          | Core Power Supply                 | Supplies power for RAM core       |
| Vss          | Ground                            |                                   |
| VddQ         | Output Power Supply               | Supplies power for output buffers |
| Vref         | Input Reference                   |                                   |
| K, /K        | Main Clock Input                  |                                   |
| SA0 to SA17  | Synchronous Address Input         |                                   |
| DQa1 to DQb9 | Synchronous Data Input / Output   |                                   |
| /SS          | Synchronous Chip Select           | Logically selects SRAM            |
| /SW          | Synchronous Byte Write Enable     | Write command                     |
| /SBa         | Synchronous Byte "a" Write Enable | Write DQa1 to DQa9                |
| /SBb         | Synchronous Byte "b" Write Enable | Write DQb1 to DQb9                |
| /G           | Asynchronous Output Enable        | Asynchronous input                |
| ZZ           | Asynchronous Sleep Mode           | Enables sleep mode, active high   |
| ZQ           | Output Impedance Control          |                                   |
| M1, M2       | Mode select                       | Selects operation mode Note       |
| NC           | No Connection                     |                                   |
| TMS          | Test Mode Select (JTAG)           |                                   |
| TDI          | Test Data Input (JTAG)            |                                   |
| тск          | Test Clock Input (JTAG)           |                                   |
| TDO          | Test Data Output (JTAG)           |                                   |

**Note** This device only supports Single Differential Clock, R/R Mode.

(R/R stands for Registered Input/Registered Output.)

# NEC

# 119-pin plastic BGA (128K Words by 36 Bits Pin Assignment)


|      |      |      |     |         |      | [    | 464336                            | ALS1] |      |         |     |      |      |      |
|------|------|------|-----|---------|------|------|-----------------------------------|-------|------|---------|-----|------|------|------|
|      |      |      | В   | ottom V | /iew |      |                                   |       | T    | op Viev | v   |      |      |      |
|      |      |      |     |         |      |      | A B C D E F G H J K L M N P R T U |       | 0    | 3 4 5   | 6 7 |      |      |      |
| 7    | 6    | 5    | 4   | 3       | 2    | 1    |                                   | 1     | 2    | 3       | 4   | 5    | 6    | 7    |
| VddQ | SA2  | SA5  | NC  | SA9     | SA12 | VDDQ | А                                 | VddQ  | SA12 | SA9     | NC  | SA5  | SA2  | VddQ |
| NC   | NC   | SA15 | NC  | SA16    | NC   | NC   | В                                 | NC    | NC   | SA16    | NC  | SA15 | NC   | NC   |
| NC   | SA3  | SA6  | Vdd | SA10    | SA13 | NC   | С                                 | NC    | SA13 | SA10    | Vdd | SA6  | SA3  | NC   |
| DQb8 | DQb9 | Vss  | ZQ  | Vss     | DQc9 | DQc8 | D                                 | DQc8  | DQc9 | Vss     | ZQ  | Vss  | DQb9 | DQb8 |
| DQb6 | DQb7 | Vss  | /SS | Vss     | DQc7 | DQc6 | Е                                 | DQc6  | DQc7 | Vss     | /SS | Vss  | DQb7 | DQb6 |
| VddQ | DQb5 | Vss  | /G  | Vss     | DQc5 | VddQ | F                                 | VddQ  | DQc5 | Vss     | /G  | Vss  | DQb5 | VddQ |
| DQb3 | DQb4 | /SBb | NC  | /SBc    | DQc4 | DQc3 | G                                 | DQc3  | DQc4 | /SBc    | NC  | /SBb | DQb4 | DQb3 |
| DQb1 | DQb2 | Vss  | NC  | Vss     | DQc2 | DQc1 | н                                 | DQc1  | DQc2 | Vss     | NC  | Vss  | DQb2 | DQb1 |
| VddQ | Vdd  | Vref | Vdd | Vref    | Vdd  | VddQ | J                                 | VddQ  | Vdd  | Vref    | Vdd | Vref | Vdd  | VddQ |
| DQa1 | DQa2 | Vss  | к   | Vss     | DQd2 | DQd1 | к                                 | DQd1  | DQd2 | Vss     | К   | Vss  | DQa2 | DQa1 |
| DQa3 | DQa4 | /SBa | /K  | /SBd    | DQd4 | DQd3 | L                                 | DQd3  | DQd4 | /SBd    | /K  | /SBa | DQa4 | DQa3 |
| VddQ | DQa5 | Vss  | /SW | Vss     | DQd5 | VddQ | М                                 | VddQ  | DQd5 | Vss     | /SW | Vss  | DQa5 | VddQ |
| DQa6 | DQa7 | Vss  | SA1 | Vss     | DQd7 | DQd6 | Ν                                 | DQd6  | DQd7 | Vss     | SA1 | Vss  | DQa7 | DQa6 |
| DQa8 | DQa9 | Vss  | SA0 | Vss     | DQd9 | DQd8 | Ρ                                 | DQd8  | DQd9 | Vss     | SA0 | Vss  | DQa9 | DQa8 |
| NC   | SA4  | M2   | Vdd | M1      | SA14 | NC   | R                                 | NC    | SA14 | M1      | Vdd | M2   | SA4  | NC   |
| ZZ   | NC   | SA7  | SA8 | SA11    | NC   | NC   | т                                 | NC    | NC   | SA11    | SA8 | SA7  | NC   | ZZ   |
| VddQ | NC   | TDO  | ТСК | TDI     | TMS  | VDDQ | U                                 | VddQ  | TMS  | TDI     | ТСК | TDO  | NC   | VddQ |
|      |      |      |     |         |      |      |                                   |       |      |         |     |      |      |      |

#### Pin Name and Functions [µPD464336ALS1]

| Pin name     | Description                       | Function                          |
|--------------|-----------------------------------|-----------------------------------|
| Vdd          | Core Power Supply                 | Supplies power for RAM core       |
| Vss          | Ground                            |                                   |
| VddQ         | Output Power Supply               | Supplies power for output buffers |
| Vref         | Input Reference                   |                                   |
| К, /К        | Main Clock                        |                                   |
| SA0 to SA16  | Synchronous Address Input         |                                   |
| DQa1 to DQd9 | Synchronous Data Input / Output   |                                   |
| /SS          | Synchronous Chip Select           | Logically selects SRAM            |
| /SW          | Synchronous Byte Write Enable     | Write command                     |
| /SBa         | Synchronous Byte "a" Write Enable | Write DQa1 to DQa9                |
| /SBb         | Synchronous Byte "b" Write Enable | Write DQb1 to DQb9                |
| /SBc         | Synchronous Byte "c" Write Enable | Write DQc1 to DQc9                |
| /SBd         | Synchronous Byte "d" Write Enable | Write DQd1 to DQd9                |
| /G           | Asynchronous Output Enable        | Asynchronous input                |
| ZZ           | Asynchronous Sleep Mode           | Enables sleep mode, active high   |
| ZQ           | Output Impedance Control          |                                   |
| M1, M2       | Mode Select                       | Selects operation mode Note       |
| NC           | No Connection                     |                                   |
| TMS          | Test Mode Select (JTAG)           |                                   |
| TDI          | Test Data Input (JTAG)            |                                   |
| тск          | Test Clock Input (JTAG)           |                                   |
| TDO          | Test Data Output (JTAG)           |                                   |

(R/R stands for Registered Input/Registered Output.)

## Late Write Block Diagram



Data Sheet M13508EJ2V0DS

#### **Programmable Impedance / Power Up Requirements**

An external resistor, RQ, must be connected between the ZQ pin on the SRAM and Vss to allow for the SRAM to adjust its output driver impedance. The value of RQ must be 5X the value of the intended line impedance driven by the SRAM. The allowable range of RQ to guarantee impedance matching with a tolerance of 10 % is between 175 ohm and 350 ohm. Periodic readjustment of the output driver impedance is necessary as the impedance is greatly affected by drifts in supply voltage and temperature. One evaluation occurs every 8 clock cycles and each evaluation may move the output driver impedance level only one step at a time towards the optimum level. The output driver has 64 discrete binary weighted steps. The impedance update of the output driver occurs when the SRAM is in Hi-Z. Write and Deselect operations will synchronously switch the SRAM into and out of Hi-Z, therefore, triggering an update. Power up requirements for the SRAM are that V<sub>DD</sub> must be powered before or simultaneously with V<sub>DD</sub>Q followed by V<sub>REF</sub>; inputs should be powered last. The limitation on V<sub>DD</sub>Q is that it must not exceed V<sub>DD</sub> by more than 0.4 V during power up. In order to guarantee the optimum internally regulated supply voltage, the SRAM requires 4  $\mu$ s of power-up time after V<sub>DD</sub> reaches its operating range. To guarantee optimum output driver impedance after power up, the SRAM needs 520 clock cycles followed by a single Low-Z to Hi-Z transition at the end of 520 cycles.

# Synchronous Truth Table

| ZZ | /SS | /SW | /SBa | /SBb | /SBc | /SBd | Mode         | DQa1-9 | DQb1-9 | DQc1-9 | DQd1-9 | Power   |
|----|-----|-----|------|------|------|------|--------------|--------|--------|--------|--------|---------|
| L  | Н   | ×   | ×    | ×    | ×    | ×    | Not selected | Hi-Z   | Hi-Z   | Hi-Z   | Hi-Z   | Active  |
| L  | L   | н   | ×    | ×    | ×    | ×    | Read         | Dout   | Dout   | Dout   | Dout   | Active  |
| L  | L   | L   | L    | L    | L    | L    | Write        | Din    | Din    | Din    | Din    | Active  |
| L  | L   | L   | L    | Н    | Н    | Н    | Write        | Din    | Hi-Z   | Hi-Z   | Hi-Z   | Active  |
| L  | L   | L   | н    | L    | L    | L    | Write        | Hi-Z   | Din    | Din    | Din    | Active  |
| Н  | х   | x   | x    | х    | х    | х    | Sleep Mode   | Hi-Z   | Hi-Z   | Hi-Z   | Hi-Z   | Standby |

**Remark** ×: Don't care

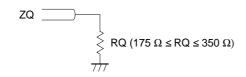
#### **Output Enable Truth Table**

| Mode             | /G | DQ   |
|------------------|----|------|
| Read             | L  | Dout |
| Read             | Н  | Hi-Z |
| Sleep (ZZ=H)     | x  | Hi-Z |
| Write (/SW=L)    | x  | Hi-Z |
| Deselect (/SS=H) | Х  | Hi-Z |

# Mode Select (I/O) Note1

| M1  | M2  | Mode                                             |
|-----|-----|--------------------------------------------------|
| Vss | Vdd | Single Differential Clock (K,/K), R/R Mode Note2 |

Notes 1. This device only supports Single Differential Clock, R/R Mode. Mode Select Pins(M1,M2) are to be tied to


either VDD or VSS

2. R/R : Registered Input / Registered Output

# Mode Select (Output Buffer)

| ZQ           | Mode                                              | Notes |
|--------------|---------------------------------------------------|-------|
| IZQ 	imes RQ | Controlled impedance push-pull output buffer mode | 1     |
| Vdd          | Push-Pull output buffer mode                      | 2     |

Notes 1. See figure.



2. See figure.



Data Sheet M13508EJ2V0DS

# **Electrical Specifications**

### **Absolute Maximum Ratings**

| Parameter              | Symbol | Condition | MIN. | TYP. | MAX.       | Unit | Note |
|------------------------|--------|-----------|------|------|------------|------|------|
| Supply voltage         | Vdd    |           | -0.5 |      | +4         | V    | 1    |
| Output supply voltage  | VddQ   |           | -0.5 |      | +4         | V    | 1    |
| Input voltage          | Vin    |           | -0.5 |      | Vdd + 0.3  | V    | 1    |
| Input / Output voltage | Vi/o   |           | -0.5 |      | VddQ + 0.3 | V    | 1    |
| Operating temperature  | Tj     |           | 5    |      | 110        | °C   | 2    |
| Storage temperature    | Tstg   |           | -55  |      | +125       | °C   |      |

Notes 1. -1.0 V MIN. (Pulse width 10% Tcyc)

- **2.** T<sub>j</sub> = Junction temperature
- Caution Exposing the device to stress above those listed in Absolute Maximum Rating could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

#### Recommended DC Operating Conditions (Tj = 5 to 110 °C)

| Parameter                    | Symbol | Conditions | MIN.                 | TYP. | MAX.     | Unit |
|------------------------------|--------|------------|----------------------|------|----------|------|
| Core supply voltage          | Vdd    |            | 3.15                 | 3.3  | 3.45     | V    |
| Output buffer supply voltage | VddQ   |            | 1.4                  | 1.5  | 1.6      | V    |
| Input reference voltage      | Vref   |            | 0.6                  | 0.75 | 0.9      | V    |
| Low level input voltage      | VIL    |            | -0.3 <sup>Note</sup> |      | Vref-0.1 | V    |
| High level input voltage     | Vін    |            | VREF+0.1             |      | VDDQ+0.3 | V    |

Note -1.0 V MIN. (Pulse width 10% Tcyc)

#### Recommended AC Operating Conditions (T<sub>j</sub> = 5 to 110 °C)

| Parameter                | Symbol     | Conditions | MIN.     | TYP. | MAX.     | Unit |
|--------------------------|------------|------------|----------|------|----------|------|
| Input reference voltage  | VREF (RMS) |            | -5%      |      | +5%      | V    |
| Low level input voltage  | VIL        |            | -0.3     |      | Vref-0.2 | V    |
| High level input voltage | Vih        |            | VREF+0.2 |      | VDDQ+0.3 | V    |

#### Capacitance (TA = 25 °C, f = 1 MHz)

| Parameter Note             | Symbol | Test conditions | MAX. | Unit |
|----------------------------|--------|-----------------|------|------|
| Input capacitance          | CIN    | Vin = 0 V       | 6    | pF   |
| Input / Output capacitance | Ci/o   | V1/0 = 0 V      | 7    | pF   |

Note These parameters are sampled and not 100% tested.

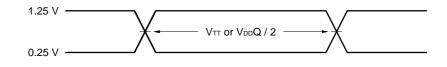
#### DC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)

| Parameter                    | Symbol | Conditions                                              |             | MIN. | TYP. | MAX. | Unit |
|------------------------------|--------|---------------------------------------------------------|-------------|------|------|------|------|
| Input leakage current        | L      | VIN = 0 to VDD                                          | -5          |      | +5   | μΑ   |      |
| DQ leakage current           | Ilo    | VI/O = 0 to VDDQ, /SS = VIH or /G = VIH                 |             | -5   |      | +5   | μA   |
| Operating supply current     | Icc    | VIN = VIH  or  VIL, /SS = VIL, ZZ = VIL,                | µPD464318AL |      |      | 550  | mA   |
|                              |        | cycle = 250 MHz, IDQ = 0 mA $\mu$ PD464336AL            |             |      |      | 750  |      |
| Quiescent active power       | ICC2   | VIN = VIH or VIL, /SS = VIL, ZZ = VIL,                  |             |      |      | 200  | mA   |
| supply current               |        | cycle = 4 MHz, IDQ = 0 mA                               |             |      |      |      |      |
| Sleep mode power supply      | Isbzz  | ZZ = VIH, All other inputs = VIH or VIL                 |             |      |      | 55   | mA   |
| current                      |        | cycle = DC, Iba = 0 mA                                  |             |      |      |      |      |
| Power supply standby current | ISBSS  | VIN = VIH or VIL, /SS = VIH, ZZ = VIL, $\mu$ PD464318AL |             |      |      | 530  | mA   |
|                              |        | cycle=250 MHz, IDQ = 0 mA                               | µPD464336AL |      |      | 730  |      |

 $\star$ 

#### Output Voltage on Controlled Impedance Push-Pull Output Buffer Mode ( $VZQ = IZQ \times RQ$ )

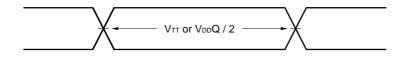
| Parameter                 | Symbol | Conditions                                          | MIN.   | TYP. | MAX.   | Unit |
|---------------------------|--------|-----------------------------------------------------|--------|------|--------|------|
| Low level output voltage  | Vol    | $IOL = (VDDQ/2) / (RQ/5) \pm 10\%$                  | Vss    |      | VddQ/2 | V    |
|                           |        | @Vol = VddQ / 2 (175 $\Omega$ < RQ < 350 $\Omega$ ) |        |      |        |      |
| High level output voltage | Vон    | Iон = (VddQ/2) / (RQ/5) ± 10%                       | VddQ/2 |      | VddQ   | V    |
|                           |        | @Voh = VddQ / 2 (175 $\Omega$ < RQ < 350 $\Omega$ ) |        |      |        |      |


## Output Voltage on Push-Pull Output Buffer Mode (VZQ = VDD)

| Parameter                 | Symbol | Conditions  | MIN.     | TYP. | MAX. | Unit |
|---------------------------|--------|-------------|----------|------|------|------|
| Low level output voltage  | Vol    | Io∟ = +4 mA | -        |      | 0.3  | V    |
| High level output voltage | Vон    | Iон = -4 mA | VDDQ-0.3 |      | _    | V    |

AC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)

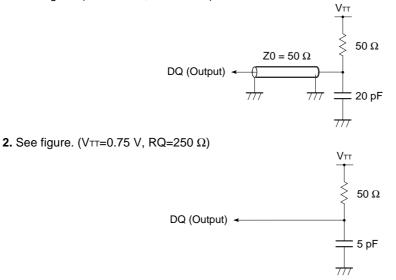
#### **AC Characteristics Test Conditions**


# Input waveform (rise and fall time = 0.5 ns (20 to 80%))



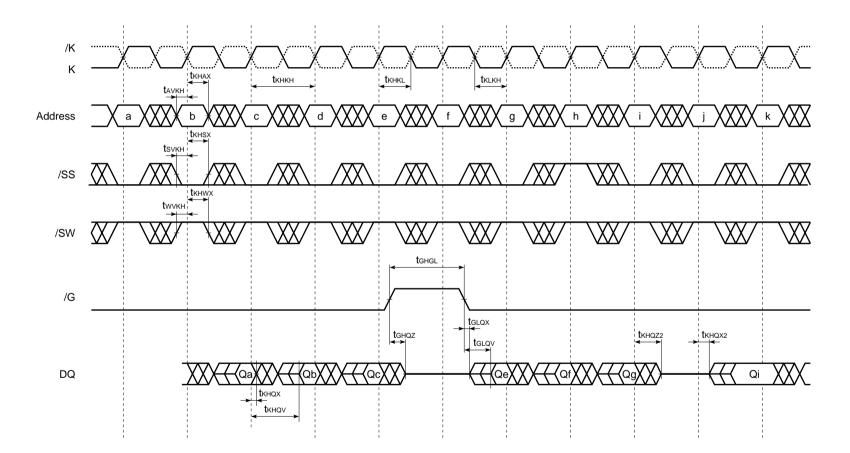
Remarks 1. Clock input differential voltage

2. Clock input common mode voltage range


#### Output waveform



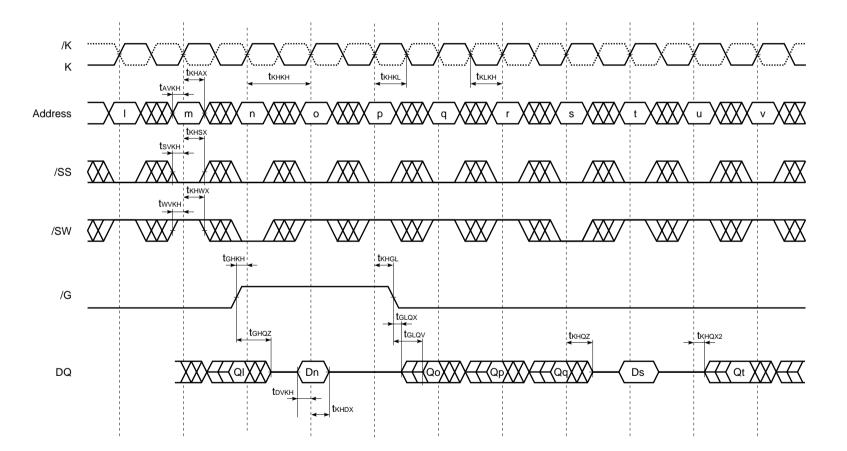
#### Single Differential Clock, Registered Input / Registered Output Mode


| Parameter              |              | Symbol           | –A4 (25 | 50 MHz) | -A44 (2 | 25 MHz) | –A5 (20 | 00 MHz) | Unit | Notes |
|------------------------|--------------|------------------|---------|---------|---------|---------|---------|---------|------|-------|
|                        |              |                  | MIN.    | MAX.    | MIN.    | MAX.    | MIN.    | MAX.    |      |       |
| Clock cycle time       |              | tкнкн            | 4.0     | _       | 4.4     | -       | 5.0     | _       | ns   |       |
| Clock phase time       |              | tkhkl /<br>tklkh | 1.5     | -       | 1.5     | -       | 1.5     | -       | ns   |       |
| Setup times            | Address      | tavkh            | 0.5     | _       | 0.5     | _       | 0.5     | _       | ns   |       |
|                        | Write data   | tdvкн            |         |         |         |         |         |         |      |       |
|                        | Write enable | tw∨ĸн            |         |         |         |         |         |         |      |       |
|                        | Chip select  | tsvкн            |         |         |         |         |         |         |      |       |
| Hold times             | Address      | tкнах            | 0.75    | -       | 0.75    | -       | 1.0     | -       | ns   |       |
|                        | Write data   | <b>t</b> KHDX    |         |         |         |         |         |         |      |       |
|                        | Write enable | tкнwx            |         |         |         |         |         |         |      |       |
|                        | Chip select  | tĸнsx            |         |         |         |         |         |         |      |       |
| Clock access time      |              | <b>t</b> KHQV    | -       | 2.0     | -       | 2.3     | -       | 2.5     | ns   | 1     |
| K high to Q change     |              | <b>t</b> KHQX    | 0.7     | _       | 0.7     | -       | 0.7     | -       | ns   | 2     |
| /G low to Q valid      |              | <b>t</b> GLQV    | -       | 2.0     | -       | 2.3     | -       | 2.5     | ns   | 1     |
| /G low to Q change     |              | tGLQX            | 0.7     | -       | 0.7     | -       | 0.7     | -       | ns   | 2     |
| /G high to Q Hi-Z      |              | tgнqz            | 1.0     | 2.0     | 1.0     | 2.3     | 1.0     | 2.5     | ns   | 2     |
| K high to Q Hi-Z (/SW) |              | <b>t</b> KHQZ    | 1.0     | 2.5     | 1.0     | 2.8     | 1.0     | 3.0     | ns   | 2     |
| K high to Q Hi-Z (/SS) |              | tkhqz2           | 1.0     | 2.5     | 1.0     | 2.8     | 1.0     | 3.0     | ns   | 2     |
| K high to Q Lo-Z       |              | tKHQX2           | 0.7     | -       | 0.7     | -       | 0.7     | -       | ns   |       |
| /G high Pulse width    |              | tGHGL            | 4.0     | _       | 4.4     | -       | 5.0     | -       | ns   | 3     |
| /G high to K high      |              | tGнкн            | 1.0     | -       | 1.0     | -       | 1.0     | -       | ns   | 3     |
| K high to /G low       |              | <b>t</b> KHGL    | 2.5     | -       | 2.5     | -       | 2.5     | -       | ns   | 3     |
| Sleep Mode Recovery    |              | tzzr             | 4.0     | -       | 4.4     | -       | 5.0     | -       | ns   | 4     |
| Sleep Mode Enable      |              | tZZE             | -       | 4.0     | -       | 4.4     | -       | 5.0     | ns   | 4     |

**Notes 1.** See figure. (VTT=0.75 V, RQ=250  $\Omega$ )



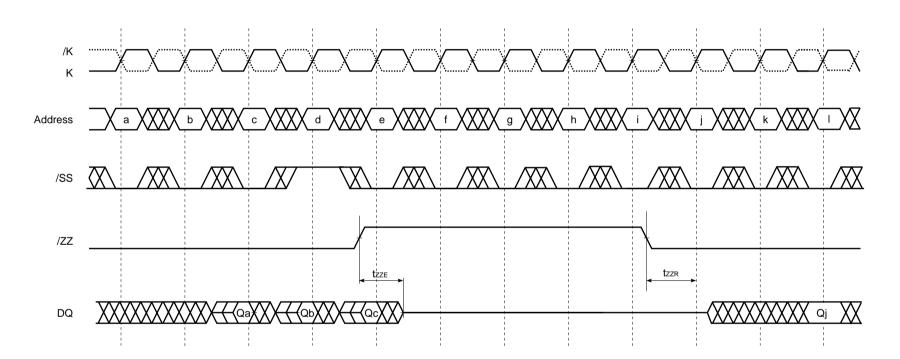
3. Controlled impedance push-pull output buffer mode only.


4. /SS must be 'high' before sleep mode entry.



Single Differential Clock, Registered Input / Registered Output Mode (Read Operation)

Data Sheet M13508EJ2V0DS






# Single Differential Clock, Registered Input / Registered Output Mode (Write Operation)



Sleep Mode



Data Sheet M13508EJ2V0DS

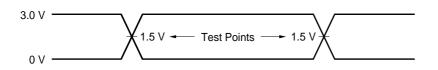
# **JTAG Specifications**

The  $\mu$ PD464318AL and  $\mu$ PD464336AL support a limited set of JTAG functions as in IEEE standard 1149.1.

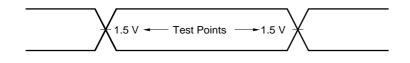
#### Test Access Port (TAP) Pins

| Pin Name | Pin Assignments | Description                                                                                                                                                                                                                                                              |
|----------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ТСК      | 4 U             | Test Clock Input. All input are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK.                                                                                                                                               |
| TMS      | 2 U             | Test Mode Select. This is the command input for the TAP controller state machine.                                                                                                                                                                                        |
| TDI      | 3 U             | Test Data Input. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is deter-mined by the state of the TAP controller state machine and the instruction that is currently loaded in the TAP instruction. |
| TDO      | 5 U             | Test Data Output. Output changes in response to the falling edge of TCK. This is the output side of the serial registers placed between TDI and TDO.                                                                                                                     |

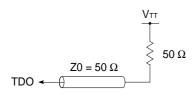
**Remark** The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held high for five rising edges of TCK. The controller state is also reset on the SRAM POWER-UP.


| Parameter                | Symbol | Conditions  | MIN. | TYP. | MAX.    | Unit | Notes |
|--------------------------|--------|-------------|------|------|---------|------|-------|
| JTAG input high voltage  | Vін    |             | 2.2  |      | VDD+0.3 | V    |       |
| JTAG input low voltage   | VIL    |             | -0.3 |      | +0.8    | V    |       |
| JTAG output high voltage | Vон    | Iон = -8 mA | 2.4  |      | _       | V    |       |
| JTAG output low voltage  | Vol    | IOL = 8 mA  | -    |      | 0.4     | V    |       |

#### JTAG DC Characteristics (Tj = 5 to 110 °C)


# NEC

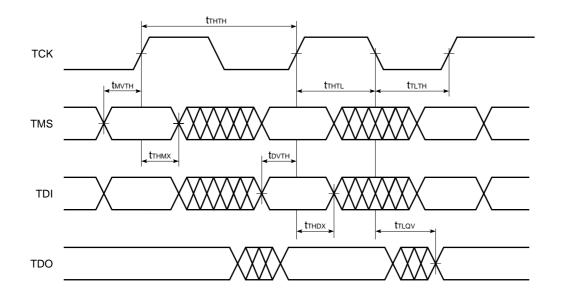
# JTAG AC Test Conditions (Tj = 5 to 110 °C)


Input waveform (rise / fall time = 1 ns (20 to 80 %))



Output waveform




Output load (VTT=1.5 V)



# JTAG AC Characteristics (Tj = 5 to 110 °C)

| Parameter                  | Symbol        | Conditions | MIN. | TYP. | MAX. | Unit | Note |
|----------------------------|---------------|------------|------|------|------|------|------|
| Clock Cycle Time (TCK)     | tтнтн         |            | 100  |      | Ι    | ns   |      |
| Clock Phase Time (TCK)     | tthtl / ttlth |            | 40   |      | -    | ns   |      |
| Setup Time (TMS / TDI)     | tmvth / tdvth |            | 10   |      | -    | ns   |      |
| Hold Time (TMS / TDI)      | tтнмх / tтнdx |            | 10   |      | _    | ns   |      |
| TCK Low to TDO Valid (TDO) | <b>t</b> TLQV |            | -    |      | 20   | ns   |      |

# JTAG Timing Diagram



#### Scan Register Definition (1)

| Register name        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instruction register | The instruction register holds the instructions that are executed by the TAP controller when it is moved into the run-test/idle or the various data register state. The register can be loaded when it is placed between the TDI and TDO pins. The instruction register is automatically preloaded with the IDCODE instruction at power-up whenever the controller is placed in test-logic-reset state.                                                                                                                                                                                                                                                                                                        |
| Bypass register      | The bypass register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAMs TAP to another device in the scan chain with as little delay as possible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ID register          | The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit code when the controller is put in capture-DR state with the IDCODE command loaded in the instruction register. The register is then placed between the TDI and TDO pins when the controller is moved into shift-DR state.                                                                                                                                                                                                                                                                                                                                                                                        |
| Boundary register    | The boundary register, under the control of the TAP controller, is loaded with the contents of the RAMs I/O ring when the controller is in capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to shift-DR state. Several TAP instructions can be used to activate the boundary register.<br>The Scan Exit Order tables describe which device bump connects to each boundary register location. The first column defines the bit's position in the boundary register. The shift register bit nearest TDO (i.e., first to be shifted out) is defined as bit 1. The second column is the name of the input or I/O at the bump and the third column is the bump number. |

# Scan Register Definition (2)

| Register name        | μΡD464318AL | μΡD464336AL | Unit |
|----------------------|-------------|-------------|------|
| Instruction register | 3           | 3           | bit  |
| Bypass register      | 1           | 1           | bit  |
| ID register          | 32          | 32          | bit  |
| Boundary register    | 51          | 70          | bit  |

#### **ID Register Definition**

| Part number | Organization | ID [31:28] vendor revision no. | ID [27:12] part no. | ID [11:1] vendor ID no. | ID [0] fix bit |
|-------------|--------------|--------------------------------|---------------------|-------------------------|----------------|
| µPD464318AL | 256K x 18    | XXXX                           | 0110001011 000000   | 00010010000             | 1              |
| µPD464336AL | 128K x 36    | XXXX                           | 0110101100 000000   | 00010010000             | 1              |

#### SCAN Exit Order

# [ µPD464318AL (256K words by 18 bits) ]

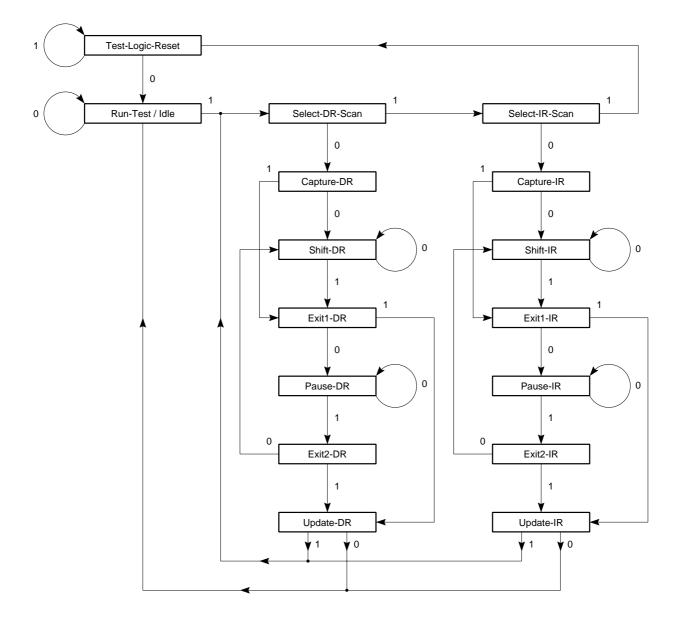
| Bit<br>no. | Signal<br>name | Bump<br>ID | Bit<br>no. | Signal<br>name | Bump<br>ID |
|------------|----------------|------------|------------|----------------|------------|
| 1          | M2             | 5R         | 26         | SA17           | 3B         |
| 2          | SA5            | 6T         | 27         | NC             | 2B         |
| 3          | SA0            | 4P         | 28         | SA9            | ЗA         |
|            |                |            | 29         | SA10           | 3C         |
| 4          | SA4            | 6R         | 30         | SA13           | 2C         |
| 5          | SA8            | 5T         | 31         | SA12           | 2A         |
| 6          | ZZ             | 7T         |            |                |            |
|            |                |            | 32         | DQb1           | 1D         |
| 7          | DQa1           | 7P         | 33         | DQb2           | 2E         |
| 8          | DQa2           | 6N         |            |                |            |
|            |                |            |            |                |            |
|            |                |            | 34         | DQb3           | 2G         |
| 9          | DQa3           | 6L         |            |                |            |
|            |                |            |            |                |            |
|            |                |            | 35         | DQb4           | 1H         |
| 10         | DQa4           | 7K         | 36         | /SBb           | 3G         |
| 11         | /SBa           | 5L         | 37         | ZQ             | 4D         |
| 12         | /K             | 4L         | 38         | /SS            | 4E         |
| 13         | К              | 4K         | 39         | NC             | 4G         |
| 14         | /G             | 4F         | 40         | NC             | 4H         |
|            |                |            | 41         | /SW            | 4M         |
|            |                |            |            |                |            |
| 15         | DQa5           | 6H         |            |                |            |
| 16         | DQa6           | 7G         | 42         | DQb5           | 2K         |
|            |                |            | 43         | DQb6           | 1L         |
| 17         | DQa7           | 6F         |            |                |            |
| 18         | DQa8           | 7E         | 44         | DQb7           | 2M         |
|            |                |            | 45         | DQb8           | 1N         |
|            |                |            |            |                |            |
| 19         | DQa9           | 6D         |            |                |            |
| 20         | SA2            | 6A         | 46         | DQb9           | 2P         |
| 21         | SA3            | 6C         | 47         | SA11           | 3T         |
| 22         | SA7            | 5C         | 48         | SA14           | 2R         |
| 23         | SA6            | 5A         | 49         | SA1            | 4N         |
| 24         | NC             | 6B         | 50         | SA15           | 2T         |
| 25         | SA16           | 5B         | 51         | M1             | 3R         |
|            |                |            |            |                |            |

# [ $\mu$ PD464336AL (128K words by 36 bits) ]

Bit no. 

| μΡD464         | 336AL (1   |            | as by 30 t     | Dits)]     |  |  |
|----------------|------------|------------|----------------|------------|--|--|
| Signal<br>name | Bump<br>ID | Bit<br>no. | Signal<br>name | Bump<br>ID |  |  |
| M2             | 5R         | 36         | SA16           | 3B         |  |  |
|                |            | 37         | NC             | 2B         |  |  |
| SA0            | 4P         | 38         | SA9            | ЗA         |  |  |
| SA8            | 4T         | 39         | SA10           | 3C         |  |  |
| SA4            | 6R         | 40         | SA13           | 2C         |  |  |
| SA7            | 5T         | 41         | SA12           | 2A         |  |  |
| ZZ             | 7T         | 42         | DQc9           | 2D         |  |  |
| DQa9           | 6P         | 43         | DQc8           | 1D         |  |  |
| DQa8           | 7P         | 44         | DQc7           | 2E         |  |  |
| DQa7           | 6N         | 45         | DQc6           | 1E         |  |  |
| DQa6           | 7N         | 46         | DQc5           | 2F         |  |  |
| DQa5           | 6M         | 47         | DQc4           | 2G         |  |  |
| DQa4           | 6L         | 48         | DQc3           | 1G         |  |  |
| DQa3           | 7L         | 49         | DQc2           | 2H         |  |  |
| DQa2           | 6K         | 50         | DQc1           | 1H         |  |  |
| DQa1           | 7K         | 51         | /SBc           | 3G         |  |  |
| /SBa           | 5L         | 52         | ZQ             | 4D         |  |  |
| /K             | 4L         | 53         | /SS            | 4E         |  |  |
| К              | 4K         | 54         | NC             | 4G         |  |  |
| /G             | 4F         | 55         | NC             | 4H         |  |  |
| /SBb           | 5G         | 56         | /SW            | 4M         |  |  |
| DQb1           | 7H         | 57         | /SBd           | 3L         |  |  |
| DQb2           | 6H         | 58         | DQd1           | 1K         |  |  |
| DQb3           | 7G         | 59         | DQd2           | 2K         |  |  |
| DQb4           | 6G         | 60         | DQd3           | 1L         |  |  |
| DQb5           | 6F         | 61         | DQd4           | 2L         |  |  |
| DQb6           | 7E         | 62         | DQd5           | 2M         |  |  |
| DQb7           | 6E         | 63         | DQd6           | 1N         |  |  |
| DQb8           | 7D         | 64         | DQd7           | 2N         |  |  |
| DQb9           | 6D         | 65         | DQd8           | 1P         |  |  |
| SA2            | 6A         | 66         | DQd9           | 2P         |  |  |
| SA3            | 6C         | 67         | SA11           | 3T         |  |  |
| SA6            | 5C         | 68         | SA14           | 2R         |  |  |
| SA5            | 5A         | 69         | SA1            | 4N         |  |  |
| NC             | 6B         |            |                |            |  |  |
| SA15           | 5B         | 70         | M1             | 3R         |  |  |
|                |            |            |                |            |  |  |

#### **JTAG Instructions**


| Instructions | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EXTEST       | EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register, whatever length it may be in the device, is loaded with all logic 0s. EXTEST is not implemented in this device. Therefore this device is not 1149.1 compliant. Nevertheless, this RAMs TAP does respond to an all zeros instruction, as follows. With the EXTEST (000) instruction loaded in the instruction register the RAM responds just as it does in response to the SAMPLE instruction, except the RAM output are forced to Hi-Z any time the instruction is loaded.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| IDCODE       | The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in capture-DR mode and places the ID register between the TDI and TDO pins in shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any time the controller is placed in the test-logic-reset state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BYPASS       | The BYPASS instruction is loaded in the instruction register when the bypass register is placed between TDI and TDO. This occurs when the TAP controller is moved to the shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SAMPLE       | Sample is a Standard 1149.1 mandatory public instruction. When the sample instruction is loaded in the instruction register, moving the TAP controller into the capture-DR state loads the data in the RAMs input and I/O buffers into the boundary scan register. Because the RAM clock(s) are independent from the TAP clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents while the input buffers are in transition (i.e., in a metastable state). Although allowing the TAP to sample metastable input will not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input data capture setup plus hold time (tcs plus tcH). The RAMs clock inputs need not be paused for any other TAP operation except capturing the I/O ring contents into the boundary scan register. Moving the controller to shift-DR state then places the boundary scan register between the TDI and TDO pins. This functionality is not Standard 1149.1 compliant. |
| SAMPLE-Z     | If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (Hi-Z) and the boundary register is connected between TDI and TDO when the TAP controller is moved to the shift-DR state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

# **JTAG Instruction Cording**

| IR2 | IR1 | IR0 | Instruction | Note |
|-----|-----|-----|-------------|------|
| 0   | 0   | 0   | EXTEST      | 1    |
| 0   | 0   | 1   | IDCODE      |      |
| 0   | 1   | 0   | SAMPLE-Z    | 1    |
| 0   | 1   | 1   | BYPASS      |      |
| 1   | 0   | 0   | SAMPLE      |      |
| 1   | 0   | 1   | BYPASS      |      |
| 1   | 1   | 0   | BYPASS      |      |
| 1   | 1   | 1   | BYPASS      |      |

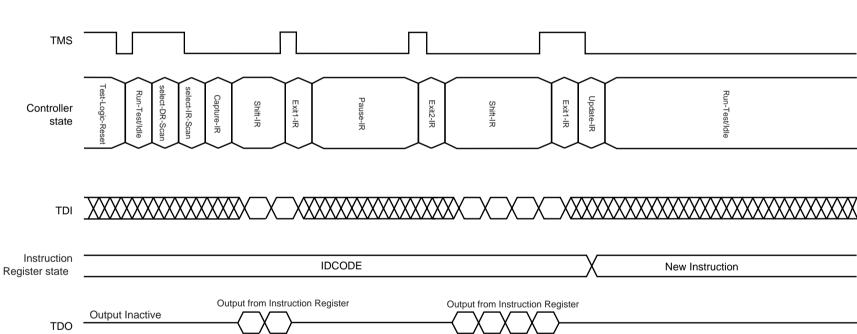
**Note 1.** TRISTATE all data drivers and CAPTURE the pad values into a SERIAL SCAN LATCH.

#### **TAP Controller State Diagram**



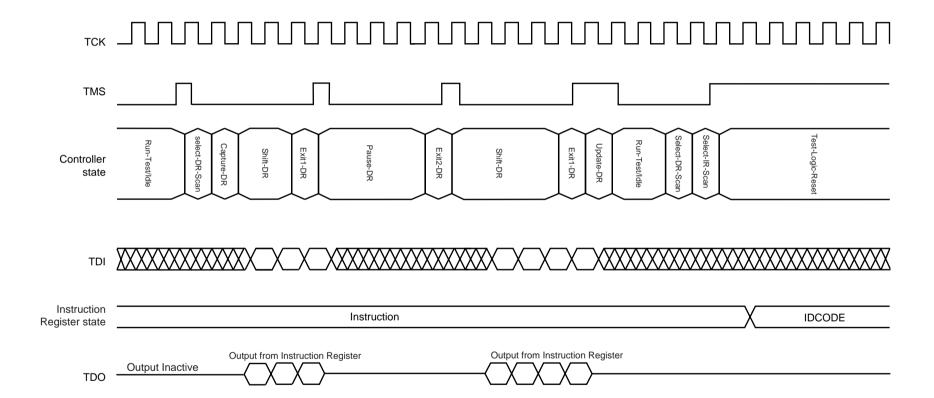
#### **Disabling The Test Access Port**

It is possible to use this device without utilizing the TAP. To disable the TAP Controller without interfering with normal operation of the device, TCK must be tied to Vss to preclude mid level inputs.


TDI and TMS are designed so an undriven input will produce a response identical to the application of a logic 1, and may be left unconnected. But they may also be tied to VDD through a 1 k resistor.

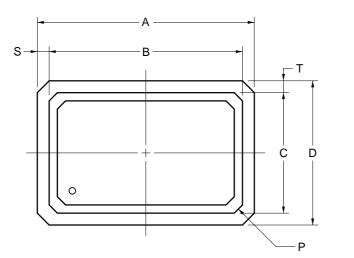
TDO should be left unconnected.


Data Sheet M13508EJ2V0DS

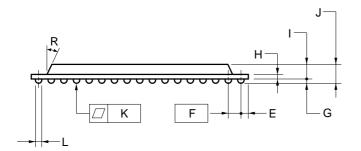

**Test Logic Operation (Instruction Scan)** 

тск




<u> μ</u>ΡD464318AL, 464336AL






Package Drawing

# **119 PIN PLASTIC BGA**



|         |        |        |        |        |        |        |        | T      |     |        |        |        |        |        |        |                 |             |
|---------|--------|--------|--------|--------|--------|--------|--------|--------|-----|--------|--------|--------|--------|--------|--------|-----------------|-------------|
| /       |        |        |        |        |        |        |        | 1      |     |        |        |        |        |        |        | $\overline{\ }$ |             |
| 0       | 0<br>0 | ф<br>Ф | 000 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 00              | 7<br>6<br>5 |
| 6       | -      | -      | -      | -      | -      | -      | -      | -      | 0   | -      | -      | -      | -      | -      | -      | 0               | 4           |
| 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | φ      | 0   | 0      | 0      | 0      | 0      | 0      | 0      | 0               | -           |
| P       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0      | 0               | 1           |
| $\Big<$ |        |        |        |        |        |        |        |        |     |        |        |        |        |        |        |                 |             |
| U       | Т      | R      | Ρ      | Ν      | М      | L      | κ      | Ĵ      | Н   | G      | F      | Е      | D      | С      | в      | А               |             |



| ITEM | MILLIMETERS         | INCHES                            |
|------|---------------------|-----------------------------------|
| A    | 22.0±0.2            | 0.866±0.008                       |
| В    | 19.5                | 0.768                             |
| С    | 12.0                | 0.472                             |
| D    | 14.0±0.2            | 0.551±0.008                       |
| Е    | 0.84                | 0.033                             |
| F    | 1.27 (T.P.)         | 0.05 (T.P.)                       |
| G    | 0.6±0.1             | $0.024^{+0.004}_{-0.005}$         |
| Н    | 0.56                | 0.022                             |
| Ι    | 1.46±0.1            | $0.057\substack{+0.005\\-0.004}$  |
| J    | 2.30 MAX.           | 0.091                             |
| к    | 0.15                | 0.006                             |
| L    | \$\$\phi_0.78±0.1\$ | $\phi$ 0.031 $^{+0.004}_{-0.005}$ |
| Р    | C0.7                | C0.028                            |
| R    | 25°                 | 25°                               |
| S    | 1.25                | 0.049                             |
| Т    | 1.0                 | 0.039                             |
|      |                     | P119S1-R4                         |

# **Recommended Soldering Conditions**

Please consult with our sales offices for soldering conditions of the  $\mu$ PD464318AL and  $\mu$ PD464336AL.

#### Type of Surface Mount Device

 $\mu$ PD464318ALS1: 119-pin plastic BGA  $\mu$ PD464336ALS1: 119-pin plastic BGA

# NOTES FOR CMOS DEVICES

#### **①** PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

#### Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

# **②** HANDLING OF UNUSED INPUT PINS FOR CMOS

#### Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

#### **③** STATUS BEFORE INITIALIZATION OF MOS DEVICES

#### Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

- The information in this document is current as of December, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
   "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
   developed based on a customer-designated "quality assurance program" for a specific application. The
   recommended applications of a semiconductor product depend on its quality grade, as indicated below.
   Customers must check the quality grade of each semiconductor product before using it in a particular
   application.
  - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
  - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
  - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

<sup>(</sup>Note)