DESCRIPTION

Microsemi's LX1994 is a compact, high efficiency, step-up boost controller which is designed to drive a string of white or colored LED's in a backlight or front light system. The LX1994 design is based on a dual mode PFM architecture and provides maximum typical efficiency greater than 92%.

The LX1994 has many unique design features and advantages over competitor solutions. The features included: low quiescent current $(100 \mu \mathrm{~A}$ typical), low shut down current $(<1 \mu \mathrm{~A})$, dedicated ambient light sensor interface (LX1970), dual dimming modes, low voltage and low offset current sense, and integrated OVP protection.

The converter achieves high efficiency, low cost, and flexible design by selection of an external N Channel MOSFET, current sense resistors, and integrated OVP protection.
IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com Protected by U.S. patents $7,102,340$ and $7,102,339$

The use of external N-channel MOSFET allows design to optimize system efficiency.

The OVP protection comparator eliminates the need of an external Zener diode clamp. The OVP function can be scaled for any output voltage. Maximum output current is achievable by selection of the current sense resistor. These features make the controller ideal for PDA or digital camera applications

To enhance system battery life, the LX1994 provides 2 dimming options and a dedicated ambient light sensor (LX1970) interface.

The LX1994 supports a wide range of system battery voltage inputs which ranges from 2.0 to 5.5 V . The LX1994 is guaranteed to start up at 2.0 V input. The LX1994 is available in miniature 10-pin MLP or MSOP packages.

- Efficiency > 92\%
- Dual PFM Architecture To Extend Battery Life
- $\mathrm{V}_{\text {IN }}$ Range 2.0V To 5.5 V . Start Up from 2.0 V
- Logic Control Shutdown
- 100 A Typical Quiescent Current
- Shutdown lQ Current $<1 \mu \mathrm{~A}$
- OVP For Open String Output

Voltage

- Low Voltage And Offset Current Sense
- Light Sensor (LX1970) interface
- Dual Dimming Options (PWM or DC Voltage)
- No External Zener Clamp Diode
- 10-Pin MLP or MSOP

	APPLICATIONS
- Pagers	
- PDA	
- Cell Phone	
- Portable Display	
- Digital Cameras	

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, the following specifications apply over the operating ambient temperature $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ except where otherwise noted and the following test conditions: $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=20 \mathrm{~mA}$

Parameter	Symbol	Test Conditions	LX1994			Units
			Min	Typ	Max	
>						
Operating Voltage	$\mathrm{V}_{\text {IN }}$		2.0		5.5	V
Minimum Start-up Voltage		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	2.0	V
Start-up Voltage Temperature Coefficient		For Reference Only		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Quiescent Current	$l_{\text {a }}$	SHDN = VIN, No external FET		100	200	$\mu \mathrm{A}$
		SHDN = GND		0.35	1	$\mu \mathrm{A}$
BRT Full scale bias current	IBRT	$\mathrm{S} / \mathrm{P}=\mathrm{VIN}, \mathrm{VBRT}=\mathrm{GND}, \mathrm{ILS}=0 \mathrm{~A}$	7.5	10.5	13.5	$\mu \mathrm{A}$
BRT Light sensor current	IBRT	$\mathrm{S} / \mathrm{P}=\mathrm{VIN}, \mathrm{VBRT}=\mathrm{GND}, \mathrm{ILS}=100 \mu \mathrm{~A}$		110		$\mu \mathrm{A}$
S/P Logic Low Voltage	$\mathrm{V}_{\text {S/P }}$				0.6	V
S/P Logic High Voltage	$\mathrm{V}_{\text {S/P }}$		1.4			V
S/P Input DC Bias Current		S/P = VIN	-1	0.05	1	$\mu \mathrm{A}$
S/P PWM frequency			10		1000	KHz
S/P Pulse Width			50			ns
BRT PWM Voltage	VBRT	$\mathrm{VS} / \mathrm{P}=\mathrm{VIN}(\mathrm{DCS} / \mathrm{P}=100 \%)$	270	300	330	mV
BRT PWM Voltage	VBRT	DCS/P $=50 \%, \mathrm{FPWM}=100 \mathrm{KHZ}$		150		mV
Feedback Comparator Offset	VOS	VFB - VBRT, VBRT $=0 \mathrm{mV}$		4		mV
SRC peak current	IPK	HYST mode; $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	180	240	300	mA
Efficiency	η	$\mathrm{VOUT}=18 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=20 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=5.0 \mathrm{~V}$		92		\%
DRV Sink/Source Current			140	200		mA
Maximum Switch On-Time	t_{ON}	\bigcirc	10	15	20	$\mu \mathrm{S}$
Minimum Switch Off-Time	$\mathrm{t}_{\text {OFF }}$		240	350	460	ns
OVP Threshold Voltage	Vovp		1.10	1.22	1.34	V
OVP Input Bias Current	love	$\mathrm{V}_{\text {ovp }}=1 \mathrm{~V}$	-50		50	nA

High Efficiency LED Driver

Figure 1 - Simplified Block Diagram

THEORY OF OPERATION

Basic PFM operation

The LX1994 dual mode PFM modulator is implemented in two switching modes: the hysteretic and Continuous Switching Mode (CSM).
In hysteretic switching mode, the basic PFM modulator logic/timing block uses a Fixed Peak Current/ Fixed Off Time where the switch turns on and allows the inductor current to ramp to a finite peak level then shuts off for a fixed duration of time. The basic modulation cycle repeats as long as the converter output voltage is less than the maximum regulation level. When the maximum regulation level is reached, the switch remains off until the output voltage capacitor discharges to a level less than the minimum regulation level. The input signals to the switch logic block are the burst on/off control signal and the peak current detection signals. For low and negligible switch conduction losses, the peak current comparator at $\mathrm{V}_{\mathrm{HYST}}$ corresponding to 200 mA of output current is fixed.
In Continuous Switching Mode (CSM), the level to the peak current comparator is variable. This current level is developed by integrating the output of the feedback comparator which functions as a high gain bandwidth limited error amplifier. This current is clamped to the peak switch current limit of 600 mA . The integrated capacitor is attached at the CMP pin when the burst on/off control line is forced to the "ON" state.
The conversion from hysteretic to CSM mode is performed when the burst length exceeds more than 16 switching cycles counting by an internal 16 bits shift register. The internal register is clocked by the switch transitions during each burst period. When the switching cycles exceed 16 cycles, the converter automatically switches over to CSM mode. CSM mode switching is latched by a J/K flip-flop. The conversion from CSM mode to hysteretic mode is performed when the error amplifier output falls below $\mathrm{V}_{\mathrm{CSM}}$ (corresponding to 100 mA peak current) as determined by a comparator. This resets the J/K flip-flop and converts back to hysteric mode.
In CSM mode, the switching frequency is varied depending on the input voltage, and the output voltage with a fixed off time of 350 nS .
$F s w=\frac{1}{T_{\text {OFF }}} \times \frac{V_{\text {IN }}}{V_{\text {OUT }}+V_{\text {DIODE }}}$

The LX1994 is a highly efficient PFM boost converter; its design is based on dual mode PFM for driving a series of white or color LEDs. The advantage of PFM switching is to minimize system efficiency losses in both heavy and light load operations. The LX1994 does not require an external oscillator due to PFM dual modes switching.
In light load operation, the converter minimizes switching losses by delivering more energy than necessary during switching burst period than the inactivity coast period.
In heavy load condition, the converter uses the Continuous Switching Current Mode (CSM) regulation scheme. This minimized peak switching current and thereby minimizes the conduction losses.

Losses

There are two types of losses in PFM regulator design: the switching loss, and conduction loss; that contribute to system inefficiency.
Switching loss: Energy switching losses are associated with a NFET's switch changing state (from on to off or vice versa) as a simultaneous high level of voltage and current are at the NFET's switch during the transition. This switching loss is proportional to the switching frequency.
Conduction loss: the loss due to current flow in the series resistance of the switch, inductor, and current sense resistor. Conduction loss is proportional to the square of the switch current.

Output Current Selection

The LED output current is regulated by adjusting of the FB pin voltage. If the FB pin voltage equals the BRT pin voltage, the LED current is the result of the FB pin voltage divided by the selected current sense resistor.
For example: in a 100% duty cycle design, FB pin voltage is 300 mV , the current sense resistor is 15Ω. The LED current equals:

$$
\frac{300 \mathrm{mV}}{15 \Omega}=20 \mathrm{~mA}
$$

THEORY OF OPERATION (CONTINUED)

Dimming Modes

Microsemi's LX1994 provides two dimming options: PWM or DC voltage input.

PWM dimming

A PWM signal applied to S/P pin (see figure 4). This PWM signal is scaled to the reference such that a N\% duty cycle PWM signal will produce an LED current of

$$
\frac{\left\{N \% \bullet\left(10 \mu A+I_{L S}\right) \bullet\left(R_{B R T} / / 30 k \Omega\right)\right\}}{R_{F B}}
$$

Where $30 \mathrm{k} \Omega$ and $10 \mu \mathrm{~A}$ are the internal values of the resistor and bias current respectively.
(See Fig. 1 for more details.)
If a light sensor (such as Microsemi's LX1970) is used, the light sensor current is applied to the LS pin and adds to the $10 \mu \mathrm{~A}$ internal current source; in this case the internal current source determines the adjustment range in a pitch black ambient. The PWM signal will scale the light sensor signal allowing the dimming range to increase as the ambient light increases.

DC dimming mode

In "DC dimming mode" (see figure 5) the BRT pin input voltage can be applied directly to BRT pin with the S/P pin pulled high or developed indirectly by applying a PWM signal to the S/P pin and using a scaling resistor and filter capacitor at the BRT pin. The internal current source produces a $10 \mu \mathrm{~A}$ reference current that is scaled by the resistance applied to the BRT pin.

Protection and IC Shutdown

OVP: The LX1994 provides OVP protections. If the voltage at the OVP pin exceeds the internal reference voltage (1.2 V), the converter will suspend switching. The converter will attempt to regulate the OVP pin to its nominal 1.2 V .
IC Shutdown: To force the IC into shutdown mode, the S/P pin must pull low for a duration longer $100 \mu \mathrm{~s}$. In shutdown mode, the switch is off and the LED string current typically reduces to a few nano amps of leakage current.

High Efficiency LED Driver

Production Data Sheet

APPLICATION CIRCUITS

Figure 2 -PWM Dimming applied to S/P Input and Light Sensor (Dimming option 1)

Figure 3 -PWM Dimming applied to S/P Input and Light Sensor (Dimming option 2)

APPLICATION CIRCUITS

Figure 4 - LED Driver with PWM Dimming applied to S / P Input

Figure 5 - LED Driver with DC Dimming applied to BRT Input

Note: The component values shown are only examples for a working system. Actual values will vary greatly depending on desired parameters, efficiency, and layout constraints.

APPLICATION INFORMATION

OVP PROGRAMMING

Resistors R6 and R7 of Figure 2 program the over voltage clamp level. The value of R6 can be as high (like $1 \mathrm{M} \Omega$.) to minimize the quiescent current. The value of R7 can be determined using the following equation where VOVP is found in the ELECTRICAL CHARACTERISTICS TABLE:

$$
\mathrm{R} 7=\mathrm{R} 6 \times\left(\frac{\mathrm{V}_{\mathrm{OVP}}}{\mathrm{~V}_{\mathrm{OUT}}-\mathrm{V}_{\mathrm{OVP}}}\right)
$$

DEsign Example:

Let R6 equal 1 M and the required clamp voltage is 25 V .

$$
R 7=1 M\left(\frac{1.2}{25-1.2}\right)=50.4 K \Omega
$$

Inductor and Capacitor Selection

The output filter capacitor should be a $1 \mu \mathrm{~F}$ capacitor with sufficient voltage rating for the OVP setting. Inductors in the range of $10 \mu \mathrm{H}$ to $47 \mu \mathrm{H}$ work best. For the best efficiency a larger value of inductor such as $47 \mu \mathrm{H}$ is recommended; larger value inductors will reduce ripple current which reduces peak currents and improves efficiency. Smaller value inductors may be use less board space, so a design trade off is in order.

Transistor and Diode Selection

A Schottky diode should be used with a 1 Amp current rating and voltage rating equivalent to the OVP setting. The transistor should be a N-channel MOSFET with a logic level gate voltage: good candidates are the FDV303N and the FDN337. For higher voltages, several BSS138 can be wired in parallel.

Layout Guidelines

The LX1994 requires a tight layout of the CMP pin capacitance. For best results, the $0.1 \mu \mathrm{~F}$ CMP capacitor should be located directly adjacent to the LX1994 package with etch lengths as short as possible.

LIGHT SENSOR INTERFACE

The LX1994 has a LS input pin to simplify the interface to an LX1970 light sensor. Two different circuits are described which provide slightly different response curves. The equations for calculating the component values are also given.
For the circuit of Figure 2, the describing equations are:

$$
R p=\frac{R 4 \times 30 k}{R 4+30 k} \text { or } G 4=G p-\frac{1}{30 k}
$$

Auto Mode:

Manual Mode:

$$
\mathrm{I}_{\mathrm{LED}}=\frac{\text { DutyCycle }}{\mathrm{R} 5} \times\left[\begin{array}{l}
\frac{10 \mu \mathrm{~A} \times(\mathrm{R} 1 \times \mathrm{R} 2 \times \mathrm{Rp})}{(\mathrm{R} 1 \times \mathrm{R} 2)+(\mathrm{R} 1 \times \mathrm{Rp})+(\mathrm{R} 2 \times \mathrm{Rp})} \\
+\frac{\mathrm{V}_{\mathrm{CC}} \times(\mathrm{R} 2 \times \mathrm{Rp})}{(\mathrm{R} 1 \times \mathrm{R} 2)+(\mathrm{R} 1 \times \mathrm{Rp})+(\mathrm{R} 2 \times \mathrm{Rp})}
\end{array}\right]
$$

Example:

Select R5 $=15$ ohms; ILED $=20 \mathrm{~mA}$ max; ISRC clamp at $100 \mu \mathrm{~A} ; \mathrm{VCC}=3.3$; ILED in full darkness and 100% duty cycle $=4 \mathrm{~mA}$.
With R5 = 15 ohms; ILED $=20 \mathrm{~mA} \max , \operatorname{VBRT}(\mathrm{MAX})=$ 300 mV .
With ISRC clamp at $100 \mu \mathrm{~A}$, Vcompliance $(\mathrm{LX1970})=$ $0.68 \mathrm{~V}, \mathrm{VCC}=3.3 \mathrm{~V}$, so

$$
\mathrm{R} 3=\frac{(3.3-0.68-0.3)}{100 \mu \mathrm{~A}}=23.2 \mathrm{k}
$$

APPLICATION INFORMATION

R3 $=\mathbf{2 3 . 2 k}$
The level at 100% duty cycle in full darkness is 4 mA , which is 20% of the maximum level of 20 mA ; this implies 80% is attributable to $I_{\text {SCR }}$. Combining this information with the describing equation for AUTO mode gives:

$$
80 \% \times \mathrm{I}_{\mathrm{LED}(\mathrm{MAX})} \times \mathrm{R} 5=\frac{\mathrm{I}_{\mathrm{SRC}} \times(\mathrm{R} 1 \times \mathrm{R} 2 \times \mathrm{Rp})}{(\mathrm{R} 1 \times \mathrm{R} 2)+(\mathrm{R} 1 \times \mathrm{Rp})+(\mathrm{R} 2 \times \mathrm{Rp})}
$$

This implies:

$$
\frac{(\mathrm{R} 1 \times \mathrm{R} 2 \times \mathrm{Rp})}{(\mathrm{R} 1 \times \mathrm{R} 2)+(\mathrm{R} 1 \times \mathrm{Rp})+(\mathrm{R} 2 \times \mathrm{Rp})}=\frac{0.8 \times .02 \times 15}{100 \mu \mathrm{~A}}=2.4 \mathrm{k}
$$

Since the left side is the three resistors in parallel, this can be restated as:

$$
416 \times 10^{-6}=\frac{1}{\mathrm{R} 1}+\frac{1}{\mathrm{R} 2}+\frac{1}{\mathrm{Rp}}=\mathrm{G} 1+\mathrm{G} 2+\mathrm{Gp}
$$

The manual mode equation can be reduced to this assuming 100% duty and 20 mA LED current (that is 0.3 V sense resistor voltage):

$$
\frac{\mathrm{R} 2 \times \mathrm{Rp}}{\mathrm{R} 2+\mathrm{Rp}}=\frac{0.3 \times \mathrm{R} 1}{(10 \mu \mathrm{~A} \times \mathrm{R} 1)+\mathrm{V}_{\mathrm{CC}}-0.3}=\frac{0.3 \times \mathrm{R} 1}{(10 \mu \mathrm{~A} \times \mathrm{R} 1)+3.0}
$$

This can be restated as:

$$
\frac{1}{\mathrm{R} 2}+\frac{1}{\mathrm{Rp}}=33 \times 10^{-6}+\frac{10}{\mathrm{R} 1} \text { or } \mathrm{G} 2+\mathrm{Gp}=33 \times 10^{-6}+(10 \times \mathrm{G} 1)
$$

The auto mode equation can be reduced to this assuming 100% duty, $100 \mu \mathrm{~A}$ ISRC current and 20 mA LED current (that is 0.3 V sense resistor voltage):

$$
\begin{aligned}
& \frac{\mathrm{R} 1 \times \mathrm{Rp}}{\mathrm{R} 1+\mathrm{Rp}}=\frac{0.3 \times \mathrm{R} 2}{\left(\left(\mathrm{I}_{\mathrm{SRC}}+10 \mu \mathrm{~A}\right) \times \mathrm{R} 2\right)+\mathrm{V}_{\mathrm{CC}}-0.3} \\
& =\frac{0.3 \times \mathrm{R} 2}{((100 \mu+10 \mu \mathrm{~A}) \times \mathrm{R} 2)+\mathrm{V}_{\mathrm{CC}}-0.3}=\frac{0.3 \times \mathrm{R} 2}{(110 \mu \mathrm{~A} \times \mathrm{R} 2)+3.0}
\end{aligned}
$$

This can be restated as:

$$
\frac{1}{\mathrm{R} 1}+\frac{1}{\mathrm{Rp}}=367 \times 10^{-6}+\frac{10}{\mathrm{R} 2} \text { or } \mathrm{G} 1+\mathrm{Gp}=367 \times 10^{-6}+(10 \times \mathrm{G} 2)
$$

The equations above can be solved for G1, G2 and Gp:

$$
\begin{aligned}
& \mathrm{G} 1=34.8 \times 10^{-6} \\
& \mathrm{G} 2=4.45 \times 10^{-6} \\
& \mathrm{Gp}=376 \times 10^{-6}
\end{aligned}
$$

Knowing Gp we can find

$$
\mathrm{G} 4=\mathrm{Gp}-\frac{1}{30 \mathrm{k}}=343 \times 10^{-6}
$$

The resistance values are the reciprocal of the conductance's so:

$$
\begin{aligned}
& \text { R1 }=28.7 \mathrm{k} \\
& \text { R2 }=225 \mathrm{k} \\
& \text { R4 }=2.91 \mathrm{k}
\end{aligned}
$$

The value of C 1 is selected to give a time constant of $1 / 2$ second and works into R3 (which is 23.2 k).

$$
\mathrm{C} 1=\frac{0.5}{23.2 \mathrm{k}} \quad \mathrm{C} 1=21.5 \mu \mathrm{~F}
$$

The value of C 2 works into Rp and the pole should be set at $1 / 100$ of the PWM frequency.

For a 10 KHz PWM, $\mathrm{C} 2=599 \mathrm{nF}$, and a value of $1 \mu \mathrm{f}$ works well.

Circuit of Figure 3:

The second light sensor interface is very similar to the first; the choice is a matter of user preference. In the second circuit, an active 325 mV clamp is used to clamp the maximum LED current in auto mode.
In this circuit, resistor R 3 is reduced to extend the operating ambient light range of the light sensor and filter capacitor C 1 must therefore be increased.

High Efficiency LED Driver

PACKAGE DIMENSIONS

DU \quad 10-Pin Miniature Shrink Outline Package (MSOP)

LD $\quad 10$-Pin Plastic Micro Lead frame Package (MLP)

Dim	MILLIMETERS		INCHES			
	MIN	MAX	MIN	MAX		
A	0.80	1.00	0.0315	0.0394		
A1	0	0.05	0	0.0019		
A3	0.20		REF	0.0079		
b	0.18		0.30	0.0071		
REF	0.0118					
D	3.00		BSC	0.1181		
D2	2.23		2.48	0.0878		0.0976
e	0.50	BSC	0.0197	BSC		
E	3.00		BSC	0.1181		BSC
E2	1.49	1.74	0.0587	0.0685		
L	0.30	0.50	0.0071	0.0197		

Note: Dimensions do not include mold flash or protrusions; these shall not exceed $0.155 \mathrm{~mm}(.006$ ") on any side.

NOTES

