P29FCT52AT/BT/CT P29FCT53AT/BT/CT OCTAL REGISTERED TRANSCEIVER

FEATURES

- Function, Pinout and Drive Compatible with the FCT. F and AM2952/53 Logic
- FCT-C speed at 6.3ns max. (Com'l) FCT-B speed at 7.5ns max. (Com'l)
- Reduced V_{OH} (typically = 3.3V) versions of Equivalent FCT functions
- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics

- ESD protection exceeds 2000V
- Power-off disable feature
- Matched Rise and Fall times
- Fully Compatible with TTL Input and Output Logic Levels
- 64 mA Sink Current (Com'I), 48 mA (MiI) 15 mA Source Current (Com'I), 12 mA (MiI)
- Manufactured in 0.7 micron PACE TechnologyTM

DESCRIPTION

The P29FCT52T and P29FCT53T have two 8-bit back-to-back registers that store data flowing in both directions between two bidirectional buses. Separate clock, clock enable and 3-state output enable signals are provided for each register. Both A outputs and B outputs are guaranteed to sink 64mA.

The P29FCT52T is a non-inverting option of the P29FCT53T.

The P29FCT52T and P29FCT53T are manufactured using

PACE Technology™ which is Performance Advanced CMOS Engineered to use 0.7 micron effective channel lengths resulting in 400 picoseconds loaded* internal gate delays. PACE Technology includes two-level metal and epitaxial substrates. In addition to very high performance and very high density, the technology features latch-up protection and single event upset protection, and is supported by a Class 1 environment volume production facility.

For a fan-in/fan-out of 4 at 85°C junction temperature and 5.0 V supply.
 For a fan-in/fan-out of 1, the internal gate delay is 200 picosecond at room temperature.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

Means Quality, Service and Speed

REGISTERED FUNCTION TABLE

_	Inputs		Internal	Franction
D	CP	CE	Q	Function
X	X	Н	NC	Hold Data
L		L	L	Load Data
Н		L	Н	

1709 Tbl 01

OUTPUT CONTROL

ŌE	Internal	Y-Ou	tputs	Function
	Q	P29FCT52T	P29FCT53T	Function
Н	X	Z	Z	Disable Outputs
L	L	L	Н	Enable Outputs
L	Н	Н	L	,

1709 Tbl 02

PIN DESCRIPTION

Name	1/0	Description
A ₀₋₇	1/0	Eight bidirectional lines carrying the A Register inputs or B Register outputs.
B ₀₋₇	1/0	Eight bidirectional lines carrying the B Register inputs or A Register outputs.
СРА	I	Clock for the A Register. When CEA is LOW, data is entered into the A Register on the LOW-to-HIGH transition of the CPA signal.
CEA	l	Clock Enable for the A Register. When \overline{CEA} is LOW, data is entered into the A Register on the LOW-to-HIGH transition of the CPA signal. When \overline{CEA} is HIGH, the A Register holds its contents regardless of CPA signal transitions.
ŌĒB	1	Output Enable for the A Register. When $\overline{\text{OEB}}$ is LOW, the A Register outputs are enabled onto the B_{0-7} lines. When $\overline{\text{OEB}}$ is HIGH, the B_{0-7} outputs are in the high impedence state.
СРВ	1	Clock for the B Register. When $\overline{\text{CEB}}$ is LOW, data is entered into the B Register on the LOW-to-HIGH transition of the CPB signal.
CEB	1	Clock Enable for the B Register. When \overline{CEB} is LOW, data is entered into the B Register on the LOW-to-HIGH transition of the CPB signal. When \overline{CEB} is HIGH, the B Register holds its contents regardless of CPB signal transitions.
ŌĒĀ	ı	Output Enable for the B Register. When $\overline{\text{OEA}}$ is LOW, the B Register outputs are enabled onto the A_{0-7} lines. When $\overline{\text{OEA}}$ is HIGH, the A_{0-7} outputs are in the high impedence state.

1709 Tbl 03

ABSOLUTE MAXIMUM RATINGS1,2

Symbol	Parameter	Value	Unit
T _{STG}	Storage Temperature	-65 to +150	°C
TA	Ambient Temperature Under Bias	-65 to +135	°C
V _{cc}	V _{cc} Potential to Ground	-0.5 to +7.0	٧
P _T	Power Dissipation	0.5	W

1709 Tbl 0

Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.

Symbol	Parameter	Value	Unit
I _{OUTPUT}	Current Applied to Output	120	mA
V _{IN}	Input Voltage	-0.5 to +7.0	V
V _{out}	Voltage Applied to Output	-0.5 to +7.0	٧

1709 Tbi 05

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	_55°C	+125°C
Commercial	0°C	+70°C

1709 Tbl 06

Supply Voltage (V _{cc})	Min	Max
Military	+4.5V	+5.5V
Commercial	+4.75V	+5.25V

1709 Tbl 07

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parar	Parameter		Typ¹	Max	Units	V _{cc}	Conditions
V _{IH}	Input HIGH Voltage	2.0			٧			
V _{IL}	Input LOW Voltage				0.8	٧		
V _H	Hysteresis ³			0.2		٧		All inputs
V _{iK}	Input Clamp Diode Voltage			-0.7	-1.2	٧	MIN	$I_{iN} = -18mA$
V _{OH}	Output HIGH Voltage	Military Commercial	2.4 2.4	3.3 3.3		V V	MIN MIN	$I_{OH} = -12\text{mA}$ $I_{OH} = -15\text{mA}$
V _{oL}	Output LOW Military Voltage Commercial			0.3 0.3	0.55 0.55	V	MIN	I _{OL} = 48mA I _{OL} = 64mA
i,	Input HIGH Current				20	μА	MAX	V _{IN} = V _{CC}
I _{IH}	Input HIGH Current (Except	I/O Pins)			5	μА	мах	$V_{1N} = 2.7V$
I _{IL}	Input LOW Current (Except	I/O Pins)			-5	μА	MAX	V _{IN} = 0.5V
I _{IH}	Input HIGH Current (I/O Pin	s only)			15	μА	MAX	V _{OUT} = 2.7V
I _{IL}	Input LOW Current (I/O Pins	s only)			-15	μА	MAX	V _{OUT} = 0.5V
l _{os}	Output Short Circuit Current	2	-60	-120	-225	mA	MAX	V _{OUT} = 0.0V
I _{OFF}	Power-off Disable				100	μА	οV	V _{o∪1} ≈ 4.5V
C _{IN}	Input Capacitance ³			5	10	pF	MAX	All inputs
C _{vo}	I/O Capacitance ³			9	12	pF	MAX	All outputs
I _{cc}	Quiescent Power Supply Cu	rrent		0.2	1.5	mA	MAX	V _{IN} ≤ 0.2V, V _{IN} ≥V _{CC} -0.2V

7-17

1709 Tbl 08

Notes:

Notes:

- 1. Typical limits are at $V_{cc} = 5.0V$, $T_{A} = +25$ °C ambient.
- Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect
- operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{os} tests should be performed last.
- 3. This parameter is guaranteed but not tested

2/13/92 - 11

^{2.}Unused inputs must always be connected to an appropriate logic voltage level, preferably either $\rm V_{cc}$ or ground.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Тур¹	Max	Units	Conditions
Δl _{cc}	Quiescent Power Supply Current (TTL inputs)	0.5	2.0	mA	$V_{CC} = MAX$, $V_{IN} = 3.4V^2$, $f_{\chi} = 0$, Outputs Open
I _{CCD}	Dynamic Power Supply Current ³	0.15	0.25	mA/ mHz	V_{CC} = MAX, One Input Toggling, 50% Duty Cycle, Outputs Open, OEA or OEB = GND, $V_{IN} \le 0.2V$ or $V_{IN} \ge V_{CC} - 0.2V$
		2.0	4.0	mA	$V_{CC} = MAX$, $f_0 = 10 MHz$, 50% Duty Cycle, Outputs Open, One Bit Toggling at $f_1 = 5MHz$, OEA or OEB = GND, $V_{IN} \le 0.2V$ or $V_{IN} \ge V_{CC} - 0.2V$
I _c	I _c Total Power Supply Current⁵	2.5	6.0	mA	V _{CC} = MAX, f ₀ = 10 MHz, 50% Duty Cycle, Outputs Open, One Bit Toggling at f ₁ = 5MHz, OEA or OEB = GND, V _{IN} = 3.4V or V _{IN} = GND
		4.3	7.84	mA	$ \begin{array}{l} V_{CC} = MAX, \ f_0 = 10 \ MHz \ , \\ 50\% \ Duty \ Cycle, \ Outputs \ Open, \\ \underline{Eight} \ Bits \ Toggling \ at \ f_1 = 2.5MHz \ , \\ \overline{OEA} \ or \ \overline{OEB} = GND, \\ V_{IN} \leq 0.2V \ or \ V_{IN} \geq V_{CC} - 0.2V \end{array} $
		6.5	16.84	mA	$V_{CC} = MAX$, $f_0 = 10 \text{ MHz}$, 50% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_1 = 2.5 \text{MHz}$, OEA or OEB = GND, $V_{IN} = 3.4 \text{V or } V_{IN} = \text{GND}$

Notes:

1. Typical values are at V_{cc} = 5.0V, +25°C ambient. 2. Per TTL driven input (V_N = 3.4V); all other inputs at V_{cc} or GND.

3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.

4. Values for these conditions are examples of the $\rm I_{cc}$ formula. These limits are guaranteed but not tested.

 $= I_{\text{DUIESCENT}} + I_{\text{NPUTS}} + I_{\text{DYNAMIC}}$ $= I_{\text{CC}} + \Delta I_{\text{CC}} D_{\text{H}} N_{\text{T}} + I_{\text{CCC}} (f_{\text{0}}/2 + f_{\text{1}} N_{\text{1}})$

I_{cc} = Quiescent Current with CMOS input levels

ΔI_{cc} = Power Supply Current for a TTL High Input $(V_N = 3.4V)$

D_H = Duty Cycle for TTL Inputs High

 $N_{\tau} = \text{Number of TTL Inputs at D}_{H}$

I Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

1709 Tbl 09

= Clock Frequency for Register Devices (Zero for Non-Register Devices)

= Input Frequency

N, = Number of Inputs at f,

All currents are in milliamps and all frequencies are in megahertz.

7

1709 Tbl 10

AC CHARACTERISTICS

		P29FCT52AT/53AT			P29FCT52BT/53BT				P29FCT52CT/53CT						
Symbo!	Parameter	MIL		COM'L		MIL		COM, F		MIL		COM'L		Units	Fig.
		Min.	Max.	Min.¹	Max.	Min.¹	Max.	Min.	Max.	Min.¹	Мах.	Min.¹	Max.	,	
t _{PLH} t _{PHL}	Propagation Delay CPA, CPB to B _n , A _n	2.0	11.0	2.0	10.0	2.0	8.0	2.0	7.5	2.0	7.3	2.0	6.3	ns	1,5
t _{PZH} t _{PZL}	Output Enable Time OEA or OEB to A _n or B _n	1.5	13.0	1.5	10.5	1.5	8.5	1.5	8.0	1.5	8.0	1.5	7.0	ns	1,7,8
t _{PHZ} t _{PLZ}	Output Enable Time OEA or OEB to A _n or B _n	1.5	10.0	1.5	10.0	1.5	8.0	1.5	7.5	1.5	7.5	1.5	6.5	ns	1,7,8

Notes:

- 1. Minimum limits are guaranteed but not tested on Propagation Delays.
- 2. AC Characteristics guaranteed with C₁ = 50pF as shown in Figure 1.

AC OPERATING REQUIREMENTS

		P29FCT52AT/53AT		ЗАТ	P29FCT52BT/53BT				P29FCT52CT/53CT						
Symbol	Parameter	MIL		COM, F		MIL		COM'L		MIL		COM'L		Units	Fig. No.
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.		140.
t _e (H) t _e (L)	Setup Time, HIGH or LOW, A, B, to CPA, CPB	2.5	_	2.5	_	2.5	_	2.5	_	2.5	_	2.5	_	ns	4
t _h (H) t _h (L)	Hold Time, HIGH or LOW, A, B, to CPA, CPB	2.0	_	2.0	_	1.5	_	1.5		1.5	_	1.5	-	ns	4
t,(H) t,(L)	Set-up Time, HIGH or LOW, CEA, CEB to CPA, CPB	3.0	-	3.0	_	3.0	_	3.0	_	3.0	_	3.0	-	ns	4
t _h (H) t _h (L)	Hold Time, HIGH or LOW, CEA, CEB to CPA, CPB	2.0	_	2.0	_	2.0	_	2.0	-	2.0	-	2.0	-	ns	4
t, (H) t, (L)	Pulse Width, HIGH ³ or LOW, CPA or CPB	3.0	-	3.0	_	3.0	_	3.0	_	3.0	_	3.0	_	ns	5

Note:

ORDERING INFORMATION

1709 03

1709 Tbl 11

^{3.} This parameter is guaranteed but not tested.