

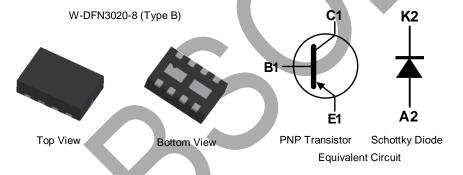
40V PNP LOW SATURATION TRANSISTOR AND 40V, 1A SCHOTTKY DIODE COMBINATION

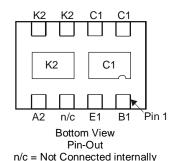
Features and Benefits

PNP Transistor

- BV_{CEO} > -40V
- I_C = -3A Continuous Collector Current
- Low Saturation Voltage (-220mV Max @ -1A)
- R_{SAT} = 104mΩ for a Low Equivalent On-Resistance
- hFE Characterized up to -3A for High Current Gain Hold Up

Schottky Diode


- BV_R > 40V
- IFAV = 3A Average Peak Forward Current
- Low V_F < 500mV (@1A) for Reduced Power Loss
- · Fast Switching Due to Schottky Barrier
- Low Profile 0.8mm High Package for Thin Applications
- R_{θJA} Efficient, 40% Lower than SOT26
- 6mm² Footprint, 50% Smaller than TSOP6 and SOT26
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative. https://www.diodes.com/quality/product-definitions/


Mechanical Data

- Package: W-DFN3020-8
- Package Material: Molded Plastic, "Green" Molding Compound UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish NiPdAu, Solderable per MIL-STD-202, Method 208 (4)
- Weight: 0.013 grams (Approximate)

Applications

- DC DC converters
- Charging circuits
- Mobile phones
- Motor controls
- Portable applications

Ordering Information (Note 4)

Part Number	Bookaga	Marking	Reel Size (inches)	el Size (inches) Tape Width (mm)		ing
Part Number	Package	Warking	Reel Size (Iliches)	rape widin (min)	Qty.	Carrier
ZXTPS720MCTA	W-DFN3020-8 (Type B)	3S1	7	8	3000	Reel

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.

Marking Information

3S1 •

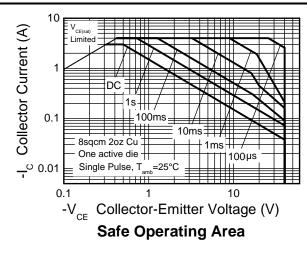
3S1 = Product Type Marking Code Top view, dot denotes pin 1

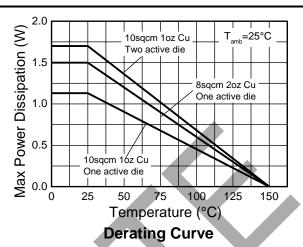
PNP - Maximum Ratings (@T_A = +25°C, unless otherwise specified.)

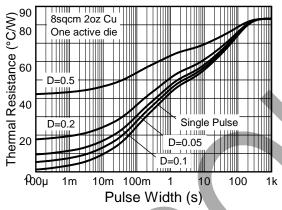
Parameter		Symbol	Limit	Unit	
Collector-Base Voltage		V _{CBO}	-50		
Collector-Emitter Voltage		V _{CEO}	-40	V	
Emitter-Base Voltage		V _{EBO}	-7		
Peak Pulse Current		I _{CM}	-4		
Continuous Collector Current (Notes 5 and 8) (Notes 6 and 8)		Ic	-3	۸	
			-3.4	A	
Base Current		lΒ	-1		

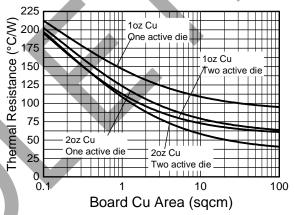
PNP - Thermal Characteristics (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit	
	(Notes 5 & 8)		1.5 12	
Power Dissipation	(Notes 6 & 8)	D.	2.45 19.6	
Linear Derating Factor	(Notes 7 & 8)	P _D	1.13	mW/°C
	(Notes 7 & 9)		1.7 13.6	
	(Notes 5 & 8)		83.3	
Thermal Resistance, Junction to Ambient	(Notes 6 & 8)	D	51.0	
Thermal Resistance, Junction to Ambient	(Notes 7 & 8)	RθJA	111	°C/W
	(Notes 7 & 9)		73.5	
Thermal Resistance, Junction to Lead	(Note 10)	R _{θJL}	17.1	
Operating and Storage Temperature Range		TJ, T _{STG}	-55 to +150	°C

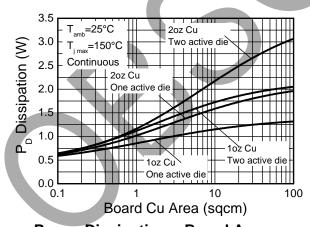

Notes:


- 5. For a dual device surface mounted on 28mm x 28mm (8cm²) FR4 PCB with high coverage of single sided 2oz copper, in still air conditions; the device is measured when operating in a steady-state condition. The heatsink is split in half with the exposed collector and cathode pads connected to each half.
- 6. Same as note 5, except the device is measured at t < 5 sec.
- 7. Same as note 5, except the device is surface mounted on 31mm x 31mm (10cm²) FR4 PCB with high coverage of single sided 1oz copper.
- 8. For a dual device with one active die.
- 9. For dual device with 2 active die running at equal power.
- 10. Thermal resistance from junction to solder-point (on the exposed collector pad).





PNP - Thermal Characteristics



Transient Thermal Impedance

Thermal Resistance v Board Area

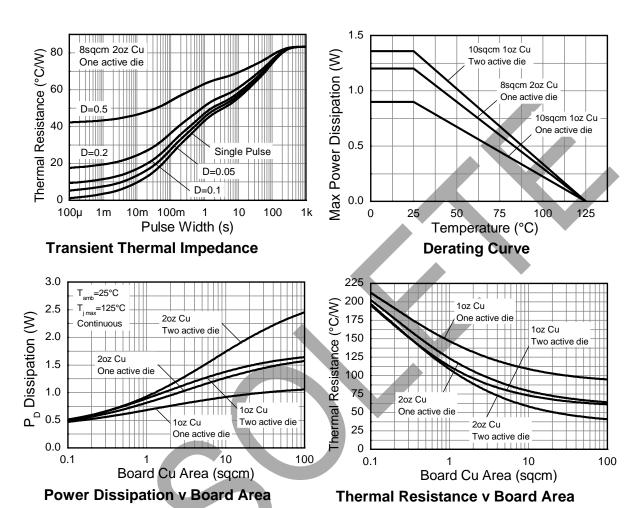
Power Dissipation v Board Area

$\textbf{Schottky - Maximum Ratings} \ (@T_A = +25^{\circ}C, \ unless \ otherwise \ specified.)$

Parameter	Symbol	Limit	Unit	
Continuous Reverse Voltage		V_R	40	V
Continuous Forward Current		lF	1.85	
Repetitive Peak Forward Current D = 0.5 Pulse width ≤ 300µs		I _{FRM}	3	Α
Non Bonetitive Book Forward Surge Current	t ≤ 100µs	12	12	
Non-Repetitive Peak Forward Surge Current	t ≤ 10ms	IFSM	7	

Schottky - Thermal Characteristics (@T_A = +25°C, unless otherwise specified.)

Characteristic		Symbol	Value	Unit	
	(Notes 11 & 14)		1.2 12		
Power Dissipation	(Notes 12 & 14)	D	2 20	W	
Linear Derating Factor	(Notes 13 & 14)	P _D	0.9	mW/°C	
	(Notes 13 & 15)		1.36 13.6		
	(Notes 11 & 14)		83.3		
Thermal Resistance, Junction to Ambient	(Notes 12 & 14)	D.	51.0		
Thermal Resistance, Junction to Ambient	(Notes 13 & 14)	$R_{\theta JA}$	111	°C/W	
	(Notes 13 & 15)		73.5		
Thermal Resistance, Junction to Lead (Note 16)		$R_{ heta JL}$	20.2		
Storage Temperature Range		T _{STG}	-55 to +150	20	
Maximum Junction Temperature		ŢJ	+125	°C	

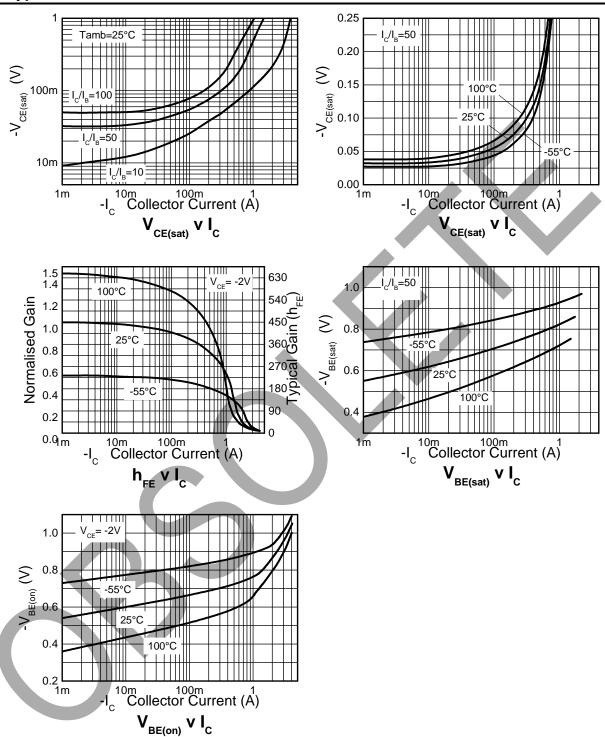

Notes:

- 11. For a dual device surface mounted on 28mm x 28mm (8cm²) FR4 PCB with high coverage of single sided 2oz copper, in still air conditions; the device is measured when operating in a steady-state condition. The heatsink is split in half with the exposed cathode and collector pads connected to each half.
- 12. Same as note 11, except the device is measured at t < 5 sec.
- 13. Same as note 11, except the device is surface mounted on 31mm x 31mm (10cm²) FR4 PCB with high coverage of single sided 1oz copper.
- 14. For a dual device with one active die.
 15. For dual device with 2 active die running at equal power.
- 16. Thermal resistance from junction to solder-point (on the exposed cathode pad).

Schottky - Thermal Characteristics

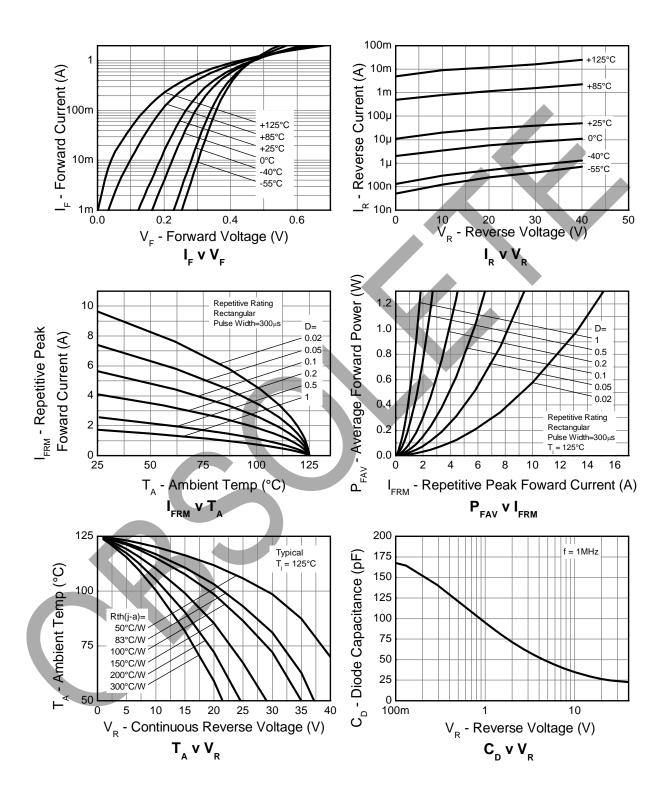
PNP - Electrical Characteristics (@TA = +25°C, unless otherwise specified.)

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
Collector-Base Breakdown Voltage	BV _{CBO}	-50	-80	_	V	$I_C = -100 \mu A$
Collector-Emitter Breakdown Voltage (Note 17)	BV _{CEO}	-40	-70	_	V	I _C = -10mA
Emitter-Base Breakdown Voltage	BV _{EBO}	-7	-8.5	_	V	$I_E = -100 \mu A$
Collector Cutoff Current	I _{CBO}	_	_	-100	nA	V _{CB} = -40V
Emitter Cutoff Current	I _{EBO}	_	_	-100	nA	V _{EB} = -6V
Collector Emitter Cutoff Current	I _{CES}	_	_	-100	nA	V _{CES} = -32V
		300	480	_		$I_C = -10 \text{mA}, V_{CE} = -2 \text{V}$
		300	450	_		$I_C = -100 \text{mA}, V_{CE} = -2 \text{V}$
Static Forward Current Transfer Ratio (Note 17)	h _{FE}	180	290	_	/	J _C = -1A, V _{CE} = -2V
		60	130	_		I _C = -1.5A, V _{CE} = -2V
		12	22	_	. 1	$I_C = -3A$, $V_{CE} = -2V$
		_	-25	-40		$I_C = -0.1A$, $I_B = -10mA$
		_	-150	-220		$I_C = -1A$, $I_B = -50mA$
Collector-Emitter Saturation Voltage (Note 17)	V _{CE(sat)}	_	-195	-300	mV	$I_C = -1.5A$, $I_B = -100mA$
	, ,	_	-210	-300		$I_C = -2A$, $I_B = -200mA$
		_	-260	-370		$I_C = -2.5A$, $I_B = -250mA$
Base-Emitter Turn-On Voltage (Note 17)	V _{BE(on)}	_	-0.89	-0.95	V	I _C = -2.5A, V _{CE} = -2V
Base-Emitter Saturation Voltage (Note 17)	V _{BE(sat)}	_	-0.97	-1.05	V	$I_C = -2.5A$, $I_B = -250mA$
Output Capacitance	C _{obo}	_	19	25	pF	V _{CB} = -10V, f = 1MHz
Transition Frequency	f _T	150	190		MHz	$V_{CE} = -10V, I_{C} = -50mA,$ f = 100MHz
Turn-on Time	t _{on}	_	40	<u> </u>	ns	$V_{CC} = -15V, I_{C} = -0.75A$
Turn-off Time	t _{off}		435		ns	$I_{B1} = -I_{B2} = -15 \text{mA}$


Schottky - Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
Reverse Breakdown Voltage	BV_R	40	60	_	V	$I_R = -300 \mu A$
		_	240	270		$I_F = 50mA$
			265	290		I _F = 100mA
		-	305	340		$I_F = 250 \text{mA}$
Forward Valtage (Note 17)	VF	_	355	400	\/	I _F = 500mA
Forward Voltage (Note 17)	VF	_	390	450	mV	$I_F = 750 \text{mA}$
		_	425	500		$I_F = 1000 \text{mA}$
		-	495	600		I _F = 1500mA
		_	420	_		$I_F = 1000 \text{mA}, T_A = +100 ^{\circ}\text{C}$
Reverse Current	I _R	_	50	100	μΑ	$V_R = 30V$
Diode Capacitance	C _D	_	25	_	pF	$V_R = 25V$, $f = 1MHz$
						switched from
Reverse Recovery Time	t _{rr}	_	12	_	ns	$I_F = 500 \text{mA}$ to $I_R = 500 \text{mA}$
						Measured at I _R = 50mA

Note: 17. Measured under pulsed conditions. Pulse width \leq 300 μ s. Duty cycle \leq 2%.

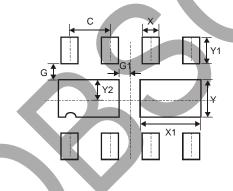


PNP - Typical Electrical Characteristics

Schottky - Typical Electrical Characteristics

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.



W-DFN3020-8					
Type B					
Dim	Min	Max	Тур		
Α	0.77	0.83	0.80		
Α1	0	0.05	0.02		
А3	-	-	0.15		
þ	0.25	0.35	0.30		
D	2.95	3.075	3.00		
D2	0.82	1.02	0.92		
D4	1.01	1.21	1.11		
a	-	-	0.65		
П	1.95	2.075	2.00		
E2	0.43	0.63	0.53		
L	0.25	0.35	0.30		
Z	1		0.375		
All Dimensions in mm					

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

W-DFN3020-8 (Type B)

Dimensions	Value (in mm)
С	0.650
G	0.285
G1	0.090
Х	0.400
X1	1.120
Υ	0.730
Y1	0.500
V2	0.365

IMPORTANT NOTICE

- 1. DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- 2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- 3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
- 4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- 5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- 6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- 7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.
- 9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/important-notice

DIODES is a trademark of Diodes Incorporated in the United States and other countries. The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. © 2022 Diodes Incorporated. All Rights Reserved.

www.diodes.com