

MICROCIRCUIT DATA SHEET

MNCLC412A-X REV 2A0

Original Creation Date: 02/02/99 Last Update Date: 06/09/03 Last Major Revision Date: 05/07/03

Dual Wideband Video Op Amp

General Description

The Comlinear CLC412 combines a high-speed complementary bipolar process with Comlinear's current-feedback topology to produce a very high-speed dual op amp. The CLC412 provides a 250MHz small-signal bandwidth at a gain of +2V/V and a 1300V/us slew rate while consuming only 50mW per amplifier from \pm 5V supplies.

The CLC412 offers exceptional video performance with its 0.02% and 0.02 degrees differential gain and phase errors for NTSC and PAL video signals while driving one back terminated 75ohms load. The CLC412 also offers a flat gain response of 0.1dB to 30MHz and very low channel-to-channel crosstalk of -76dB at 10MHz. Additionally, each amplifier can deliver a 70mA continuous output current. This level of performance makes the CLC412 an ideal dual op amp for high-density broadcast-quality video systems.

The CLC412's two very well-matched amplifiers support a number of applications such as differential line drivers and receivers. In addition, the CLC412 is well suited for Sallen Key active filters in applications such as anti-aliasing filters for high-speed A/D converters. Its low power requirement, low noise and low distortion also allow the CLC412 to serve portable RF applications such as IQ-channels.

NS Part Numbers

CLC412AE-QML CLC412AJ-MLS CLC412AJ-QML

Industry Part Number

CLC412A

Prime Die

UB1709A

Controlling Document

SEE FEATURES SECTION

Processing

MIL-STD-883, Method 5004

Quality Conformance Inspection

MIL-STD-883, Method 5005

1Static tests at+252Static tests at+1253Static tests at-554Dynamic tests at+255Dynamic tests at+1256Dynamic tests at-557Functional tests at+258AFunctional tests at+1258BFunctional tests at-559Switching tests at+2510Switching tests at+125	Subgrp	Description	Temp	(°C)
11 Switching tests at -55	2 3 4 5 6 7 8A 8B 9 10	Static tests at Static tests at Dynamic tests at Dynamic tests at Functional tests at Functional tests at Functional tests at Switching tests at	+125 -55 +25 +125 -55 +25 +125 -55 +25 +25 +125	

Features

```
Wide bandwidth: 330MHz (Av=+1V/V)
250MHz (Av=+2V/V)
0.1dB gain flatness to 30MHz
Low power: 5mA/channel
Very low diff. gain, phase: 0.02%, 0.02degrees
-76dB channel-to-channel crosstalk (10MHz)
Fast slew rate: 1300V/ms
Unity-gain stable
CONTROLLING DOCUMENTS:
```

CLC412AE-QML 5962-9471901M2A CLC412AJ-QML 5962-9471901MPA

Applications

- HDTV, NTSC & PAL video systems
- Video switching and distribution
- IQ amplifiers
- Wideband active filters
- Cable drivers
- DC coupled single-to-differential conversions

(Absolute Maximum Rat	ings)
-----------------------	-------

(Note 1)

Supply voltage(Vcc)		+7 V dc
Output current (Iout)		
Common mode input volta	ge (Vcm)	96mA
Power dissipation (Pd) (Note 2)		<u>+</u> Vcc
(NOLE 2)		201mW
Lead temperature (solde	ring, 10 seconds)	+300C
Junction temperature (T	j)	+175C
Storage temperature ran	ge	-65C <u><</u> Ta <u><</u> +150C
Thermal Resistance Junction-to-ambient Ceramic DIP	(Still Air)	TBD TBD
LCC	(500 LFPM) (Still Air) (500 LFPM)	TBD TBD TBD
Junction-to-case (T Ceramic DIP LCC		TBD TBD
Package Weight (typical) Ceramic DIP LCC		TBD TBD
ESD Tolerance (Note 3)		1000V

- Note 1: Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
 Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by Timax (maximum junction temperature). ThetaJA (package junction to
- dictated by Tjmax (maximum junction temperature), ThetaJA (package junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is Pdmax = (Tjmax TA) /ThetaJA or the number given in the Absolute Maximum Ratings, whichever is lower.
- Note 3: Human body model, 100pF discharged through 1.5k Ohms.

Recommended Operating Conditions

Supply Voltage (Vcc)	
	<u>+</u> 5 V dc
Gain Range (Av)	+1 V/V to +10 V/V
Ambient operating temperature range (Ta)	
	-55C ≤ Ta ≤ +125C

DC Paramaters: Static and DC tests

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: Rl = 1000hms, Vcc = ± 5 V dc, Av= +2, Rf=6340hms, Rg=6340hms, -55C \leq Ta \leq + 125C (Note 3)

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Ibn	Input bias current,				-12	12	uA	1, 2
	noninverting				-28	28	uA	3
Ibn	Input bias current,				-15	15	uA	1
	inverting				-20	20	uA	2
					-34	34	uA	3
Vio	Input offset voltage				-6	6	mV	1
	Voreage				-12	12	mV	2
					-10	10	mV	3
Tc(+Ibn)	Average input bias current	Ta = +125C, -55C	1		-90	90	nA/C	2
	drift		1		-187	187	nA/C	3
Tc(-Ibn)	Average input bias current	Ta = +125C, -55C	1		-80	80	nA/C	2
	drift		1		-125	125	nA/C	3
Tc(Vio)	Average input offset voltage drift	Ta = +125C, -55C	1		-60	60	uV/C	2, 3
Icc	Supply current	Rl = infinity				12.8	mA	1, 2
						13.6	mA	3
PSRR	Power supply rejection ration	+Vs = +4.5 V to $+5.0 V$, $-Vs = -4.5 V$ to $-5.0 V$			46		dB	1
					44		dB	2, 3
CMRR	Common mode rejection ration	$Vcm = \pm 1 V$	1		45		dB	4
	TEJECTION TACION		1		43		dB	5,6

AC Parameters: Frequeuncy domain tests

(The following conditions apply to all the following parameters, unless otherwise specified.) AC: Rl = 1000hms, Vcc = ± 5 V dc, Av= +2, Rf=6340hms, Rg=6340hms, -55C \leq Ta \leq + 125C (Note 3)

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
SSBW	Small signal bandwith	-3dB bandwidth, Vout < 0.5 Vpp			175		MHz	4
	Danuwich		2		135		MHz	5
			2		150		MHz	6
LSBW	Large signal	-3dB bandwidth, Vout < 4.0 Vpp	1		80		MHz	4,6
	Dandwith	bandwith	1		65		MHz	5
GFP	Gain flatness	0.1MHz to 30 MHz, Vout \leq 0.5Vpp				0.1	dB	4
	peaking high	2			0.2	dB	5	
			2			0.1	dB	6
GFR	Gain flatness	0.1MHz to 30 MHz, Vout \leq 0.5Vpp				0.3	dB	4
	rolloff	2			0.3	dB	5	
			2			0.4	dB	6
LPD	Linear phase	DC to 75 MHz, Vout \leq 0.5Vpp	1			1.0	Deg	4, 5
	deviation		1			1.3	Deg	6
DG	Differential gain	4.43 MHz, Rl = 150 Ohms	1		0.04		%	4,6
			1		0.08		%	5
DP	Differential	4.43 MHz, Rl = 150 Ohms	1		0.04		Deg	4,6
	phase		1		0.08		Deg	5

AC Paramaters: Distortion and noise tests

(The following conditions apply to all the following parameters, unless otherwise specified.) AC: Rl = 1000hms, Vcc = ± 5 V dc, Av= +2, Rf=6340hms, Rg=6340hms, -55C \leq Ta \leq + 125C (Note 3)

HD2 Second harmonic distortion	2 Vpp at 20 MHz			-42	dBc	4	
			2		-38	dBc	5
			2		-42	dBc	6
HD3	Third harmonic distortion	2 Vpp at 20 MHz			-46	dBc	4
	4120010101		2		-42	dBc	5
			2		-46	dBc	6
VEN	Equivalent noise input positive	> 1 MHz	1		3.4	nV/So	1 4, 6
	voltage					RtHz	
	Voreage		1		3.8	nV/So	<u>1</u> 5
						RtHz	

AC Paramaters: Distortion and noise tests - Continued

(The following conditions apply to all the following parameters, unless otherwise specified.) AC: Rl = 1000hms, Vcc = ± 5 V dc, Av= +2, Rf=6340hms, Rg=6340hms, -55C \leq Ta \leq + 125C

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
ICN	Equivalent input inverting current noise	> 1 MHz	1			13.9	pA/So RtHz	1 4,6
	noise		1			15.5	pA/So	1 5
NICN	Equivalent input non-inverting	> 1 MHz	1			2.6	RtHz pA/So RtHz	4 , 6
	current noise		1			3.0	pA/So RtHz	
SNF	Noise floor	> 1 MHz	1		-156		dBm (1	4,6
			1		-155		HZ) dBm (1	5
XTLK	Crosstalk (input refered)	At 10 MHz	1		-64		HB)	4, 5, 6

AC Paramaters: Timing tests

(The following conditions apply to all the following parameters, unless otherwise specified.) AC: Rl = 1000hms, Vcc = ± 5 V dc, Av= +2, Rf=6340hms, Rg=6340hms, -55C \leq Ta \leq + 125C (Note 3)

tRS Rise and fall time	0.5 V step	1	2.0		ns	9	
			1	2.6		ns	10
			1	2.3		ns	11
tRL	Rise and fall time	4 V step	1	4.4		ns	9, 11
	CIME	-	1	4.8		ns	10
SR	Slew Rate	Measured ± 1 V with ± 2 V step, Av = 2	1		1000	V/us	4,6
			1		800	V/us	5
tS	Settling time	2 V step at 0.05% of the fixed value	1		18	ns	9, 11
			1		20	ns	10
OS	Overshoot	0.5 V step	1		15	010	9, 10, 11

DC Paramaters: Performance tests

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: Rl = 1000hms, Vcc = ± 5 V dc, Av= +2, Rf=6340hms, Rg=6340hms,-55C \leq Ta \leq + 125C (Note 3)

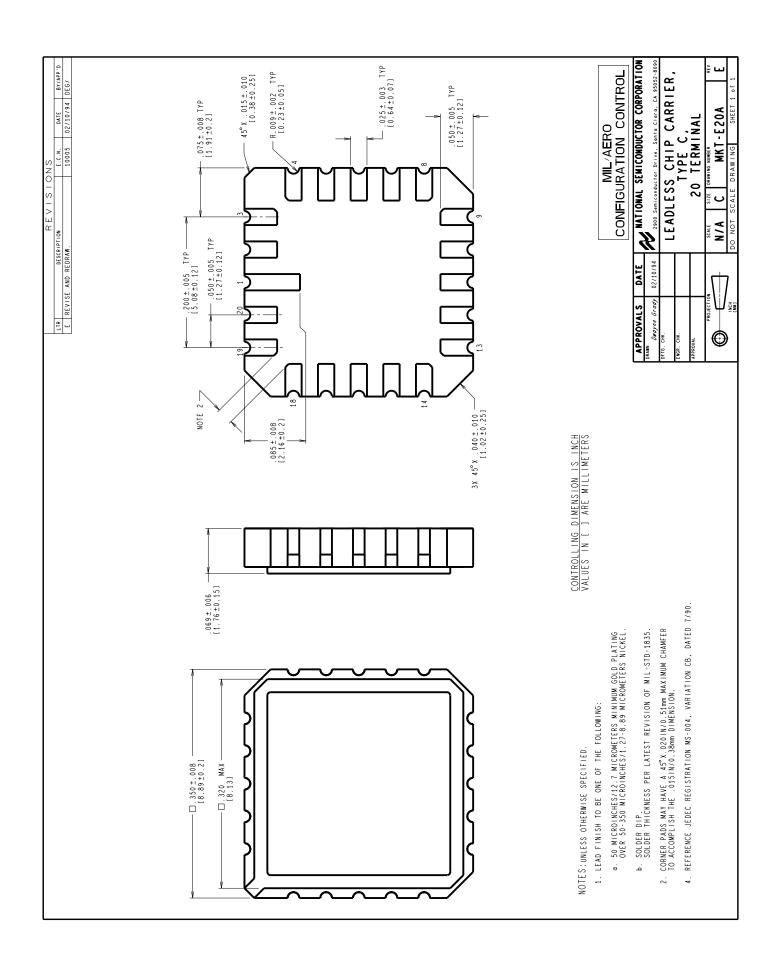
SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Rin	Input resistance (positive)		1		500		kOhms	\$ 4, 5
			1		300		kOhms	\$ 6
Cin	Input capacitance (positive)		1		2.0		pF	4, 5, 6
Vout	Output voltage range	Rl = infinity	1		-3.0	3.7	V	1, 2
	2011.90		1		-2.9	3.6	V	3
		Rl = 100 Ohms	1		-2.7	2.7	V	1, 2
			1		-2.5	2.0	V	3
Rout	Output resistance	Closed loop	1		0.3		Ohms	4
			1		0.2		Ohms	5
	1	1		0.6		Ohms	6	
CMIR	Common mode input voltage range		1		-2.0	2.0	V	1, 2
	vortage range		1		-1.4	1.4	V	3
Iout	Output current		1		45		mA	1, 2
			1		25		mA	3

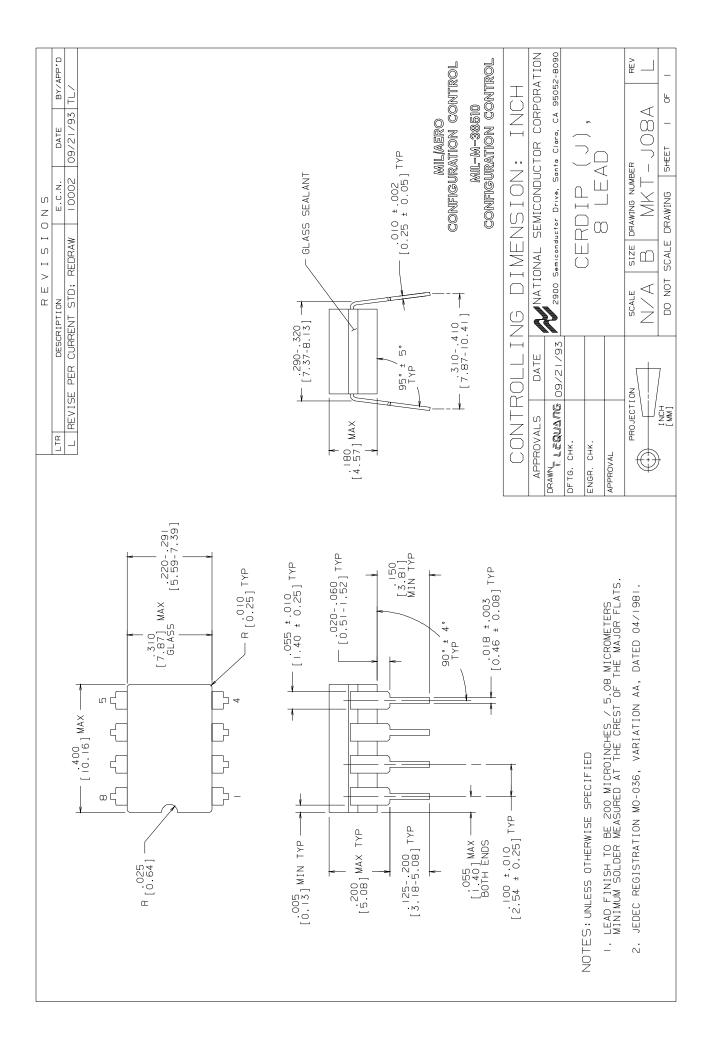
DC Paramaters: DRIFT VALUES

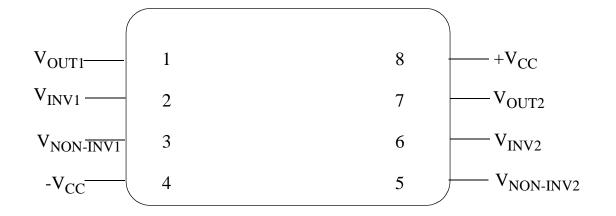
(The following conditions apply to all the following parameters, unless otherwise specified.)
DC: "Deltas not required on B-Level product. Deltas required for S-Level product at Group B5 ONLY, or as
 specified on the Internal Processing Instructions (IPI), (Note 3).

Ibn	Input bias current, noninverting		1	-1.2	+1.2	uA	1
Ibi	Input bias current, inverting		1	-1.5	+1.5	uA	1
Vio	Input offset voltage		1	-0.3	+0.3	mV	1
Icc	Supply Current	Rl = Infinity	1	-0.64	+0.64	mA	1

Note 1: If not tested, shall be guaranteed to the limits specified in table 1 herein.

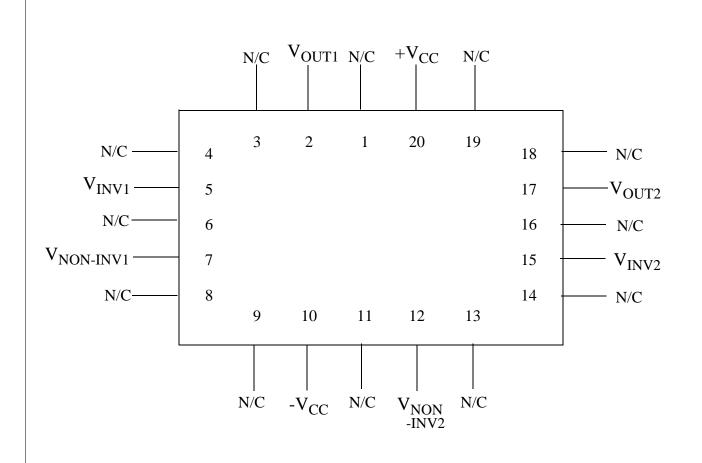

Note 2: Group A testing only.


Note 3: The algebraic convention, whereby the most negative value is a minimum and the most positive is a maximum, is used in this table. Negative current shall be defined as conventional current flow out of a device terminal.


GRAPHICS#	DESCRIPTION
07082HRA2	CERDIP (J), 8 LEAD (B/I CKT)
07088HRA2	LCC (E), TYPE C, 20 TERMINAL (B/I CKT)
E20ARE	LCC (E), TYPE C, 20 TERMINAL(P/P DWG)
J08ARL	CERDIP (J), 8 LEAD (P/P DWG)
P000415A	CERDIP (J), 8 LEAD (PINOUT)
P000450A	LCC (E), TYPE C, 20 TERMINAL (PIN OUT)

Graphics and Diagrams

See attached graphics following this page.



CLC412J 8 - LEAD DIP CONNECTION DIAGRAM TOP VIEW P000415A

2900 SEMICONDUCTOR DRIVE SANTA CLARA, CA 95050

CLC412AE-QML 20 - LEAD LCC CONNECTION DIAGRAM TOP VIEW P000450A

Revision History

Rev	ECN #	Rel Date	Originator	Changes
0A0	M0003253	02/11/03	Shaw Mead	Initial MDS Release
1A0	M0004108	06/09/03	Rose Malone	Update MDS: MNCLC412A-X, Rev. 0A0 to MNCLC412A-X, Rev. 1A0. Moved reference to SMD numbers to Features Section. Added Drift Table to Electrical Section.
2A0	M0004157	06/09/03	Rose Malone	Update MDS: MNCLC412A-X, Rev. 1A0 to MNCLC412A-X, Rev. 2A0. Electricals in Drift Values Section have been changed to reflect the customer drawing. Added Note 2 to parameters SSBW, GFP, GFR, HD2 and HD3, Subgroups 5 and 6.