## Single Digitally-Controlled (XDCP ${ }^{\text {TM }}$ ) Potentiometer (Push Button Controlled)

## FEATURES

- Push button controlled
- Low power CMOS
-Active current, 3mA max
-Standby current, 200 $\mu \mathrm{A}$ max
- 31 resistive elements
-Temperature compensated
$- \pm 20 \%$ end to end resistance range
-5 V to +5 V range
- 32 wiper tap points
-Wiper positioned via two push button inputs
-Slow \& fast scan modes
-AUTOSTORE ${ }^{\circledR}$ option
-Manual store option
-Wiper position stored in nonvolatile memory and recalled on power-up
- 100 year wiper position data retention
- X9511W = $10 \mathrm{k} \Omega$
- Packages
-8 Ld PDIP
-8 Ld SOIC
- Pb-free plus anneal available (RoHS compliant)


## DESCRIPTION

The Intersil X9511 is a push button controlled potentiometer that is ideal for push button controlled resistance trimming.

The X9511 is a resistor array composed of 31 resistive elements. Between each element and at either end are tap points accessible to the wiper element. The position of the wiper element is controlled by the $\overline{\mathrm{PU}}$ and $\overline{\mathrm{PD}}$ inputs. The position of the wiper can be automatically stored in $E^{2}$ memory and then be recalled upon a subsequent power-on operation.

The resolution of the X9511 is equal to the maximum resistance value divided by 31 . As an example, for the X9511W (10k $\Omega$ ) each tap point represents $323 \Omega$.

All Intersil nonvolatile products are designed and tested for applications requiring extended endurance and data retention.

## ORDERING INFORMATION

| PART NUMBER | PART MARKING | $\mathrm{R}_{\text {TOTAL }}$ (k $\Omega$ ) | TEMPERATURE RANGE ( ${ }^{\circ} \mathrm{C}$ ) | PACKAGE |
| :---: | :---: | :---: | :---: | :---: |
| X9511WP | X9511WP | 10 | 0 to 70 | 8 Ld PDIP |
| X9511WPZ (Note) | X9511WP Z |  | 0 to 70 | 8 Ld PDIP** (Pb-free) |
| X9511WPI | X9511WP I |  | -40 to 85 | 8 Ld PDIP |
| X9511WPIZ (Note) | X9511WP Z I |  | -40 to 85 | 8 Ld PDIP** (Pb-free) |
| X9511WS* | X9511W |  | 0 to 70 | 8 Ld SOIC |
| X9511WSZ* (Note) | X9511W Z |  | 0 to 70 | 8 Ld SOIC (Pb-free) |
| X9511WSI* | X9511W I |  | -40 to 85 | 8 Ld SOIC |
| X9511WSIZ* (Note) | X9511W Z I |  | -40 to 85 | 8 Ld SOIC (Pb-free) |

NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100\% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb -free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
*Add "T1" suffix for tape and reel.
**Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications.

BLOCK DIAGRAM


## PIN DESCRIPTIONS

## $V_{H} / R_{H}$ and $V_{L} / R_{L}$

The high (VH/RH) and low (VL/RL) terminals of the X9511 are equivalent to the fixed terminals of a mechanical potentiometer. The minimum voltage is -5 V and the maximum is +5 V . It should be noted that the terminology of VL/RL and VH/RH reference the relative position of the terminal in relation to wiper movement direction selected by the PU and PD inputs, and not the voltage potential on the terminal.

## $\overline{\mathbf{P U}}$

The debounced $\overline{\mathrm{PU}}$ input is for incrementing the wiper position. An on-chip pull-up holds the PU input HIGH. A switch closure to ground or a LOW logic level will, after a debounce time, move the wiper to the next adjacent higher tap position.

## $\overline{\mathbf{P D}}$

The debounced $\overline{\mathrm{PD}}$ input is for decrementing the wiper position. An on-chip pull-up holds the PD input HIGH. A switch closure to ground or a LOW logic level will, after a debounce time, move the wiper to the next adjacent lower tap position.

## $\overline{\text { ASE }}$

The debounced $\overline{\text { ASE }}$ (AUTOSTORE enable) pin can be in one of two states:
$\mathrm{V}_{\mathrm{IL}}$ - AUTOSTORE is enabled. When $\mathrm{V}_{\mathrm{CC}}$ powers down, an automatic store cycle takes place.
$\mathrm{V}_{\mathrm{IH}}$ - AUTOSTORE is disabled. A LOW to HIGH will initiate a manual store operation. This is for the user who wishes to connect a push button switch to this pin. For every valid push, the X9511 will store the current wiper position to the EEPROM.

## PIN CONFIGURATION



## PIN NAMES

| Symbol | Description |
| :---: | :--- |
| $\mathrm{V}_{\mathrm{H}} / R_{\mathrm{H}}$ | High Terminal |
| $\mathrm{V}_{\mathrm{W}} / \mathrm{R}_{\mathrm{W}}$ | Wiper Terminal |
| $\mathrm{V}_{\mathrm{L}} / \mathrm{R}_{\mathrm{L}}$ | Low Terminal |
| $\mathrm{V}_{\mathrm{SS}}$ | Ground |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply Voltage |
| $\overline{\mathrm{PU}}$ | Push Up Input |
| $\overline{\mathrm{PD}}$ | Push Down Input |
| $\overline{\mathrm{ASE}}$ | AUTOSTORE Enable Input |

## DEVICE OPERATION

There are three sections of the X9511: the input control, counter and decode section; the EEPROM memory; and the resistor array. The input control section operates just like an up/down counter. The output of this counter is decoded to turn on a single electronic switch, connecting a point on the resistor array to the wiper output. Under the proper conditions the contents of the counter can be stored in EEPROM memory and retained for future use. The resistor array is comprised of 31 individual resistors connected in series. At either end of the array and between each resistor is an electronic switch that transfers the potential at that point to the wiper.

The X9511 is designed to interface directly to two push button switches for effectively moving the wiper up or down. The $\overline{\mathrm{PU}}$ and $\overline{\mathrm{PD}}$ inputs increment or decrement a 5 -bit counter respectively. The output of this counter is decoded to select one of the thirty-two wiper positions along the resistive array. The wiper increment input, $\overline{\mathrm{PU}}$ and the wiper decrement input, $\overline{\mathrm{PD}}$ are both connected to an internal pull-up so that they normally remain HIGH. When pulled LOW by an external push button switch or a logic LOW level input, the wiper will be switched to the next adjacent tap position.

Internal debounce circuitry prevents inadvertent switching of the wiper position if $\overline{\mathrm{PU}}$ or $\overline{\mathrm{PD}}$ remain LOW for less than 40 ms , typical. Each of the buttons can be pushed either once for a single increment/decrement or continuously for a multiple increments/decrements. The number of increments/decrements of the wiper position depend on how long the button is being pushed. When making a continuous push, after the first second, the increment/decrement speed increases. For the first second the device will be in the slow scan mode. Then if the button is held for longer than 1 second the device will go into the fast scan mode. As soon as the button is released the X9511 will return to a standby condition.

The wiper, when at either fixed terminal, acts like its mechanical equivalent and does not move beyond the last position. That is, the counter does not wrap around when clocked to either extreme.

## AUTOSTORE

The value of the counter is stored in EEPROM memory whenever the chip senses a power-down of $V_{C C}$ while $\overline{\text { ASE }}$ is enabled (held LOW). When power is restored, the content of the memory is recalled and the counter reset to the last value stored.

If AUTOSTORE is to be implemented, $\overline{\text { ASE }}$ is typically hard wired to $\mathrm{V}_{\text {SS }}$. If $\overline{\text { ASE }}$ is held HIGH during powerup and then taken LOW, the wiper will not respond to the $\overline{\mathrm{PU}}$ or $\overline{\mathrm{PD}}$ inputs until $\overline{\text { ASE }}$ is brought HIGH and held HIGH.

Figure 1. Typical circuit with ASE store pin controlled by push button switch


## Manual (Push Button) Store

When ASE is not enabled (held HIGH) a push button switch may be used to pull $\overline{\text { ASE LOW and released to }}$ perform a manual store of the wiper position.

## $R_{\text {total }}$ with $\mathrm{V}_{\mathrm{CC}}$ Removed

The end to end resistance of the array will fluctuate once $\mathrm{V}_{\mathrm{CC}}$ is removed.

Figure 2. Typical circuit with $\overline{\text { ASE }}$ store pin used in AUTOSTORE mode


## ABSOLUTE MAXIMUM RATINGS



## ANALOG CHARACTERISTICS

## Electrical Characteristics

End-to-end resistance tolerance ......................... $\pm 20 \%$
Power rating at $25^{\circ} \mathrm{C}$
X9511W 10 mW
Wiper current ............................................. $\pm 1 \mathrm{~mA}$ Max.
Typical wiper resistance .......................... $40 \Omega$ at 1 mA
Typical noise $\qquad$ $<-120 \mathrm{~dB} / \mathrm{VHz}$ Ref: 1V

## Resolution

Resistance 3\%

## COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device (at these or any other conditions above those listed in the operational sections of this specification) is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## Temperature Coefficient <br> $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ <br> X9511W <br> $\qquad$ $+300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Typical <br> Ratiometric temperature coefficient $\pm 20 \mathrm{ppm}$

## Wiper Adjustability

Unlimited wiper adjustment $\qquad$ (Non-Store operation) Wiper position store operations $\qquad$ 100,000 data changes

## Physical Characteristics

Marking Includes
Manufacturer's Trademark
Resistance Value or Code
Date Code

## Linearity

Absolute linearity ${ }^{(1)}$ $\pm 1.0 \mathrm{MI}^{(2)}$
Relative linearity ${ }^{(3)}$ $\pm 0.2 \mathrm{Ml}^{(2)}$

Notes: (1) Absolute linearity is utilized to determine actual wiper voltage versus expected voltage $=\left(\mathrm{V}_{\mathrm{w}(\mathrm{n})}(\right.$ actual $\left.)-\mathrm{V}_{\mathrm{w}(\mathrm{n})}(\operatorname{expected})\right)= \pm 1 \mathrm{Ml}$ Maximum.
(2) $1 \mathrm{MI}=$ Minimum Increment $=\mathrm{R}_{\mathrm{TOT}} / 31$.
(3) Relative linearity is a measure of the error in step size between taps $=\mathrm{V}_{\mathrm{W}(\mathrm{n}+1)}-\left[\mathrm{V}_{\mathrm{W}(\mathrm{n})}+\mathrm{MII}\right]=+0.2 \mathrm{MI}$

## SYMBOL TABLE

| WAVEFORM | INPUTS | OUTPUTS |
| :--- | :--- | :--- |
|  | Must be <br> steady | May change <br> from Low to <br> High <br> steady |
| May change <br> from High to <br> Low | Will change <br> from Low to <br> High <br> Will change <br> from High to <br> Low |  |
| Changes |  |  |$\quad$| Allowed |
| :--- |$\quad$| Changing: |
| :--- |
| N/A |

## RECOMMENDED OPERATING CONDITIONS

| Temp | Min. | Max. |
| :---: | :---: | :---: |
| Commercial | $0^{\circ} \mathrm{C}$ | $+70^{\circ} \mathrm{C}$ |
| Industrial | $-40^{\circ} \mathrm{C}$ | $+85^{\circ} \mathrm{C}$ |


| Supply Voltage | Limits |
| :---: | :---: |
| X 9511 | $5 \mathrm{~V} \pm 10 \%$ |

D.C. OPERATING CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

| Symbol | Parameter | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. ${ }^{(4)}$ | Max. |  |  |
| ICC | $\mathrm{V}_{\mathrm{CC}}$ active current |  | 1 | 3 | mA | $\overline{\mathrm{PU}}$ or $\overline{\mathrm{PD}}$ held at $\mathrm{V}_{\mathrm{IL}}$ the other at $\mathrm{V}_{\mathrm{IH}}$ |
| $\mathrm{I}_{\text {SB }}$ | Standby supply current |  | 100 | 200 | $\mu \mathrm{A}$ | $\overline{\mathrm{PU}}=\overline{\mathrm{PD}}=\mathrm{V}_{\mathrm{IH}}$ |
| ILI | $\overline{\text { PU, }}$, $\overline{\text { D }}, \overline{\text { ASE input leakage current }}$ |  |  | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {CC }}$ |
| $\mathrm{V}_{\mathrm{IH}}$ | $\overline{\mathrm{PU}}, \overline{\mathrm{PD}}, \overline{\mathrm{ASE}}$ input HIGH voltage | 2 |  | $\mathrm{V}_{\mathrm{CC}}+1$ | V |  |
| $\mathrm{V}_{\mathrm{IL}}$ | $\overline{\mathrm{PU}}, \overline{\mathrm{PD}}, \overline{\text { ASE input LOW voltage }}$ | -1 |  | 0.8 | V |  |
| $\mathrm{R}_{\mathrm{W}}$ | Wiper resistance |  | 40 | 100 | $\Omega$ | Max. Wiper Current $\pm 1 \mathrm{~mA}$ |
| $\mathrm{V}_{\mathrm{VH}}$ | VH terminal voltage | -5 |  | +5 | V |  |
| $\mathrm{V}_{\mathrm{VL}}$ | VL terminal voltage | -5 |  | +5 | V |  |
| $\mathrm{ClN}^{(5)}$ | $\overline{\mathrm{ASE}}, \overline{\mathrm{PU}}, \overline{\mathrm{PD}}$ input capacitance |  |  | 10 | pF | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$ |

Notes: (4) Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
(5) This parameter is periodically sampled and not $100 \%$ tested.
A.C. OPERATING CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

| Symbol | Parameter | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. ${ }^{(6)}$ | Max. |  |
| $t_{\text {GAP }}$ | Time between two separate push button events | 0 |  |  | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\mathrm{DB}}$ | Debounce time |  | 30 | 60 | ms |
| ts SLOW | After debounce to wiper change on a slow mode | 100 | 250 | 375 | ms |
| $\mathrm{t}_{\text {S FAST }}{ }^{(7)}$ | Wiper change on a fast mode | 25 | 50 | 75 | ms |
| $t_{P U}{ }^{(7)}$ | Power-up to wiper stable |  |  | 500 | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\mathrm{R}} \mathrm{V}_{\mathrm{CC}}{ }^{(7)}$ | $\mathrm{V}_{\text {CC }}$ power-up rate | 0.2 |  | 50 | $\mathrm{mV} / \mu \mathrm{s}$ |
| $\mathrm{t}_{\text {ASTO }}{ }^{(7)}$ | AUTOSTORE cycle time | 2 |  |  | ms |
| $\mathrm{V}_{\text {ASTH }}{ }^{(7)}$ | AUTOSTORE threshold voltage |  | 4 |  | V |
| $\mathrm{V}_{\text {ASEND }}{ }^{(7)}$ | AUTOSTORE cycle end voltage |  | 3.5 |  | V |

## POWER-UPPOWER-DOWN AND DOWN REQUIREMENTS

The are no restrictions on the sequencing of $\mathrm{V}_{\mathrm{CC}}$ and the voltage applied to the potentiometer pins during power-up or power-down conditions. During power-up, the data sheet parameters for the DCP do not fully apply until 1 ms after $\mathrm{V}_{\mathrm{CC}}$ reaches its final value. The $\mathrm{V}_{\mathrm{CC}}$ ramp rate spec is always in effect.

## AUTOSTORE Cycle Timing Diagram



Notes: $\mathrm{V}_{\text {ASTH }}$ - AUTOSTORE threshold voltage
$V_{\text {ASEND }}$ AUTOSTORE cycle end voltage
${ }^{\text {t }}$ ASTO - AUTOSTORE cycle time
(6) Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
(7) This parameter is periodically sampled and not $100 \%$ tested.

## Slow Mode Timing



Note: (1) MI in the A.C. timing diagram refers to the minimum incremental change in the wiper voltage.

## Fast Mode Timing



Note: (1) MI in the A.C. timing diagram refers to the minimum incremental change in the wiper voltage.

## PACKAGING INFORMATION

## 8-Lead Plastic Dual In-Line Package Type $\mathbf{P}$



NOTE:

1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)
2. PACKAGE DIMENSIONS EXCLUDE MOLDING FLASH

## PACKAGING INFORMATION

## 8-Lead Plastic Small Outline Gull Wing Package Type S



NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

Single Digitally-Controlled (XDCP ${ }^{\text {TM }}$ ) Potentiometer (Push Button Controlled)

| DS Datasheets, | Description | Key | PT Parametric | TE Related |
| :---: | :---: | :---: | :---: | :---: |
| Related Docs |  | Features | Data | Devices |
| \& Simulations |  |  |  |  |

Ordering Information $\because 6$ RoHS/Pb-F ree/Green Device

| Part No. | Design-In Status | Temp. | Package |  | Price US \$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X9511WP | Active | Comm | 8 Ld PDIP | N/A | 1.30 | Buy |  |
| X9511WPI | Active | Ind | 8 Ld PDIP | N/A | 1.62 | Buy |  |
| X9511WPIZ | Active | Ind | 8 Ld PDIP | N/A | 1.62 | Buy |  |
| X9511WPZ ${ }^{\text {® }}$ | Active | Comm | 8 Ld PDIP | N/A | 1.30 | Buy |  |
| X9511WS | Active | Comm | 8 Ld SOIC | 1 | 1.30 | Buy | Sample |
| X9511WSC7898 | Active | Comm | 8 Ld SOIC | 1 |  | Buy |  |
| X9511WSC7975 | Active | Comm | 8 Ld SOIC | 1 |  | Buy |  |
| X9511WSI | Active | Ind | 8 Ld SOIC | 1 | 1.62 | Buy |  |
| X9511WSIT1 | Active | Ind | 8 Ld SOIC T+R | 1 | 1.62 | Buy |  |
| X9511WSIT2 | Active | Ind | 8 Ld SOIC T+R | 1 | 1.62 | Buy |  |
| X9511WSIZ ${ }^{\text {® }}$ | Active | Ind | 8 Ld SOIC | 1 | 1.62 | Buy |  |
| X9511WSIZT1 ${ }^{\text {P6 }}$ | Active | Comm | $8 \mathrm{Ld} \mathrm{SOIC} \mathrm{T+R}$ | 1 | 1.62 | Buy |  |
| X9511WST1 | Active | Comm | 8 Ld SOIC T+R | 1 |  | Buy |  |
| X9511WST1C7975 | Active | Comm | 8 Ld SOIC | 1 |  | Buy |  |
| X9511WST2 | Active | Comm | 8 Ld SOIC T+R | 1 | 1.36 | Buy |  |
| X9511WSZ | Active | Comm | 8 Ld SOIC | 1 | 1.30 | Buy | Sample |
| X9511WSZT1 ${ }^{\text {® }}$ | Active | Comm | 8 Ld SOIC T+R | 1 | 1.36 | Buy |  |
| X9511WSIZT2 | Coming Soon | Comm | 8 Ld SOIC T+R | 1 |  |  |  |
| X9511WSZT2 | Coming Soon | Comm | 8 Ld SOIC T+R | 1 |  |  |  |

The price listed is the manufacturer's suggested retail price for quantities between 100 and 999 units. However, prices in today's market are fluid and may change without notice.
MSL = Moisture Sensitivity Level - per IPC/JEDEC J-STD-020
SMD = Standard Microcircuit Drawing

## Description

The Intersil X9511 is a push button controlled potentiometer that is ideal for push button controlled resistance trimming.

The X9511 is a resistor array composed of 31 resistive elements. Between each element and at either end are tap points accessible to the wiper element. The position of the wiper element is controlled by the PU and PD inputs. The position of the wiper can be automatically stored in $\mathrm{E}^{2}$ memory and then be recalled upon a subsequent power-on operation.

The resolution of the X9511 is equal to the maximum resistance value divided by 31. As an example, for the X9511W (10k $\Omega$ ) each tap point represents $323 \Omega$.

All Intersil nonvolatile products are designed and tested for applications requiring extended endurance and data retention.

- Push button controlled
- Low power CMOS
- Active current, 3mA max
o Standby current, $100 \mu \mathrm{~A}$ typical
- 31 resistive elements
- Temperature compensated
- $\pm 20 \%$ end to end resistance range
- -5 V to +5 V range
- 32 wiper tap points
- Wiper positioned via two push button inputs
- Slow and fast scan modes
- AUTOSTORE® option
- Manual store option
- Wiper position stored in nonvolatile memory and recalled on power-up
- 100 year wiper position data retention
- X9511W = $10 \mathrm{k} \Omega$
- Packages
- 8 Ld PDIP
- 8 LdSOIC
- Pb-free plus anneal available (RoHS compliant)


## Related Documentation

AN Application Note(s):

- A Compendium of Application Circuits for Intersil's Digitally-Controlled (XDCP) Potentiometers
- A Primer on Digitally-Controlled Potentiometers
- Application of Intersil Digitally Controlled Potentiometers (XDCP ${ }^{\text {TM }}$ ) as Hybrid Analog/Digital Feedback System Control Elements
- DC/DC Module Trim with Digital Potentiometers
- Designing Power Supplies Using Intersil's XDCP Mixed Signal Products
- Power Supply and DC to DC Converter Control using Intersil Digitally Controlled Potentiontiometers (XDCPs)
- Putting Analog On The Bus
- Shaft Encoder Drives Multiple Intersil Digitally Controlled Potentiontiometers (XDCPs)

DS Datasheet(s):

- Single Digitally-Controlled (XDCP ${ }^{\text {TM }}$ ) Potentiometer (Push Button Controlled)

TE Technical Brief(s):

- Converting a Fixed PWM to an Adjustable PWM

EU Evaluation Board(s):

- Evaluation Circuits for XDCP ${ }^{\text {тм }}$
- Intersil_XDCP_Test_Utility_Manual_rev_3.2.3.pdf
- LabView XDCP Software.zip
- LabView XDCP Upgrade_3.2.3.zip
- Readme_XicorLabVIEW_V3.2.3.txt
- accessHW.zip

TH Technical Homepage:

- Digitally Controlled Potentiometers (DCPs) and Capacitors (DCCs)
- Precision Analog Homepage


## Parametric Data

| Number of DCPs | Single |
| :--- | :--- |
| Number of Taps | 32 |
| Memory Type | Non-Volatile |
| Bus Interface Type | Push Button |
| Resistance Options $(\mathrm{k} \Omega)$ | 10 |
| $\mathrm{~V}_{\mathrm{CC}}$ Range $(\mathrm{V})$ | 4.5 to 5.5 |
| DCP Differential Terminal Voltage $(\mathrm{V})$ | 10 |
| Terminal Voltage Range $\mathrm{V}_{\mathrm{L}}$ to $\mathrm{V}_{\mathrm{H}}(\mathrm{V})$ | $-\mathrm{V}_{\mathrm{CC}}$ to $+\mathrm{V}_{\mathrm{CC}}$ |
| Resistance Taper | Linear |
| Wiper Current $(\mathrm{mA})$ | $\pm 1$ |
| Wiper Resistance $(\Omega)$ | 40 |
| Standby Current $\mathrm{I}_{\mathrm{SB}}(\mu \mathrm{A})$ | 200 |

X9313 Digitally Controlled Potentiometer (XDCP ${ }^{\text {TM }}$ ), Linear, 32 Taps, 3 Wire Interface,
X9314 Single Digitally Controlled Potentiometer (XDCP ${ }^{\text {TM }}$ )
X9315 Digitally Controlled Potentiometer (XDCP ${ }^{\text {TM }}$ )
X93154 Digitally Controlled Potentiometer (XDCP ${ }^{\text {TM }}$ )
X93155 Digitally Controlled Potentiometer (XDCP ${ }^{\text {TM }}$ )
X93156 Single Digitally Controlled Potentiometer (XDCP ${ }^{\text {tM }}$ ), Low Noise, Low Power, 3 wire Up/Down, 32 Taps

