TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74HC4066AP,TC74HC4066AF,TC74HC4066AFN,TC74HC4066AFT

Quad Bilateral Switch

The TC74HC4066A is a high speed CMOS QUAD BILATERAL SWITCH fabricated with silicon gate C^{2} MOS technology.

It consists of four independent high speed switches capable of controlling either digital or analog signals while maintaining the CMOS low power dissipation.

Control input (C) is provided to control the switch. The switch turns ON while the C input is high, and the switch turns OFF while low.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.

Features

- High speed: $\mathrm{t}_{\mathrm{pd}}=7 \mathrm{~ns}$ (typ.) at $\mathrm{VCC}=5 \mathrm{~V}$
- Low power dissipation: ICC $=1 \mu \mathrm{~A}(\max)$ at $\mathrm{Ta}=25^{\circ} \mathrm{C}$
- High noise immunity: $\mathrm{V}_{\mathrm{NIH}}=\mathrm{V}_{\mathrm{NIL}}=28 \% \mathrm{VCC}_{\mathrm{C}}(\mathrm{min})$
- Low on resistance: RON $=50 \Omega$ (typ.) at VCC $=9 \mathrm{~V}$
- High degree of linearity: THD $=0.05 \%$ (typ.) at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- Pin and function compatible with 4066 B

Weight	
DIP14-P-300-2.54	$: 0.96 \mathrm{~g}$ (typ.)
SOP14-P-300-1.27A	$: 0.18 \mathrm{~g}$ (typ.)
SOP14-P-300-1.27	$: 0.18 \mathrm{~g}$ (typ.)
SOL14-P-150-1.27	$: 0.12$ g (typ.)
TSSOP14-P-0044-0.65A	$: 0.06 \mathrm{~g}$ (typ.)

Note: $x x x F N$ (JEDEC SOP) is not available in Japan.

DIP14-P-300-2.54
TC74HC4066AF

SOP14-P-300-1.27A

SOP14-P-300-1.27
TC74HC4066AFN

SOL14-P-150-1.27
TC74HC4066AFT

TSSOP14-P-0044-0.65A

Pin Assignment

IEC Logic Symbol

Truth Table

Control	Switch Function
H	On
L	Off

Absolute Maximum Ratings (Note 1)

Characteristics	Rymbol	Rating	Unit
Supply voltage range	V_{CC}	-0.5 to 13	V
Control input voltage	V_{IN}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Switch I/O voltage	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Control input diode current	I_{IK}	± 20	mA
I/O diode current	I_{OK}	± 20	mA
Switch through Current	$\mathrm{I}_{\mathrm{OUT}}$	± 25	mA
DC $\mathrm{V}_{\mathrm{CC}} /$ ground current	I_{CC}	± 50	mA
Power dissipation	P_{D}	500 (DIP) (Note 2$) / 180(\mathrm{SOP} / \mathrm{TSSOP})$	mW
Storage temperature	$\mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Note 2: 500 mW in the range of $\mathrm{Ta}=-40$ to $65^{\circ} \mathrm{C}$. From $\mathrm{Ta}=65$ to $85^{\circ} \mathrm{C}$ a derating factor of $-10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ should be applied up to 300 mW .

Recommended Operating Conditions (Note)

Characteristics	Symbol	Rating	Unit
Supply voltage	V_{CC}	2 to 12	V
Control input voltage	V_{IN}	0 to V_{CC}	0 to V_{CC}
Switch I/O voltage	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}$	-40 to 85	V
Operating temperature	$\mathrm{T}_{\mathrm{opr}}$	0 to $1000\left(\mathrm{~V}_{\mathrm{CC}}=2.0 \mathrm{~V}\right)$	${ }^{\circ} \mathrm{C}$
		0 to $500\left(\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}\right)$	
0 to $400\left(\mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}\right)$			
Input rise and fall time	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	0 to $250\left(\mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V}\right)$	ns

Note: The recommended operating conditions are required to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND.

Electrical Characteristics

DC Characteristics

Characteristics	Symbol	Test Condition		$\mathrm{Ta}=25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{Ta}= \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$		Unit
			$\begin{array}{\|c} \hline \mathrm{V}_{\mathrm{CC}} \\ (\mathrm{~V}) \end{array}$	Min	Typ.	Max	Min	Max	
High-level control input voltage	VIHC	-	2.0	1.50	-	-	1.50	-	V
			4.5	3.15	-	-	3.15	-	
			9.0	6.30	-	-	6.30	-	
			12.0	8.40	-	-	8.40	-	
Low-level control input voltage	VILC	-	2.0	-	-	0.50	-	0.50	V
			4.5	-	-	1.35	-	1.35	
			9.0	-	-	2.70	-	2.70	
			12.0	-	-	3.60	-	3.60	
On resistance	RON	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IHC }}$	4.5	-	96	170	-	200	Ω
		$V_{\text {I/O }}=V_{\text {CC }}$ to GND	9.0	-	55	85	-	100	
		$\mathrm{l}_{1 / \mathrm{O}} \leq 1 \mathrm{~mA}$	12.0	-	45	80	-	90	
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IHC}} \\ & \mathrm{~V}_{\mathrm{I} / \mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{I}_{\mathrm{I} / \mathrm{O}} \leq 1 \mathrm{~mA} \end{aligned}$	2.0	-	160	-	-	-	
			4.5	-	70	100	-	130	
			9.0	-	50	75	-	95	
			12.0						
				-	45	70	-	90	
Difference of on resistance between switches	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IHC }}$	4.5	-	10	-	-	-	Ω
		$V_{\text {I/O }}=V_{C C}$ to $G N D$	9.0	-	5	-	-	-	
		$\mathrm{l}_{1 / \mathrm{O}} \leq 1 \mathrm{~mA}$	12.0	-	5	-	-	-	
Input/output leakage	lofF	$\begin{aligned} & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\text {IS }}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {ILC }} \end{aligned}$	12.0	-	-	± 100	-	± 1000	nA
current									
(switch off)									
Switch input leakage current	IIZ	$\begin{aligned} & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IHC}} \end{aligned}$	12.0	-	-	± 100	-	± 1000	nA
(switch on, output									
open)									
Control input current	IIN	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND	12.0	-	-	± 100	-	± 1000	nA
Quiescent supply current	ICC	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND	6.0	-	-	1.0	-	10.0	$\mu \mathrm{A}$
			9.0	-	-	4.0	-	40.0	
			12.0	-	-	8.0	-	80.0	

AC Characteristics ($C_{L}=50 \mathrm{pF}$, input: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=\mathbf{6 n s}$)

Characteristics	Symbol	Test Condition		$\mathrm{Ta}=25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{Ta}= \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$		Unit
			VCC (V)	Min	Typ.	Max	Min	Max	
Phase difference between input and output	$\varphi \mathrm{I}-\mathrm{O}$	-	2.0	-	10	50	-	65	pF
			4.5	-	4	10	-	13	
			9.0	-	3	8	-	10	
			12.0	-	3	7	-	9	
Output enable time	$\begin{aligned} & \mathrm{t}_{\mathrm{pZL}} \\ & \mathrm{t}_{\mathrm{pZH}} \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	2.0	-	18	100	-	125	pF
			4.5	-	8	20	-	25	
			9.0	-	6	12	-	22	
			12.0	-	6	12	-	18	
Output disable time	$\begin{gathered} \mathrm{t}_{\mathrm{pLZ}} \\ \mathrm{t}_{\mathrm{pHZ}} \end{gathered}$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	2.0	-	20	115	-	145	pF
			4.5	-	10	23	-	29	
			9.0	-	8	20	-	25	
			12.0	-	8	18	-	22	
Maximum control input frequency		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{OUT}}=1 / 2 \mathrm{~V} \mathrm{VC} \end{aligned}$		-		-	-	-	MHz
			4.5	-	30	-	-	-	
			9.0	-	30	-	-	-	
				-	30	-	-	-	
Control input capacitance	$\mathrm{C}_{\text {IN }}$	-		-	5	10	-	10	pF
Switch terminal capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$	-		-	6	-	-	-	pF
Feed through capacitance	$\mathrm{CIOS}^{\text {IO }}$	-		-	0.5	-	-	-	pF
Power dissipation capacitance	CPD		(Note)	-	15	-	-	-	pF

Note: $\quad C_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

$$
I_{C C}(\mathrm{opr})=\mathrm{CPD} \cdot \mathrm{~V}_{\mathrm{CC}} \cdot \mathrm{f}_{\mathrm{IN}}+\mathrm{I}_{\mathrm{CC}} / 4(\text { per channel })
$$

Analog Switch Characteristics (GND =0 V, $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$) (Note)

Characteristics	Symbol	Test Condition	$\begin{array}{\|c} \hline \mathrm{V}_{\mathrm{CC}} \\ (\mathrm{~V}) \\ \hline \end{array}$	Typ.	Unit
Sine wave distortion (T.H.D)		$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{IN}}=4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, @ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{IN}}=8 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, @ \mathrm{~V}_{\mathrm{CC}}=9.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.04 \end{aligned}$	\%
Frequency response (switch on)	$\mathrm{f}_{\max }$	Adjust f_{IN} voltage to obtain 0 dBm at V_{OS} Increase $f_{I N}$ frequency until dB meter reads $-3 d B$ $\begin{aligned} & R_{L}=50 \Omega, C_{L}=10 \mathrm{pF} \\ & f_{I N}=1 \mathrm{MHz}, \text { sine wave } \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	MHz
Feedthrough attenuation (switch off)		Vin is centered at $V_{\mathrm{CC}} / 2$ Adjust input for 0 dBm $\begin{aligned} & R_{L}=600 \Omega, C_{L}=50 \mathrm{pF} \\ & \mathrm{f} / \mathrm{N}=1 \mathrm{MHz} \text {, sine wave } \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & -60 \\ & -60 \end{aligned}$	dB
Crosstalk (control input to signal output)		$\begin{aligned} & R_{L}=600 \Omega, C_{L}=50 \mathrm{pF} \\ & \mathrm{f}_{\mathrm{IN}}=1 \mathrm{MHz} \text {, square wave }\left(\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}\right) \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$	$\begin{gathered} 60 \\ 100 \end{gathered}$	mV
Crosstalk (between any switches)		Adjust $\mathrm{V}_{\text {IN }}$ to obtain 0 dBm at input $\begin{aligned} & R_{L}=600 \Omega, C_{L}=50 \mathrm{pF} \\ & \mathrm{f}_{\mathrm{I}}=1 \mathrm{MHz} \text {, sine wave } \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & -60 \\ & -60 \end{aligned}$	dB

Note: These characteristics are determined by design of devices.

Switching Characteristics Test Circuits

1. $t_{p L Z}, t_{p H Z}, t_{p z L}, t_{p z H}$

2. Cross Talk (control input-switch output)
$\mathbf{f I N}=1 \mathrm{MHz}$ duty $=\mathbf{5 0 \%} \mathbf{t r}=\mathbf{t f}=\mathbf{6 n s}$

3. Feedthrough Attenuation

4. $\mathrm{C}_{\mathrm{IOS}}, \mathrm{C}_{\mathrm{I} / \mathrm{O}}$

5. Crosstalk (between any two switches)

6. Frequency Response (switch on)

Package Dimensions

DIP14-P-300-2.54

Weight: 0.96 g (typ.)

Package Dimensions

Weight: 0.18 g (typ.)

Package Dimensions

Unit : mm

Weight: 0.18 g (typ.)

Package Dimensions (Note)

Note: This package is not available in Japan.

Weight: 0.12 g (typ.)

Package Dimensions

TSSOP14-P-0044-0.65A
Unit: mm

Weight: 0.06 g (typ.)

Note: Lead (Pb)-Free Packages
DIP14-P-300-2.54 SOP14-P-300-1.27A SOL14-P-150-1.27 TSSOP14-P-0044-0.65A

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice. 021023_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_B
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. 021023_C
- The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E

