

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

74F132 Quad 2-Input NAND Schmitt Trigger

74F132 Quad 2-Input NAND Schmitt Trigger

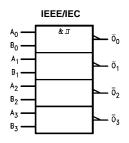
General Description

FAIRCHILD

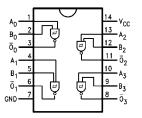
SEMICONDUCTOR

The F132 contains four 2-input NAND gates which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have a greater noise margin than conventional NAND gates.

Each circuit contains a 2-input Schmitt Trigger followed by level shifting circuitry and a standard FAST™ output struc-


ture. The Schmitt Trigger uses positive feedback to effectively speed-up slow input transitions, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the positive-going and negative-going input threshold (typically 800 mV) is determined by resistor ratios and is essentially insensitive to temperature and supply voltage variations.

Ordering Code:


Order Number	Package Number	Package Description
74F132SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow
74F132SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F132PC	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagram

Function Table

Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}		
A _n , B _n	Inputs	1.0/1.0	20 µA/–0.6 mA		
\overline{O}_n	Outputs	50/33.3	–1 mA/20 mA		

Inp	outs	Outputs			
Α	В	ō			
L	L	Н			
L	Н	н			
н	L	н			
н	Н	L			

H = HIGH Voltage Level L = LOW Voltage Level

FAST® is a registered trademark of Fairchild Semiconductor Corporation

© 2000 Fairchild Semiconductor Corporation DS009477

74F132

Absolute Maximum Ratings(Note 1)

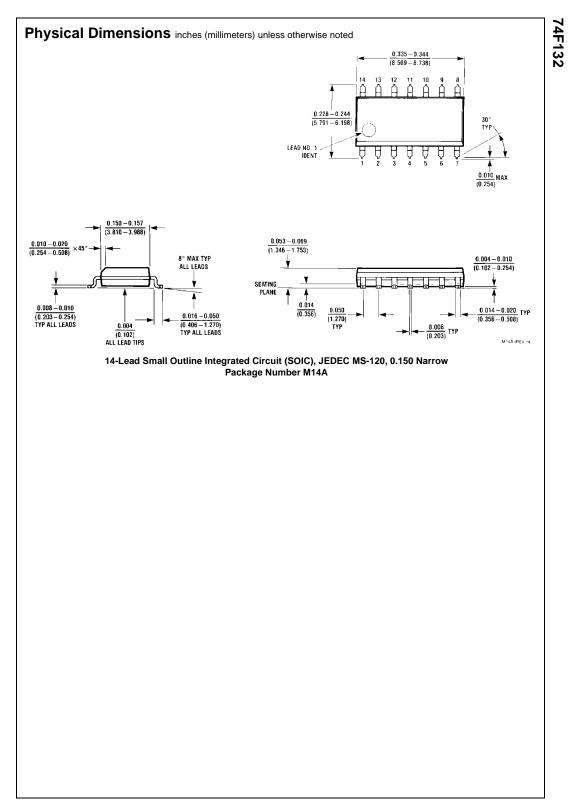
Storage Temperature	-65°C to +150°C				
Ambient Temperature under Bias	$-55^{\circ}C$ to $+125^{\circ}C$				
Junction Temperature under Bias	-55°C to +150°C				
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V				
Input Voltage (Note 2)	-0.5V to +7.0V				
Input Current (Note 2)	-30 mA to +5.0 mA				
Voltage Applied to Output					
in HIGH State (with $V_{CC} = 0V$)					
Standard Output	–0.5V to V _{CC}				
3-STATE Output	-0.5V to +5.5V				
Current Applied to Output					
in LOW State (Max)	twice the rated I _{OL} (mA)				
ESD Last Passing Voltage (Min)	4000V				

Recommended Operating Conditions

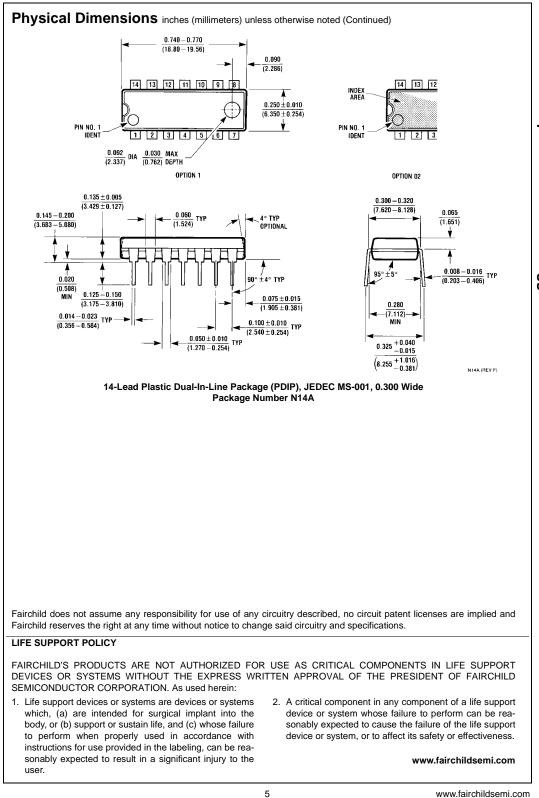
Free Air Ambient Temperature
Supply Voltage

0°C to +70°C +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.


Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics


Symbol	Parameter		Min	Тур	Max	Units	V _{CC}	Conditions
V _{T+}	Positive-going Threshold		1.5		2.0	V	5.0	
V _{T-}	Negative-going Threshold		0.7		1.1	V	5.0	
ΔV_T	Hysteresis (V _T ⁺ – V _T ⁻)		0.4			V	5.0	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH	10% V _{CC}	2.5			V	Min	I _{OH} = -1 mA
	Voltage	5% V _{CC}	2.7					$I_{OH} = -1 \text{ mA}$
V _{OL}	Output LOW Voltage	10% V _{CC}			0.5	V	Min	I _{OL} = 20 mA
IIH	Input HIGH Current				5.0	μA	Max	V _{IN} = 2.7V
I _{BVI}	Input HIGH Current Breakdow	/n Test			7.0	μA	Max	V _{IN} = 7.0V
I _{CEX}	Output HIGH Leakage Curren	t			50	μA	Max	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage Test		4.75			V	0.0	I _{ID} = 1.9 μA
								All Other Pins Grounded
I _{OD}	Output Leakage Circuit Current				3.75	μA	0.0	V _{IOD} = 150 mV
					5.75			All Other Pins Grounded
IIL	Input LOW Current				-0.6	mA	Max	V _{IN} = 0.5V
I _{OS}	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V
I _{CCH}	Power Supply Current				17.0	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current				18.0	mA	Max	$V_{O} = LOW$

AC Electrical Characteristics

Symbol	Parameter	$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			$T_A = 0^\circ C$	Units		
					V _{CC} = +5.0V C _L = 50 pF			
								Min
	t _{PLH}	Propagation Delay	4.0		10.5	3.5	12.0	ns
t _{PHL}	A_n , B_n to \overline{O}_n	5.0		12.5	5.0	13.0		

74F132 Quad 2-Input NAND Schmitt Trigger