Precision Monolithic Quad SPST CMOS Analog Switches

DESCRIPTION

The DG417B, DG418B, DG419B monolithic CMOS analog switches were designed to provide high performance switching of analog signals. Combining low power, low leakages, high speed, low on-resistance and small physical size, the DG417B series is ideally suited for portable and battery powered industrial and military applications requiring high performance and efficient use of board space.

To achieve high-voltage ratings and superior switching performance, the DG417B series is built on Vishay Siliconix's high voltage silicon gate (HVSG) process. Break-before-make is guaranteed for the DG419B, which is an SPDT configuration. An epitaxial layer prevents latchup.

Each switch conducts equally well in both directions when on, and blocks up to the power supply level when off.

The DG417B and DG418B respond to opposite control logic levels as shown in the Truth Table.

FEATURES

- $\pm 15 \mathrm{~V}$ analog signal range
- On-resistance - $\mathrm{R}_{\mathrm{DS}(o n):} 15 \Omega$
- Fast switcing action - $\mathrm{t}_{\mathrm{ON}}: 110 \mathrm{~ns}$
- TTL and CMOS compatible
- 8-pin CerDIP package

BENEFITS

- Widest dynamic ranges
- Low signal errors and distortion
- Break-before-make switching action
- Simple interfacing
- Reduced board space
- Improved reliability

APPLICATIONS

- Precision test equipment
- Precision instrumentation
- Battery powered systems
- Sample-and-hold circuits
- Military radios
- Hi-Rel systems
- Guidance and control systems
- Hard disk drivers

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE

LOGIC	DG417B	DG418B
0	On	Off
1	Off	On

Notes

- Logic " 0 " $\leq 0.8 \mathrm{~V}$
- Logic " 1 " $\geq 2.4 \mathrm{~V}$

TRUTH TABLE (DG419B)

LOGIC	$\mathbf{S W}_{\mathbf{1}}$	$\mathbf{S W}_{\mathbf{2}}$
0	On	Off
1	Off	On

Notes

- Logic "0" $\leq 0.8 \mathrm{~V}$
- Logic " 1 " $\geq 2.4 \mathrm{~V}$ DG417BMIL, DG418BMIL, DG419BMIL

ORDERING INFORMATION						
PART	CONFIGURATION	TEMP. RANGE	PACKAGE	ORDERING PART	GENERIC	DSCC NUMBER
DG417B	SPST $\times 1, \mathrm{NC}$	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	8-pin CerDIP	9073704PA	DG417BAK/883	5962-9073704MPA
				DG417BAK	DG417BAK	-
				DG417BAK-E3	DG417BAK-E3	-
DG418B	SPST $\times 1, \mathrm{NO}$			9073705PA	DG418BAK/883	5962-9073705MPA
				DG418BAK	DG418BAK	-
				DG418BAK-E3	DG418BAK-E3	-
DG419B	SPDT $\times 1$			9073706PA	DG419BAK/883	5962-9073706MPA
				DG419BAK	DG419BAK	-
				DG419BAK-E3	DG419BAK-E3	-

ABSOLUTE MAXIMUM RATINGS			
PARAMETER		LIMIT	UNIT
Voltages Referenced to V-	V+	44	V
	GND	25	
V_{L}		(GND - 0.3) to (V+) + 0.3	
Digital inputs ${ }^{\text {a }}$, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$		$(\mathrm{V}-)-2 \mathrm{~V} \text { to }(\mathrm{V}+)+2$ or 30 mA , whichever occurs first	
Current, (any terminal) continuous		30	mA
Current (S or D) pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle		100	
Storage temperature		- 65 to 150	${ }^{\circ} \mathrm{C}$
Power dissipation (package) ${ }^{\text {b }}$	8-pin CerDIP ${ }^{\text {c }}$	600	mW

Notes

a. Signals on S_{X}, D_{X} or $\mathrm{I} \mathrm{N}_{\mathrm{X}}$ exceeding $\mathrm{V}+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads soldered or welded to PC board.
c. Derate $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.

SCHEMATIC DIAGRAM (Typical Channel)

Fig. 1

DG417BMIL, DG418BMIL, DG419BMIL

SPECIFICATIONS ${ }^{\text {a }}$									
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED$\begin{gathered} \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{Vf} \end{gathered}$		TEMP. ${ }^{\text {b }}$	TYP. ${ }^{\text {c }}$	A SUFFIX $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		UNIT	
				MIN. ${ }^{\text {d }}$		MAX. ${ }^{\text {d }}$			
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$				Full		-15	15	V
Drain-Source On-Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}= \pm 12.5 \mathrm{~V} \\ & \mathrm{~V}+=13.5 \mathrm{~V}, \mathrm{~V}-=-13.5 \mathrm{~V} \end{aligned}$		Room	15		25	Ω	
				Full	15		34	Ω	
Switch Off Leakage Current	$\mathrm{I}_{\text {(off) }}$	$\begin{gathered} V_{+}=16.5, V-=-16.5 \mathrm{~V} \\ V_{D}= \pm 15.5 \mathrm{~V}, V_{S}= \pm 15.5 \mathrm{~V} \end{gathered}$	DG417B	Room	-0.1	-0.25	0.25	nA	
				Full	-0.1	-20	20		
	$I_{\text {d(off) }}$			Room	-0.1	-0.25	0.25		
				Full	-0.1	-20	20		
			DG418B	Room	-0.1	-0.25	0.25		
				Full	-0.1	-20	20		
			DG419B	Room	-0.1	-0.75	0.75		
				Full	-0.1	-60	60		
Channel On Leakage Current	$I_{\text {D(on) }}$	$\begin{gathered} \mathrm{V}+=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V} \end{gathered}$	DG417B	Room	- 0.4	- 0.4	0.4		
				Full	-0.4	- 40	40		
			DG418B	Room	-0.4	-0.4	0.4		
				Full	-0.4	- 40	40		
			DG419B	Room	- 0.4	- 0.75	0.75		
				Full	-0.4	-60	60		
Digital Control									
Input Current, $\mathrm{V}_{\text {IN }}$ Low	1 IL			Full		-0.5	0.5		
Input Current, $\mathrm{V}_{\text {IN }}$ High	$\mathrm{IIH}^{\text {H }}$			Full		-0.5	0.5		
Dynamic Characteristics									
Turn-On Time	ton	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$, see switching time test circuit	DG417B	Room	62		89	ns	
				Full	62		106		
			DG418B	Room	62		89		
				Full	62		106		
Turn-Off Time	toff		DG417B	Room	53		80		
				Full	53		88		
			DG418B	Room	53		80		
				Full	53		88		
Transition Time	${ }^{\text {trRans }}$	$\begin{gathered} R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \\ V_{S 1}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 2}= \pm 10 \mathrm{~V} \end{gathered}$	DG419B	Room	60		87		
				Full	60		96		
Break-Before-Make Time Delay	t_{D}	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}= \pm 10 \mathrm{~V} \\ \hline \end{gathered}$	DG419B	Room	16	3			
Charge Injection	Q	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{nF}, \mathrm{V}_{\text {gen }}=0 \mathrm{~V}, \mathrm{R}_{\text {gen }}=0 \Omega$		Room	38			pC	
Off Isolation ${ }^{\text {e }}$	OIRR	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$		Room	-82			dB	
Channel-to-Channel Crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$		DG419B	Room	-88				
Source Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$		Room	12			pF	
Drain Off Capacitance ${ }^{\text {e }}$	$C_{\text {D(fff) }}$		DG417B	Room	12				
			DG418B	Room	12				
Channel On Capacitance ${ }^{e}$	$C_{\text {D(on) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$	DG417B	Room	50				
			DG418B	Room	50				
			DG419B	Room	57				

SPECIFICATIONS ${ }^{\text {a }}$									
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED$\begin{gathered} \mathrm{V}+=12 \mathrm{~V}, \mathrm{~V}-=-0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{Vf} \end{gathered}$		TEMP. ${ }^{\text {b }}$	TYP. ${ }^{\text {c }}$	A SUFFIX$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		UNIT	
				MIN. ${ }^{\text {d }}$		MAX. ${ }^{\text {d }}$			
Power Supplies									
Positive Supply Current	$1+$	$\begin{aligned} & V+=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$			Room	0.001		1	$\mu \mathrm{A}$
				Full			5		
Negative Supply Current	I-			Room	-0.001	-1			
				Full		-5			
Logic Supply Current	LL			Room	0.001		1		
				Full			5		
Ground Current	$\mathrm{I}_{\text {GND }}$			Room	-0.001	-1			
				Full		-5			
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$			Full		0	12	V	
Drain-Source On-Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\begin{gathered} I_{S}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=3.8 \mathrm{~V} \\ \mathrm{~V}+=10.8 \mathrm{~V} \end{gathered}$		Room	26		35	Ω	
				Full	26		52		
Dynamic Characteristics									
Turn-On Time	t_{ON}	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}$, see switching time test circuit		Room	100		125	ns	
				Full	100		155		
Turn-Off Time	toff			Room	38		66		
				Full	38		69		
Break-Before-Make Time Delay	t_{D}	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	DG419B	Room	62	25			
Transition Time	${ }^{\text {t }}$ tRANS	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{S} 1}=0 \mathrm{~V}, 8 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 2}=8 \mathrm{~V}, 0 \mathrm{~V} \end{gathered}$		Room	95		119		
				Full	95		153		
Charge Injection	Q	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{nF}, \mathrm{V}_{\text {gen }}=0 \mathrm{~V}$,	0Ω	Room	18			pC	
Power Supplies									
Positive Supply Current	I+	$\begin{gathered} \mathrm{V}+=13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5.25 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{gathered}$		Room	0.001		1	$\mu \mathrm{A}$	
				Full	0.001		5		
Negative Supply Current	I-			Room	- 0.001	$\begin{aligned} & \hline-1 \\ & -5 \end{aligned}$			
Logic Supply Current	I			Room	0.001		1 5		
Ground Current	$I_{\text {GND }}$			Room	- 0.001	$\begin{aligned} & \hline-1 \\ & -5 \end{aligned}$			

Notes

a. Refer to PROCESS OPTION FLOWCHART.
b. Room $=25^{\circ} \mathrm{C}$, full $=$ as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
e. Guaranteed by design, not subject to production test.
f. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DG417BMIL, DG418BMIL, DG419BMIL

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

On-Resistance vs. V_{D} and Unipolar Power Supply Voltage

On-Resistance vs. V_{D} and Temperature

Leakage vs. Analog Voltage

On-Resistance vs. V_{D} and Dual Supply Voltage

On-Resistance vs. V_{D} and Temperature

Supply current vs. Input Switching Frequency DG417BMIL, DG418BMIL, DG419BMIL

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Switching Time vs. Temperature

Transition Time vs. Temperature

Switching Threshold vs. Supply Voltage

Transition Time vs. Temperature

Insertion Loss, Off-Isolation Crosstalk vs. Frequency

Insertion Loss, Off-Isolation Crosstalk vs. Frequency DG417BMIL, DG418BMIL, DG419BMIL

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Charge Injection vs. Analog Voltage
(Measured at drain pin)

Charge Injection vs. Analog Voltage
(Measured at drain pin)

TEST CIRCUITS

V_{O} is the steady state output with the switch on.

C_{L} (includes fixture and stray capacitance)

$$
V_{O}=V_{S} \quad \frac{R_{L}}{R_{L}+R_{D S \text { (on) }}}
$$

Charge Injection vs. Analog Voltage (Measured at source pin)

Charge Injection vs. Analog Voltage (Measured at source pin)

Note: Logic input waveform is inverted for switches that have the opposite logic sense.

Fig. 2 - Switching Time (DG417B, DG418B)

TEST CIRCUITS

Fig. 3 - Break-Before-Mak (DG419B)

Fig. 4 - Transition Time (DG419B)

Fig. 5 - Charge Injection

TEST CIRCUITS

$\begin{array}{l}X_{\text {TALK }} \text { Isolation }=20 \log \\ C=R F \\ R y p a s s\end{array}$	$\left.\frac{v_{O}}{V_{S}} \right\rvert\,$

Fig. 6 - Crosstalk

Fig. 8 - Insertion Loss

Fig. 9 - Source-Drain Capacitances

[^0]
CERDIP: 8-LEAD

Dim	MILLIMETERS		INCHES	
	Min	Max	Min	Max
A	4.06	5.08	0.160	0.200
A_{1}	0.51	1.14	0.020	0.045
B	0.38	0.51	0.015	0.020
B_{1}	1.14	1.65	0.045	0.065
C	0.20	0.30	0.008	0.012
D	9.40	10.16	0.370	0.400
E	7.62	8.26	0.300	0.325
E_{1}	6.60	7.62	0.260	0.300
e_{1}	2.54 BSC		0.100 BSC	
e_{A}	7.62 BSC		0.300 BSC	
L	3.18	3.81	0.125	0.150
L_{1}	3.18	5.08	0.150	0.200
Q_{1}	1.27	2.16	0.050	0.085
S	0.64	1.52	0.025	0.060
\propto	0°	15°	0°	15°

ECN: S-03946—Rev. C, 09-Jul-01 DWG: 5348

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

[^0]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg? 63275.

