

Texas **INSTRUMENTS**

SN54AHC240, SN74AHC240 SCLS2511 - OCTOBER 1995 - REVISED APRIL 2023

SNx4AHC240 Octal Buffers/Drivers With 3-State Outputs

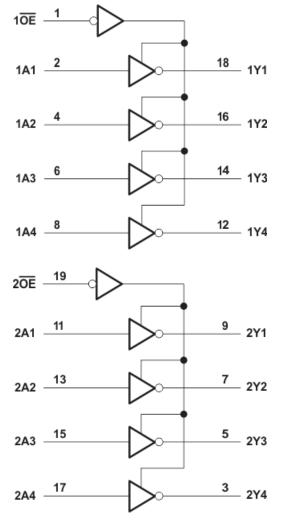
1 Features

- V_{CC} operation of 2 V to 5.5 V
- Latch-up performance exceeds 250 mA per JESD • 17

2 Applications

- Handset: Smartphone •
- **Network Switch**
- Health and Fitness / Wearables

3 Description


These octal buffers/drivers are designed specifically to improve the performance and density of 3-state memory-address drivers, clock drivers, and busoriented receivers and transmitters. (4)

Package Information ⁽¹⁾								
PART NUMBER	PACKAGE	BODY SIZE (NOM)						
	J (CDIP, 20)	24.2 mm × 6.92 mm						
SN54AHC240	W (CFP, 20)	13.09 mm × 6.92 mm						
	FK (LCCC, 20)	8.89 mm × 8.89 mm						
	N (PDIP, 20)	24.33 mm × 6.35 mm						
SN74AHC240	DW (SOIC, 20)	12.8 mm × 7.5 mm						
31174A110240	NS (SOP, 20)	12.6 mm × 5.30 mm						
	PW (TSSOP, 20)	6.5 mm × 4.40 mm						

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Logic Diagram (Positive Logic)

Table of Contents

1 Features	1
2 Applications	1
3 Description	1
4 Revision History	
5 Pin Configuration and Functions	4
6 Specifications	5
6.1 Absolute Maximum Ratings	
6.2 ESD Ratings	
6.3 Recommended Operating Conditions	
6.4 Thermal Information	6
6.5 Electrical Characteristics	7
6.6 Switching Characteristics, V_{CC} = 3.3 V ±0.3 V	7
6.7 Switching Characteristics, $V_{CC} = 5 V \pm 0.5 V$	<mark>8</mark>
6.8 Noise Characteristics	9
6.9 Operating Characteristics	9
7 Parameter Measurement Information	

8 Detailed Description	11
8.1 Overview	
8.2 Functional Block Diagram	11
8.3 Device Functional Modes	12
9 Application and Implementation	13
9.1 Power Supply Recommendations	
9.2 Layout.	
10 Device and Documentation Support	
10.1 Documentation Support	
10.2 Receiving Notification of Documentation Update	
10.3 Support Resources	
10.4 Trademarks	
10.5 Electrostatic Discharge Caution	
10.6 Glossary	
11 Mechanical, Packaging, and Orderable	
Information	14

4 Revision History

Changes from Revision H (July 2003) to Revision I (April 2023)

Page

,	Added Applications, Package Information table, Pin Functions table, ESD Ratings table, Thermal Information
	table, Device Functional Modes, Application and Implementation section, Power Supply Recommendations
	section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and
	Orderable Information section1

5 Pin Configuration and Functions

10E [1	U	20] v _{cc}
1A1 [2		19] 20E
2Y4 [3		18] 1Y1
1A2 [4		17] 2A4
2Y3 [5		16] 1Y2
1A3 [6		15] 2A3
2Y2 [7		14] 1Y3
1A4 [8		13] 2A2
2Y1 [9		12] 1Y4
GND [10		11]2A1

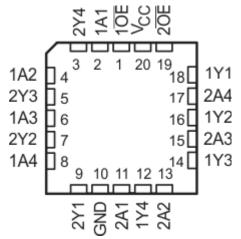


Figure 5-2. SN54AHC240 FK Package (Top View)

PIN	I/O	DESCRIPTION
1	10E	Output enable 1
2	1A1	1A1 input
3	2Y4	2Y4 output
4	1A2	1A2 input
5	2Y3	2Y3 output
6	1A3	1A3 input
7	2Y2	2Y2 output
8	1A4	1A4 input
9	2Y1	2Y1 output
10	GND	Ground pin
11	2A1	2A1 input
12	1Y4	1Y4 output
13	2A2	2A2 input
14	1Y3	1Y3 output
15	2A3	2A3 input
16	1Y2	1Y2 output
17	2A4	2A4 input
18	1Y1	1Y1 output
19	20E	Output enable 2
20	VCC	Power pin

GND 10 11 2A1 Figure 5-1. SN54AHC240 J or W Package; SN74AHC240 DB, DGV, DW, N, NS, or PW Package

(Top View)

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature (unless otherwise noted) (1)

				MIN	MAX	UNIT
V _{CC}	Supply voltage			-0.5	7	V
VI	Input voltage ⁽²⁾		-0.5	$ \begin{array}{c c} -0.5 & 7 \\ \hline -0.5 & 7 \\ \hline -0.5 & V_{CC} + 0.5 \\ \hline -20 \\ \pm 20 \\ \pm 25 \\ \end{array} $		
Vo	Output voltage(2)			-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0			-20	mA
I _{OK}	Output clamp current	$V_{O} < 0 \text{ or } V_{O} > V_{CC}$			±20	mA
I _O	Continuous output current	$V_{O} = 0$ to V_{CC}			±25	mA
	Continuous current through V_{CC} or G	SND			±75	mA
T _{stg}	Storage temperature			-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
V(ESD)	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±2000	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

see (Note 1)

			SN54AHC	240	SN74AHC240			
			MIN	MAX	MIN	MAX	UNIT	
V _{CC}	Supply voltage		2	5.5	2	5.5	V	
		V _{CC} = 2 V	1.5		1.5			
V _{IH}	High-level input voltage	V _{CC} = 3 V	2.1		2.1		V	
		V _{CC} = 5.5 V	3.85		3.85			
		V _{CC} = 2 V		0.5		0.5		
V _{IL}	V _{IL} Low-level input voltage	V _{CC} = 3 V		0.9		0.9	V	
		V _{CC} = 5.5 V		1.65		1.65		
VI	Input voltage	nput voltage				5.5	V	
Vo	Output voltage		0	V _{CC}	0	V _{CC}	V	
		V _{CC} = 2 V		-50		-50	μA	
I _{OH}	High-level output current	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		-4		-4	mA	
		V _{CC} = 5 V ± 0.5 V		-8		-8	ША	
		V _{CC} = 2 V		50		50	μA	
I _{OL}	Low-level output current	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		4		4		
		V _{CC} = 5 V ± 0.5 V		8		8	mA	
A+/A.,		V _{CC} = 3.3 V ± 0.3 V		100		100	no //	
Δt/Δv	Input transition rise or fall rate	V _{CC} = 5 V ± 0.5 V		20		20	ns/V	
T _A	Operating free-air temperature		-55	125	-40	85	°C	

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾		DW	DB	DGV	N	NS	PW	UNIT
		20 PINS						UNIT
$R_{\theta JA}$	Junction-to-ambient thermal resistance ⁽²⁾	58	70	92	69	60	83	°C/W

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

(2) The package thermal impedance is calculated in accordance with JESD 51-7.

6.5 Electrical Characteristics

DADAMETED		N	TA	∖ = 25°C		SN54AH	C240	SN74AH	C240	
PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
		2 V	1.9	2		1.9		1.9		
	I _{OH} = –50 μA	3 V	2.9	3		2.9		2.9		
V _{OH}		4.5 V	4.4	4.5		4.4		4.4		V
	I _{OH} = -4 mA	3 V	2.58			2.48		2.48		
	I _{OH} = -8 mA	4.5 V	3.94			3.8		3.8		
		2 V			0.1		0.1		0.1	
	I _{OL} = 50 μA	3 V			0.1		0.1		0.1	
V _{OL}		4.5 V			0.1		0.1		0.1	V
	I _{OL} = 4 mA	3 V			0.36		0.5		0.44	
	I _{OL} = 8 mA	4.5 V			0.36		0.5		0.44	
I _I	V _I = 5.5 V or GND	0 V to 5.5 V			± 0.1		± 1 ₁		± 1	μA
I _{OZ 2}	$V_{O} = V_{CC} \text{ or GND},$ $V_{I} (\overline{OE}) = V_{IL} \text{ or } V_{IH}$	5.5 V			± 0.25		± 2.5		± 2.5	μA
Icc	$V_{I} = V_{CC}$ or GND, I_{O} = 0	5.5 V			4		40		40	μA
Ci	$V_I = V_{CC}$ or GND	5 V		2.5	10				10	pF
Co	$V_{O} = V_{CC}$ or GND	5 V		3.5						pF

over recommended operating free-air temperature range (unless otherwise noted)

1. On products compliant to MIL-PRF-38535, this parameter is not production tested at V_{CC} = 0 V.

2. The parameter ${\rm I}_{\rm OZ}$ includes the input leakage current.

6.6 Switching Characteristics, V_{CC} = 3.3 V ±0.3 V

over recommended operating free-air temperature range (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

PARAMETER	FROM	то	LOAD	TA	= 25°C		SN54AH	IC240	SN74AH	C240	UNIT					
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT					
t _{PLH}	A	Y	C _L = 15 pF		5.3(1)	7.5(1)	1(1)	9 ₍₁₎	1	9	20					
t _{PHL}	A	T	0L = 15 pF		5.3(1)	7.5(1)	1(1)	9(1)	1	9	ns					
t _{PZH}	ŌĒ	Y	C _L = 15 pF		6.6 ₍₁₎	10.6(1)	1(1)	12.5(1)	1	12.5	ns					
t _{PZL}	UL	I	0 _L = 15 pr		6.6(1)	10.6(1)	1(1)	12.5(1)	1	12.5	115					
t _{PHZ}	ŌĒ	V	Y	C _L = 15 pF		7.8(1)	11.5(1)	1(1)	12.5(1)	1	12.5	ns				
t _{PLZ}		UL	I	0L = 15 pr		7.8(1)	11.5 <mark>(1)</mark>	1(1)	12.5 <mark>(1)</mark>	1	12.5	115				
t _{PLH}	A	Y	C _L = 50 pF		7.8	11	1	12.5	1	12.5	ns					
t _{PHL}		I	C[- 30 pr		7.8	11	1	12.5	1	12.5	115					
t _{PZH}	ŌĒ	Y	C _L = 50 pF		9.1	14.1	1	16	1	16	ns					
t _{PZL}	UE	UE		0L	T	I	0 _L = 50 pF	С _L – 30 рг		9.1	14.1	1	16	1	16	115
t _{PHZ}	ŌĒ	Y	C _L = 50 pF		10.3	14	1	16	1	16	nc					
t _{PLZ}	UE	ſ	С _L – 50 рг		10.3	14	1	16	1	16	ns					
t _{sk(o)}			C _L = 50 pF			1.5 ⁽²⁾				1.5	ns					

(1) On products compliant to MIL-PRF-38535, this parameter is not production tested.

(2) On products compliant to MIL-PRF-38535, this parameter does not apply.

6.7 Switching Characteristics, V_{CC} = 5 V ±0.5 V

over recommended operating free-air temperature range (unless otherwise noted) (see Load Circuit and Voltage Wavef
--

	<u>_</u>		<u> </u>								
PARAMETER	FROM	то	LOAD	TA	= 25°C		SN54AH	C240	SN74AH	C240	UNIT
FARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
t _{PLH}	Α	Y	C _L = 15 pF		3.6(1)	5.5(1)	1(1)	6.5(1)	1	6.5(1)	
t _{PHL}	A	Ĭ	0L = 15 pF		3.6(1)	5.5(1)	1(1)	6.5(1)	1	6.5(1)	ns
t _{PZH}	ŌĒ	Y	C _L = 15 pF		4.7 ₍₁₎	7.3(1)	1(1)	8.5(1)	1	8.5	
t _{PZL}	UE	ř	CL = 15 pF		4.7 ₍₁₎	7.3(1)	1(1)	8.5(1)	1	8.5	ns
t _{PHZ}	ŌĒ	Y	C _L = 15 pF		5.2(1)	7.2(1)	1(1)	8.5(1)	1	8.5	
t _{PLZ}	UE	T	ο <u>ι</u> – το με		5.2(1)	7.2(1)	1(1)	8.5(1)	1	8.5	ns
t _{PLH}	A	Y	Y C _L = 50 pF		5.1	7.5	1	8.5	1	8.5	ns
t _{PHL}	A				5.1	7.5	1	8.5	1	8.5	
t _{PZH}	ŌĒ	Y			6.2	9.3	1	10.5	1	10.5	20
t _{PZL}	UE	ř	C _L = 50 pF		6.2	9.3	1	10.5	1	10.5	ns
t _{PHZ}	ŌE		Y C _L = 50 pF	6.7	9.2	1	10.5	1	10.5	n 0	
t _{PLZ}		ſ			6.7	9.2	1	10.5	1	10.5	ns
t _{sk(o)}			C _L = 50 pF			1 ⁽²⁾				1	ns

(1) On products compliant to MIL-PRF-38535, this parameter is not production tested.

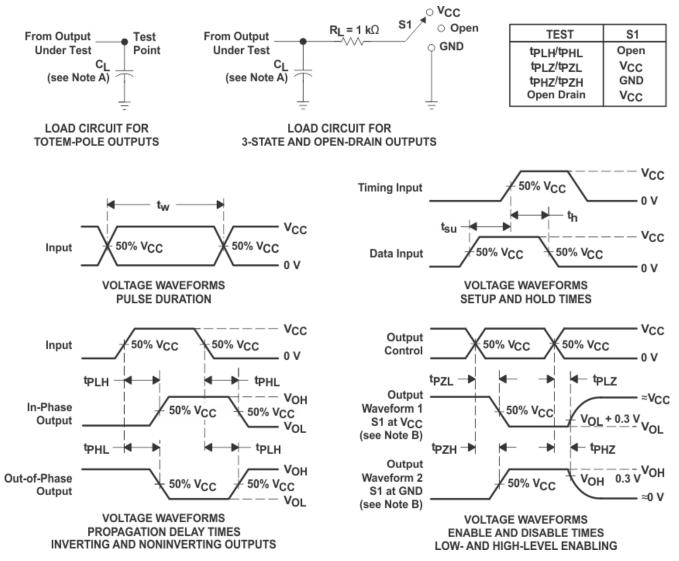
(2) On products compliant to MIL-PRF-38535, this parameter does not apply.

6.8 Noise Characteristics

 V_{CC} = 5 V, C_L = 50 pF, T_A = 25°C (see (Note 1))

	PARAMETER	MIN	TYP	MAX	UNIT
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}		0.6		
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}		-0.6		
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}		4.6		V
V _{IH(D)}	High-level dynamic input voltage	3.5			
V _{IL(D)}	Low-level dynamic input voltage			1.5	

(1) Characteristics are for surface-mount packages only.


6.9 Operating Characteristics

 $V_{CC} = 5 V, T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	No load, f = 1 MHz	10	pF

7 Parameter Measurement Information

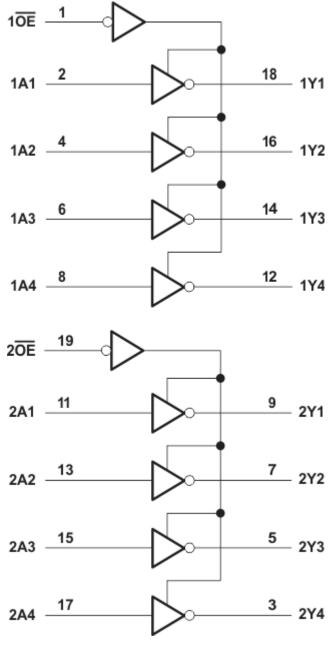
NOTES: A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_r \leq 3 ns, t_f \leq 3 ns.

D. The outputs are measured one at a time with one input transition per measurement. E. All parameters and waveforms are not applicable to all devices.

Figure 7-1. Load Circuit and Voltage Waveforms


8 Detailed Description

8.1 Overview

The 'AHC240 devices are organized as two 4-bit buffers/line drivers with separate output-enable (\overline{OE}) inputs. When \overline{OE} is low, the device passes data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

8.2 Functional Block Diagram

8.3 Device Functional Modes

Table 8-1. Function Table (Each Buffer)

INPU	INPUTS ⁽¹⁾					
ŌE	Α	(2) Y				
L	Н	L				
L	L	Н				
Н	Х	Z				

- H = High Voltage Level, L = Low Voltage Level, X = Don't Care
- (2) H = Driving High, L = Driving Low, Z = High Impedance State

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Power Supply Recommendations

The power supply can be any voltage between the min and max supply voltage rating located in Section 6.3.

Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, TI recommends 0.1 μ F and if there are multiple V_{CC} terminals, then TI recommends .01 μ F or .022 μ F for each power terminal. It is okay to parallel multiple bypass capacitors to reject different frequencies of noise. A 0.1 μ F and 1 μ F are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.

9.2 Layout

9.2.1 Layout Guidelines

When using multiple bit logic devices inputs should not ever float.

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified below are the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} whichever make more sense or is more convenient. It is generally okay to float outputs unless the part is a transceiver. If the transceiver has an output enable pin it will disable the outputs section of the part when asserted. This does not disable the input section of the IOs so they cannot float when disabled.

9.2.1.1 Layout Example

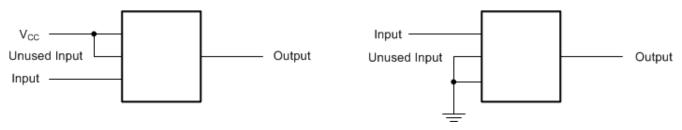


Figure 9-1. Layout Recommendation

10 Device and Documentation Support

10.1 Documentation Support

10.1.1 Related Documentation

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY							
SN54AHC240	Click here	Click here	Click here	Click here	Click here							
SN74AHC240	Click here	Click here	Click here	Click here	Click here							

Table 10-1. Related Links

10.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

10.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

10.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

10.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
5962-9680701Q2A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 9680701Q2A SNJ54AHC 240FK	Samples
5962-9680701QRA	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9680701QR A SNJ54AHC240J	Samples
5962-9680701QSA	ACTIVE	CFP	W	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9680701QS A SNJ54AHC240W	Samples
SN74AHC240DWR	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AHC240	Samples
SN74AHC240N	ACTIVE	PDIP	N	20	20	RoHS & Non-Green	NIPDAU	N / A for Pkg Type	-40 to 85	SN74AHC240N	Samples
SN74AHC240NSR	ACTIVE	SO	NS	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AHC240	Samples
SN74AHC240PWR	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HA240	Samples
SNJ54AHC240FK	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 9680701Q2A SNJ54AHC 240FK	Samples
SNJ54AHC240J	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9680701QR A SNJ54AHC240J	Samples
SNJ54AHC240W	ACTIVE	CFP	W	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9680701QS A SNJ54AHC240W	Samples

(1) The marketing status values are defined as follows:
 ACTIVE: Product device recommended for new designs.
 LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device.

www.ti.com

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

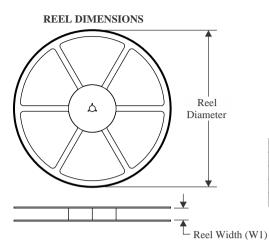
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

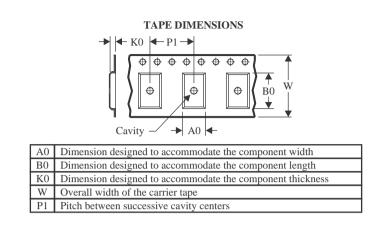
OTHER QUALIFIED VERSIONS OF SN54AHC240, SN74AHC240 :

• Catalog : SN74AHC240

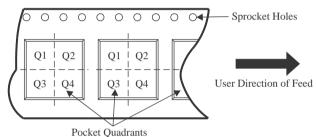
• Military : SN54AHC240

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

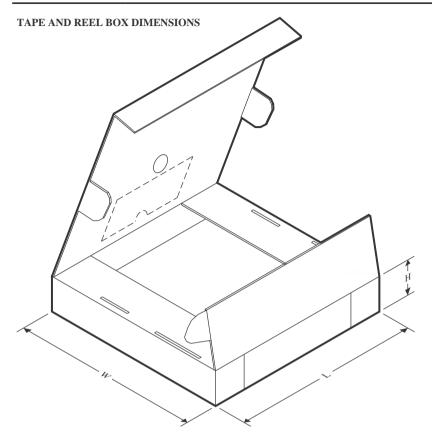


Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

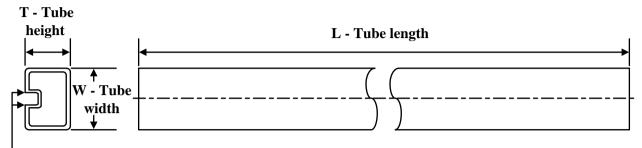

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AHC240DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74AHC240NSR	SO	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
SN74AHC240PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

12-May-2023

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AHC240DWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN74AHC240NSR	SO	NS	20	2000	367.0	367.0	45.0
SN74AHC240PWR	TSSOP	PW	20	2000	356.0	356.0	35.0

TEXAS INSTRUMENTS

www.ti.com

12-May-2023

TUBE

- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
5962-9680701Q2A	FK	LCCC	20	1	506.98	12.06	2030	NA
5962-9680701QSA	W	CFP	20	1	506.98	26.16	6220	NA
SN74AHC240N	N	PDIP	20	20	506	13.97	11230	4.32
SNJ54AHC240FK	FK	LCCC	20	1	506.98	12.06	2030	NA
SNJ54AHC240W	W	CFP	20	1	506.98	26.16	6220	NA

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

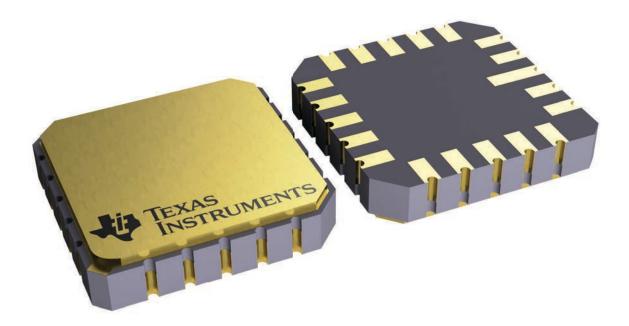
J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

FK 20

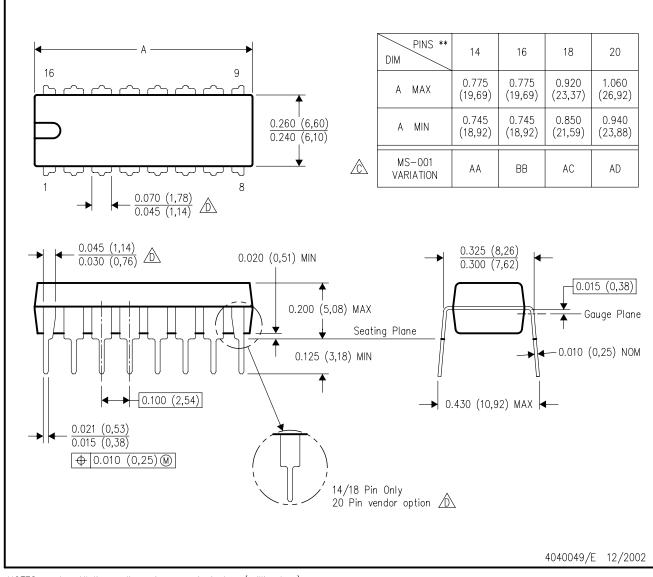

8.89 x 8.89, 1.27 mm pitch

GENERIC PACKAGE VIEW

LCCC - 2.03 mm max height

LEADLESS CERAMIC CHIP CARRIER

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.



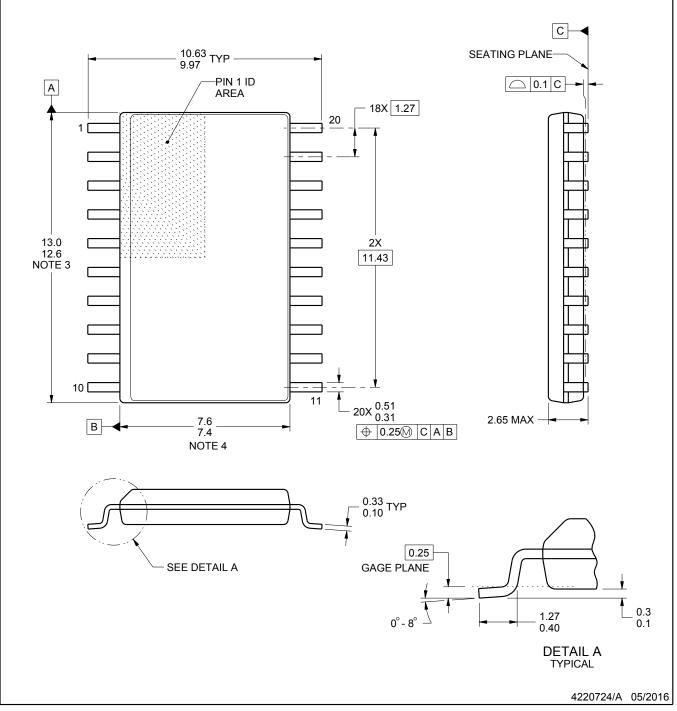
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.


DW0020A

PACKAGE OUTLINE

SOIC - 2.65 mm max height

SOIC

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

DW0020A

EXAMPLE BOARD LAYOUT

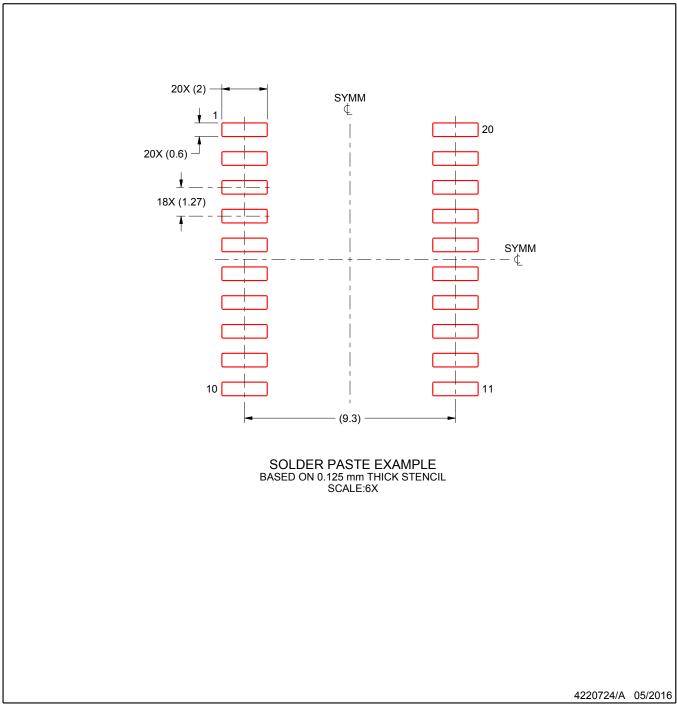
SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

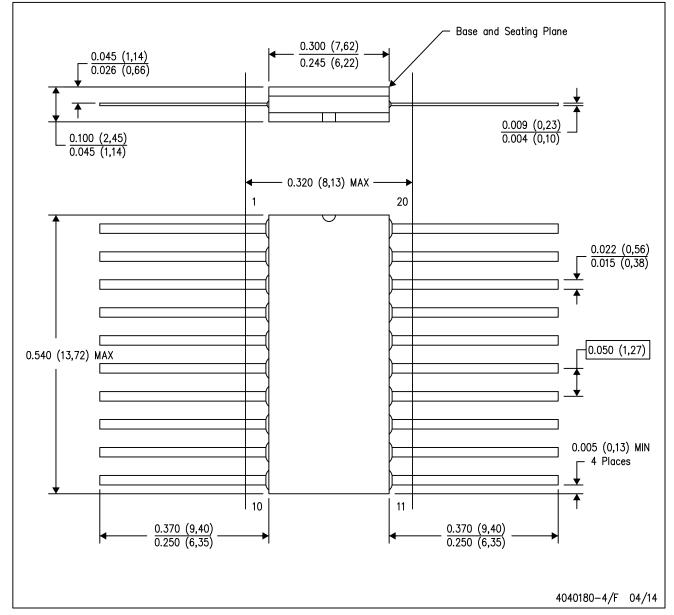


DW0020A

EXAMPLE STENCIL DESIGN

SOIC - 2.65 mm max height

SOIC

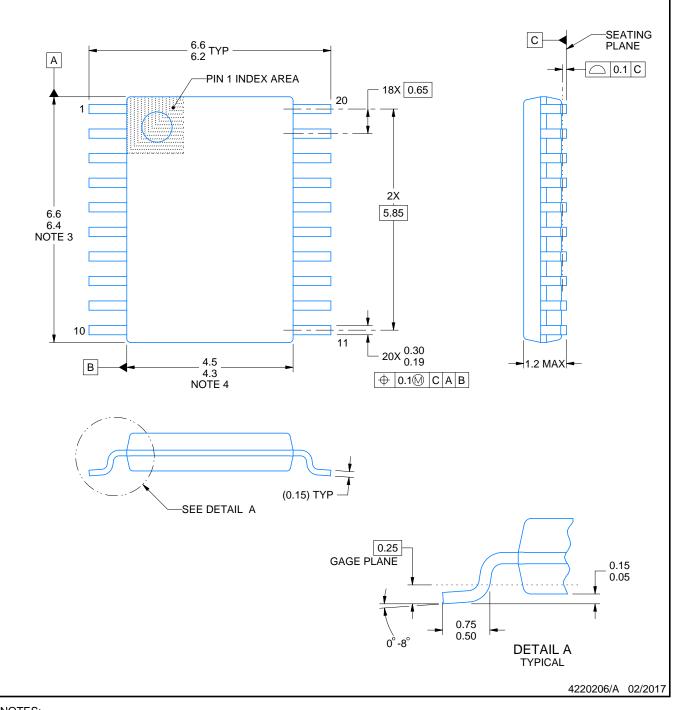

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

W (R-GDFP-F20)

CERAMIC DUAL FLATPACK

- NOTES: A. All linear dimensions are in inches (millimeters).
 - This drawing is subject to change without notice. В.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 D. Index point is provided on cap for terminal identification only.
 E. Falls within Mil-Std 1835 GDFP2-F20


PW0020A

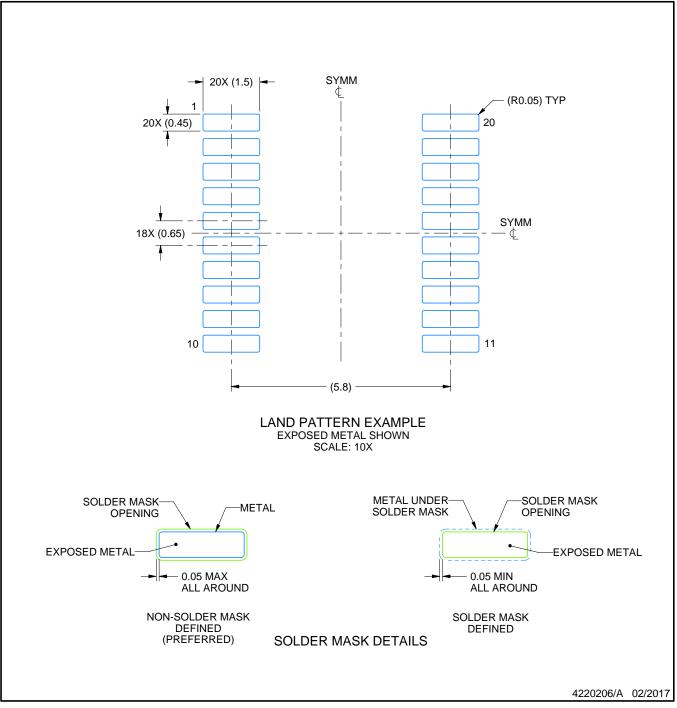
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



PW0020A

EXAMPLE BOARD LAYOUT

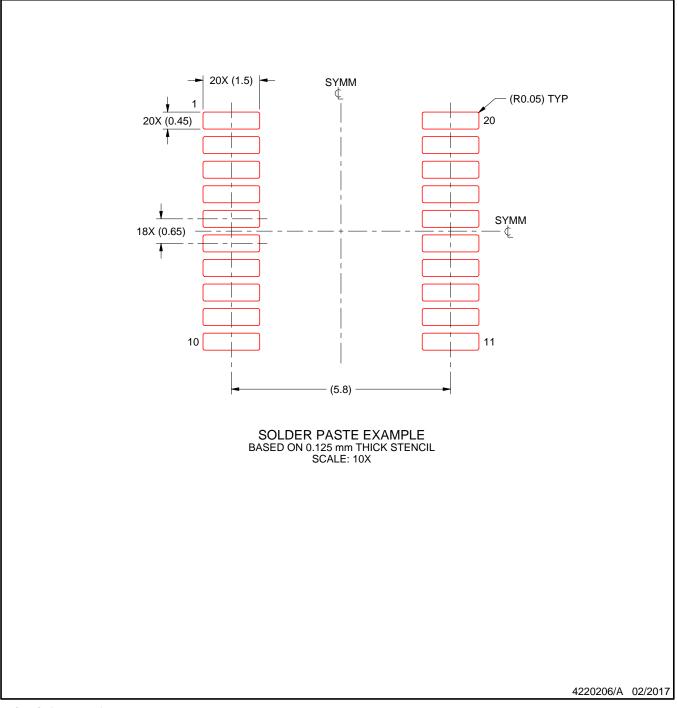
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

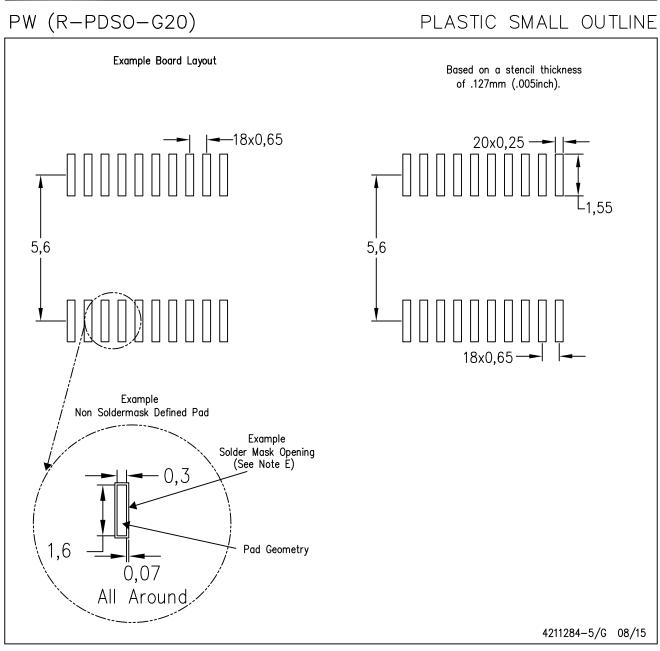


PW0020A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

LAND PATTERN DATA

NOTES: Α. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
 C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated