P29FCT52AT/BT/CT P29FCT53AT/BT/CT OCTAL REGISTERED TRANSCEIVER ## **FEATURES** - Function, Pinout and Drive Compatible with the FCT. F and AM2952/53 Logic - FCT-C speed at 6.3ns max. (Com'l) FCT-B speed at 7.5ns max. (Com'l) - Reduced V_{OH} (typically = 3.3V) versions of Equivalent FCT functions - Edge-rate Control Circuitry for Significantly Improved Noise Characteristics - ESD protection exceeds 2000V - Power-off disable feature - Matched Rise and Fall times - Fully Compatible with TTL Input and Output Logic Levels - 64 mA Sink Current (Com'I), 48 mA (MiI) 15 mA Source Current (Com'I), 12 mA (MiI) - Manufactured in 0.7 micron PACE TechnologyTM ## DESCRIPTION The P29FCT52T and P29FCT53T have two 8-bit back-to-back registers that store data flowing in both directions between two bidirectional buses. Separate clock, clock enable and 3-state output enable signals are provided for each register. Both A outputs and B outputs are guaranteed to sink 64mA. The P29FCT52T is a non-inverting option of the P29FCT53T. The P29FCT52T and P29FCT53T are manufactured using PACE Technology™ which is Performance Advanced CMOS Engineered to use 0.7 micron effective channel lengths resulting in 400 picoseconds loaded* internal gate delays. PACE Technology includes two-level metal and epitaxial substrates. In addition to very high performance and very high density, the technology features latch-up protection and single event upset protection, and is supported by a Class 1 environment volume production facility. For a fan-in/fan-out of 4 at 85°C junction temperature and 5.0 V supply. For a fan-in/fan-out of 1, the internal gate delay is 200 picosecond at room temperature. ### **FUNCTIONAL BLOCK DIAGRAM** #### PIN CONFIGURATIONS Means Quality, Service and Speed ## **REGISTERED FUNCTION TABLE** | _ | Inputs | | Internal | Franction | |---|--------|----|----------|-----------| | D | CP | CE | Q | Function | | X | X | Н | NC | Hold Data | | L | | L | L | Load Data | | Н | | L | Н | | #### 1709 Tbl 01 ## **OUTPUT CONTROL** | ŌE | Internal | Y-Ou | tputs | Function | |----|----------|-----------|-----------|-----------------| | | Q | P29FCT52T | P29FCT53T | Function | | Н | X | Z | Z | Disable Outputs | | L | L | L | Н | Enable Outputs | | L | Н | Н | L | , | 1709 Tbl 02 ## **PIN DESCRIPTION** | Name | 1/0 | Description | |------------------|-----|--| | A ₀₋₇ | 1/0 | Eight bidirectional lines carrying the A Register inputs or B Register outputs. | | B ₀₋₇ | 1/0 | Eight bidirectional lines carrying the B Register inputs or A Register outputs. | | СРА | I | Clock for the A Register. When CEA is LOW, data is entered into the A Register on the LOW-to-HIGH transition of the CPA signal. | | CEA | l | Clock Enable for the A Register. When \overline{CEA} is LOW, data is entered into the A Register on the LOW-to-HIGH transition of the CPA signal. When \overline{CEA} is HIGH, the A Register holds its contents regardless of CPA signal transitions. | | ŌĒB | 1 | Output Enable for the A Register. When $\overline{\text{OEB}}$ is LOW, the A Register outputs are enabled onto the B_{0-7} lines. When $\overline{\text{OEB}}$ is HIGH, the B_{0-7} outputs are in the high impedence state. | | СРВ | 1 | Clock for the B Register. When $\overline{\text{CEB}}$ is LOW, data is entered into the B Register on the LOW-to-HIGH transition of the CPB signal. | | CEB | 1 | Clock Enable for the B Register. When \overline{CEB} is LOW, data is entered into the B Register on the LOW-to-HIGH transition of the CPB signal. When \overline{CEB} is HIGH, the B Register holds its contents regardless of CPB signal transitions. | | ŌĒĀ | ı | Output Enable for the B Register. When $\overline{\text{OEA}}$ is LOW, the B Register outputs are enabled onto the A_{0-7} lines. When $\overline{\text{OEA}}$ is HIGH, the A_{0-7} outputs are in the high impedence state. | 1709 Tbl 03 #### ABSOLUTE MAXIMUM RATINGS1,2 | Symbol | Parameter | Value | Unit | |------------------|-------------------------------------|--------------|------| | T _{STG} | Storage Temperature | -65 to +150 | °C | | TA | Ambient Temperature
Under Bias | -65 to +135 | °C | | V _{cc} | V _{cc} Potential to Ground | -0.5 to +7.0 | ٧ | | P _T | Power Dissipation | 0.5 | W | #### 1709 Tbl 0 Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range. | Symbol | Parameter | Value | Unit | |---------------------|---------------------------|--------------|------| | I _{OUTPUT} | Current Applied to Output | 120 | mA | | V _{IN} | Input Voltage | -0.5 to +7.0 | V | | V _{out} | Voltage Applied to Output | -0.5 to +7.0 | ٧ | 1709 Tbi 05 ### RECOMMENDED OPERATING CONDITIONS | Free Air Ambient Temperature | Min | Max | |------------------------------|-------|--------| | Military | _55°C | +125°C | | Commercial | 0°C | +70°C | 1709 Tbl 06 | Supply Voltage (V _{cc}) | Min | Max | |-----------------------------------|--------|--------| | Military | +4.5V | +5.5V | | Commercial | +4.75V | +5.25V | 1709 Tbl 07 ## DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions) | Symbol | Parar | Parameter | | Typ¹ | Max | Units | V _{cc} | Conditions | |------------------|--|------------------------|------------|------------|--------------|--------|-----------------|---| | V _{IH} | Input HIGH Voltage | 2.0 | | | ٧ | | | | | V _{IL} | Input LOW Voltage | | | | 0.8 | ٧ | | | | V _H | Hysteresis ³ | | | 0.2 | | ٧ | | All inputs | | V _{iK} | Input Clamp Diode Voltage | | | -0.7 | -1.2 | ٧ | MIN | $I_{iN} = -18mA$ | | V _{OH} | Output HIGH
Voltage | Military
Commercial | 2.4
2.4 | 3.3
3.3 | | V
V | MIN
MIN | $I_{OH} = -12\text{mA}$
$I_{OH} = -15\text{mA}$ | | V _{oL} | Output LOW Military Voltage Commercial | | | 0.3
0.3 | 0.55
0.55 | V | MIN | I _{OL} = 48mA
I _{OL} = 64mA | | i, | Input HIGH Current | | | | 20 | μА | MAX | V _{IN} = V _{CC} | | I _{IH} | Input HIGH Current (Except | I/O Pins) | | | 5 | μА | мах | $V_{1N} = 2.7V$ | | I _{IL} | Input LOW Current (Except | I/O Pins) | | | -5 | μА | MAX | V _{IN} = 0.5V | | I _{IH} | Input HIGH Current (I/O Pin | s only) | | | 15 | μА | MAX | V _{OUT} = 2.7V | | I _{IL} | Input LOW Current (I/O Pins | s only) | | | -15 | μА | MAX | V _{OUT} = 0.5V | | l _{os} | Output Short Circuit Current | 2 | -60 | -120 | -225 | mA | MAX | V _{OUT} = 0.0V | | I _{OFF} | Power-off Disable | | | | 100 | μА | οV | V _{o∪1} ≈ 4.5V | | C _{IN} | Input Capacitance ³ | | | 5 | 10 | pF | MAX | All inputs | | C _{vo} | I/O Capacitance ³ | | | 9 | 12 | pF | MAX | All outputs | | I _{cc} | Quiescent Power Supply Cu | rrent | | 0.2 | 1.5 | mA | MAX | V _{IN} ≤ 0.2V,
V _{IN} ≥V _{CC} -0.2V | 7-17 ## 1709 Tbl 08 #### Notes: Notes: - 1. Typical limits are at $V_{cc} = 5.0V$, $T_{A} = +25$ °C ambient. - Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect - operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{os} tests should be performed last. - 3. This parameter is guaranteed but not tested 2/13/92 - 11 ^{2.}Unused inputs must always be connected to an appropriate logic voltage level, preferably either $\rm V_{cc}$ or ground. ## DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.) | Symbol | Parameter | Тур¹ | Max | Units | Conditions | |------------------|--|------|-------|------------|--| | Δl _{cc} | Quiescent Power Supply
Current (TTL inputs) | 0.5 | 2.0 | mA | $V_{CC} = MAX$, $V_{IN} = 3.4V^2$, $f_{\chi} = 0$, Outputs Open | | I _{CCD} | Dynamic Power Supply Current ³ | 0.15 | 0.25 | mA/
mHz | V_{CC} = MAX, One Input Toggling,
50% Duty Cycle, Outputs Open,
OEA or OEB = GND,
$V_{IN} \le 0.2V$ or $V_{IN} \ge V_{CC} - 0.2V$ | | | | 2.0 | 4.0 | mA | $V_{CC} = MAX$, $f_0 = 10 MHz$,
50% Duty Cycle, Outputs Open,
One Bit Toggling at $f_1 = 5MHz$,
OEA or OEB = GND,
$V_{IN} \le 0.2V$ or $V_{IN} \ge V_{CC} - 0.2V$ | | I _c | I _c Total Power Supply Current⁵ | 2.5 | 6.0 | mA | V _{CC} = MAX, f ₀ = 10 MHz,
50% Duty Cycle, Outputs Open,
One Bit Toggling at f ₁ = 5MHz,
OEA or OEB = GND,
V _{IN} = 3.4V or V _{IN} = GND | | | | 4.3 | 7.84 | mA | $ \begin{array}{l} V_{CC} = MAX, \ f_0 = 10 \ MHz \ , \\ 50\% \ Duty \ Cycle, \ Outputs \ Open, \\ \underline{Eight} \ Bits \ Toggling \ at \ f_1 = 2.5MHz \ , \\ \overline{OEA} \ or \ \overline{OEB} = GND, \\ V_{IN} \leq 0.2V \ or \ V_{IN} \geq V_{CC} - 0.2V \end{array} $ | | | | 6.5 | 16.84 | mA | $V_{CC} = MAX$, $f_0 = 10 \text{ MHz}$,
50% Duty Cycle, Outputs Open,
Eight Bits Toggling at $f_1 = 2.5 \text{MHz}$,
OEA or OEB = GND,
$V_{IN} = 3.4 \text{V or } V_{IN} = \text{GND}$ | ## Notes: 1. Typical values are at V_{cc} = 5.0V, +25°C ambient. 2. Per TTL driven input (V_N = 3.4V); all other inputs at V_{cc} or GND. 3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations. 4. Values for these conditions are examples of the $\rm I_{cc}$ formula. These limits are guaranteed but not tested. $= I_{\text{DUIESCENT}} + I_{\text{NPUTS}} + I_{\text{DYNAMIC}}$ $= I_{\text{CC}} + \Delta I_{\text{CC}} D_{\text{H}} N_{\text{T}} + I_{\text{CCC}} (f_{\text{0}}/2 + f_{\text{1}} N_{\text{1}})$ I_{cc} = Quiescent Current with CMOS input levels ΔI_{cc} = Power Supply Current for a TTL High Input $(V_N = 3.4V)$ D_H = Duty Cycle for TTL Inputs High $N_{\tau} = \text{Number of TTL Inputs at D}_{H}$ I Dynamic Current Caused by an Input Transition Pair (HLH or LHL) 1709 Tbl 09 = Clock Frequency for Register Devices (Zero for Non-Register Devices) = Input Frequency N, = Number of Inputs at f, All currents are in milliamps and all frequencies are in megahertz. ## 7 1709 Tbl 10 ## **AC CHARACTERISTICS** | | | P29FCT52AT/53AT | | | P29FCT52BT/53BT | | | | P29FCT52CT/53CT | | | | | | | |--------------------------------------|--|-----------------|------|-------|-----------------|-------|------|--------|-----------------|-------|------|-------|------|-------|-------| | Symbo! | Parameter | MIL | | COM'L | | MIL | | COM, F | | MIL | | COM'L | | Units | Fig. | | | | Min. | Max. | Min.¹ | Max. | Min.¹ | Max. | Min. | Max. | Min.¹ | Мах. | Min.¹ | Max. | , | | | t _{PLH}
t _{PHL} | Propagation Delay
CPA, CPB to B _n , A _n | 2.0 | 11.0 | 2.0 | 10.0 | 2.0 | 8.0 | 2.0 | 7.5 | 2.0 | 7.3 | 2.0 | 6.3 | ns | 1,5 | | t _{PZH}
t _{PZL} | Output Enable Time
OEA or OEB to A _n or B _n | 1.5 | 13.0 | 1.5 | 10.5 | 1.5 | 8.5 | 1.5 | 8.0 | 1.5 | 8.0 | 1.5 | 7.0 | ns | 1,7,8 | | t _{PHZ}
t _{PLZ} | Output Enable Time
OEA or OEB to A _n or B _n | 1.5 | 10.0 | 1.5 | 10.0 | 1.5 | 8.0 | 1.5 | 7.5 | 1.5 | 7.5 | 1.5 | 6.5 | ns | 1,7,8 | #### Notes: - 1. Minimum limits are guaranteed but not tested on Propagation Delays. - 2. AC Characteristics guaranteed with C₁ = 50pF as shown in Figure 1. ## **AC OPERATING REQUIREMENTS** | | | P29FCT52AT/53AT | | ЗАТ | P29FCT52BT/53BT | | | | P29FCT52CT/53CT | | | | | | | |--|---|-----------------|------|--------|-----------------|------|------|-------|-----------------|------|------|-------|------|-------|-------------| | Symbol | Parameter | MIL | | COM, F | | MIL | | COM'L | | MIL | | COM'L | | Units | Fig.
No. | | | | Min. | Max. | | 140. | | t _e (H)
t _e (L) | Setup Time, HIGH
or LOW, A, B, to
CPA, CPB | 2.5 | _ | 2.5 | _ | 2.5 | _ | 2.5 | _ | 2.5 | _ | 2.5 | _ | ns | 4 | | t _h (H)
t _h (L) | Hold Time, HIGH
or LOW, A, B, to
CPA, CPB | 2.0 | _ | 2.0 | _ | 1.5 | _ | 1.5 | | 1.5 | _ | 1.5 | - | ns | 4 | | t,(H)
t,(L) | Set-up Time, HIGH
or LOW, CEA, CEB
to CPA, CPB | 3.0 | - | 3.0 | _ | 3.0 | _ | 3.0 | _ | 3.0 | _ | 3.0 | - | ns | 4 | | t _h (H)
t _h (L) | Hold Time, HIGH
or LOW, CEA, CEB
to CPA, CPB | 2.0 | _ | 2.0 | _ | 2.0 | _ | 2.0 | - | 2.0 | - | 2.0 | - | ns | 4 | | t, (H)
t, (L) | Pulse Width, HIGH ³
or LOW, CPA or
CPB | 3.0 | - | 3.0 | _ | 3.0 | _ | 3.0 | _ | 3.0 | _ | 3.0 | _ | ns | 5 | Note: ## ORDERING INFORMATION 1709 03 1709 Tbl 11 ^{3.} This parameter is guaranteed but not tested.