

512Kx8 Plastic Monolithic SRAM CMOS

FEATURES

- 512Kx8 bit CMOS Static
- Random Access Memory
 - Access Times of 17, 20, 25ns
 - Data Retention Function (LPA version)
 - Extended Temperature Testing
 - Data Retention Functionality Testing
- 36 lead JEDEC Approved Revolutionary Pinout
 - Plastic SOJ (Package 319)
- Single +5V (±10%) Supply Operation
- RoHS compliant

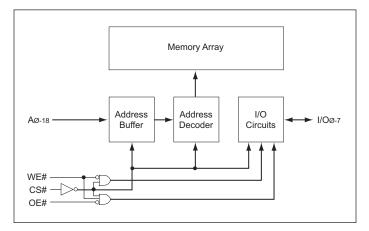
WEDC's ruggedized plastic 512Kx8 SRAM that allows the user to capitalize on the cost advantage of using a plastic component while not sacrificing all of the reliability available in a full military device.

Extended temperature testing is performed with the test patterns developed for use on WEDC's fully compliant 512Kx8 SRAMs. WEDC fully characterizes devices to determine the proper test patterns for testing at temperature extremes. This is critical because the operating characteristics of device change when it is operated beyond the commercial guarantee a device that operates reliably in the field at temperature extremes. Users of WEDC's ruggedized plastic benefit from WEDC's extensive experience in characterizing SRAMs for use in military systems.

WEDC ensures Low Power devices will retain data in Data Retention mode by characterizing the devices to determine the appropriate test conditions. This is crucial for systems operating at -40°C or below and using dense memories such as 512Kx8s.

WEDC's ruggedized plastic SOJ is footprint compatible with WEDC's full military ceramic 36 pin SOJ.

FIGURE 1 – PIN CONFIGURATION


	TOP VIEW		
A0 A1 A2 A3 A4 CS# I/O0 I/O1 Vcc Vss I/O2 I/O3 WE# A5 A6 A7 A8 A9	1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C 12 C 13 C 14 C 13 C 14 C 15 C 16 C 17 C 18	36 35 34 33 32 31 30 29 26 25 24 23 21 20 121 120 19	NC A18 A17 A16 A15 OE# I/O7 I/O6 Vss Vcc I/O5 I/O4 A14 A13 A12 A11 A10 NC

Microsemi Corporation reserves the right to change products or specifications without notice.

PIN Description

I/O0-7	Data Inputs/Outputs
A0-18	Address Inputs
WE#	Write Enables
CS#	Chip Selects
OE#	Output Enable
Vcc	Power (+5V ±10%)
Vss	Ground
NC	Not Connected

BLOCK DIAGRAM

Power

Icc2, Icc3

lcc1

lcc1

lcc1

Unit

V

V

V

V

Max

5.5

0

Vcc + 0.5

+0.8

Output

High Z

High Z

Data Out

Data In

Тур

5.0

0

_

_

TRUTH TABLE

RECOMMENDED OPERATING CONDITIONS

Min

4.5

0

2.0

-0.5

Mode

Standby

Output Deselect

Read

Write

Symbol

Vcc

Vss

VIH

VIL

ABSOLUTE MAXIMUM RATINGS

Parameter		Unit
Voltage on any pin relative to Vss	-0.5 to 7.0	V
Operating Temperature TA (Ambient)		
Commercial	0 to +70	°C
Industrial	-40 to +85	°C
Military	-55 to +125	°C
Storage Temperature, Plastic	-65 to +150	°C
Power Dissipation	1.5	W
Output Current	20	mA
Junction Temperature, TJ	175	°C

NOTE:

Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAPACITANCE

TA = +25°C

Parameter	Symbol	Condition	Max	Unit
Address Lines	CI	VIN = Vcc or Vss, f = 1.0MHz	8	pF
Data Lines	CO	VIN = Vcc or Vss, f = 1.0MHz	8	рF

These parameters are sampled, not 100% tested.

DC CHARACTERISTICS

OE#

Х

Н

L

Х

Parameter

Supply Voltage

Supply Voltage

Input High Voltage

Input Low Voltage

CS#

Н

L

L

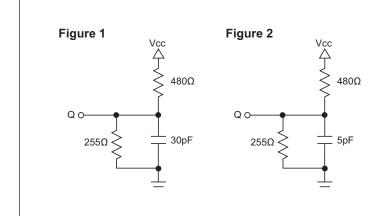
L

WE#

Х

Н

Н


L

V_{CC} = 5V, V_{SS} = 0V, -55°C \leq T_A \leq +125°C

Parameter	Symbol	Conditions	Min	Мах	Units
Input Leakage Current	lu	V_{CC} = 5.5, V_{IN} = V_{SS} to V_{CC}		10	μΑ
Output Leakage Current	ILO	CS# = VIL, OE# = VIH, VOUT = Vss to Vcc		10	μΑ
Operating Supply Current	lcc	CS# = V _{IL} , OE# = V _{IH} , f = 5MHz, V _{CC} = 5.5		180	mA
Standby Current	lsв	CS# = VIH, OE# = VIH, f = 5MHz, Vcc = 5.5		15	mA
Output High Volltage	Vон	юн = -4.0mA, Vcc = 4.5	2.4		V
Output Low Voltage	Vol	IoL = 8.0mA, Vcc = 4.5		0.4	V

NOTE: DC test conditions: V_{IL} = 0.3V, V_{IH} = V_{CC} -0.3V

AC TEST CONDITIONS

Input Pulse Levels	Vss to 3.0V
Input Rise and Fall Times	5ns
Input and Output Timing Levels	1.5V
Output Load	Figure 1

NOTE: For t_{EHQZ}, t_{GHQZ} and t_{WLQZ}, CL = 5pF (Figure 2)

AC CHARACTERISTICS – READ CYCLE

Vcc = 5.0V,	$V_{SS} = 0V, 0^{\circ}C \le T_A \le +70^{\circ}C$
-------------	--

Parameter	Syn JEDEC	nbol Alt.	17 Min	'ns Max	20 Min)ns Max	25 Min	ins Max	Units
Read Cycle Time	tavav	trc	17		20		25		ns
Address Access Time	tavqv	taa		17		20		25	ns
Chip Enable Access Time	telqv	tacs		17		20		25	ns
Chip Enable to Output in Low Z (1)	telqx	tcLz	3		3		3		ns
Chip Disable to Output in High Z (1)	t EHQZ	tснz	0	7	0	8	0	10	ns
Output Hold from Address Change	tavqx	tон	0		0		0		ns
Output Enable to Output Valid	tglqv	toe		8		10		12	ns
Output Enable to Output in Low Z (1)	tGLQX	tolz	0		0		0		ns
Output Disable to Output in High Z(1)	tgнqz	tонz	0	7	0	8	0	10	ns

1. This parameter is guaranteed by design but not tested.

AC CHARACTERISTICS – WRITE CYCLE

	Syn	nbol		7ns		ns		ns	
Parameter	JEDEC	Alt.	Min	Max	Min	Max	Min	Max	Units
Write Cycle Time	tavav	twc	17		20		25		ns
Chip Enable to End of Write	tегмн tеген	tcw tcw	14 14		15 15		17 17		ns ns
Address Setup Time	tavwl tavel	tas tas	0 0		0 0		0 0		ns ns
Address Valid to End of Write	tavwн taveн	taw taw	14 14		15 15		17 17		ns ns
Write Pulse Width	twlwн twleн	twp twp	14 14		15 15		17 17		ns ns
Write Recovery Time	twнах teнах	twr twr	0 0		0 0		0 0		ns ns
Data Hold Time	twнdx teнdx	tон tон	0 0		0 0		0 0		ns ns
Write to Output in High Z (1)	twLqz	twнz	0	8	0	8	0	10	ns
Data to Write Time	tovwн toveн	tow tow	8 8		10 10		12 12		ns ns
Output Active from End of Write (1)	twнqx	twLz	0		0		0		ns

 V_{CC} = 5.0V, V_{SS} = 0V, 0°C \leq TA \leq +70°C

1. This parameter is guaranteed by design but not tested.

FIGURE 2 – TIMING WAVEFORM — READ CYCLE

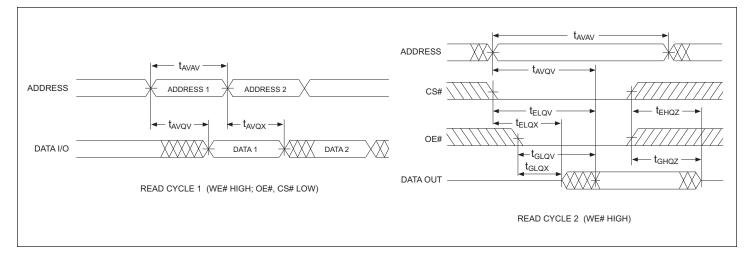
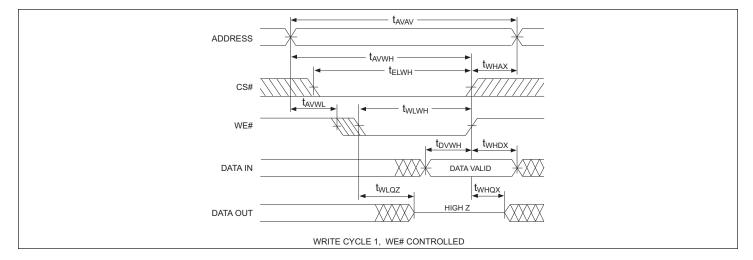
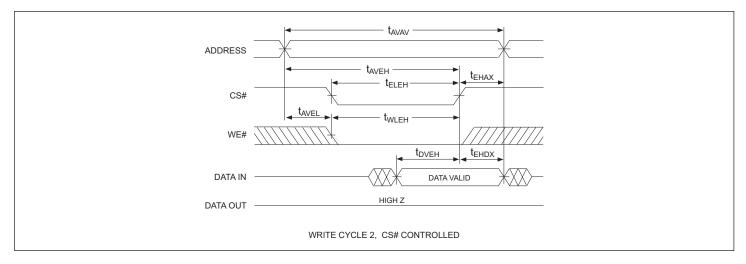
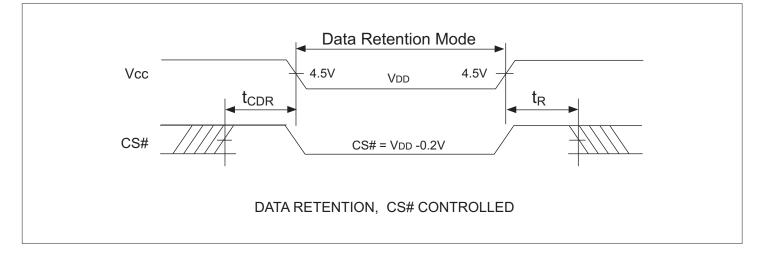




FIGURE 3 – WRITE CYCLE — WE# CONTROLLED



DATA RETENTION CHARACTERISTICS (EDI88512LPA ONLY)

 $-55^\circ C \leq T_A \leq +125^\circ C$

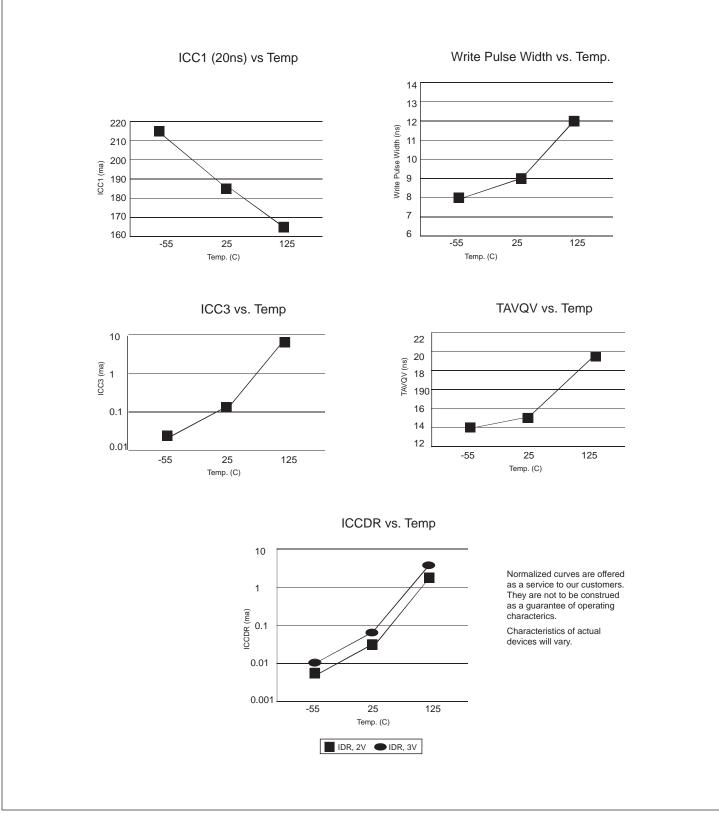

Characteristic Low Power Version only	Sym	Conditions	Min	Тур	Мах	Units
Data Retention Voltage Data Retention Quiescent Current	Vdd Iccdr	V _{DD} = 2.0V CS# ≥ V _{DD} -0.2V	2 -	-	- 15	V mA
Chip Disable to Data Retention Time Operation Recovery Time	T _{CDR} T _R	$V_{IN} \ge V_{DD} - 0.2V$ or $V_{IN} \le 0.2V$	0 Tavav	-	-	ns ns

FIGURE 5 – DATA RETENTION — CS# CONTROLLED

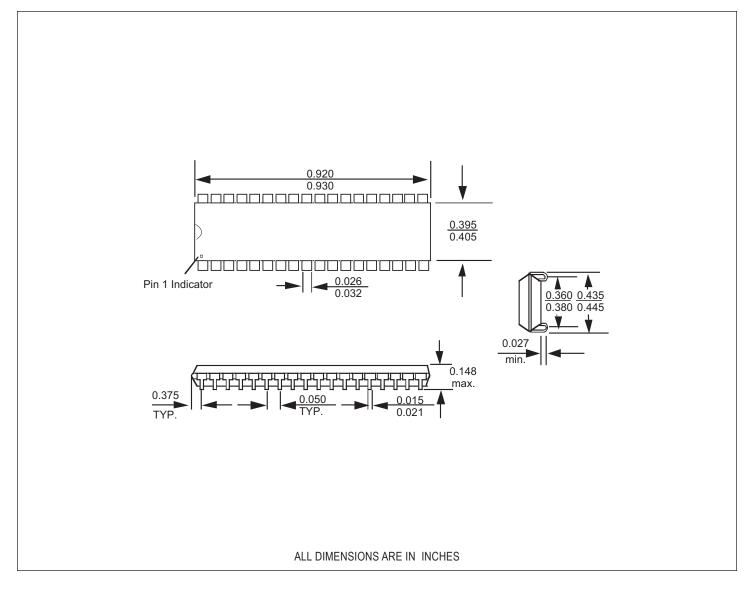


FIGURE 6 – NORMALIZED OPERATING GRAPHS

PACKAGE 319: 36 LEAD, PLASTIC SMALL OUTLINE J-LEAD (SOJ)

ORDERING INFORMATION

	EDI 8 8512 CA - X X X G
SRAM:	
ORGANIZATION, 512Kx8:	
TECHNOLOGY: CA = CMOS Standard Power LPA = Low Power	
ACCESS TIME (ns):	
PACKAGE TYPE: M = 36 lead Plastic SOJ RJ = Relvoutionary	
DEVICE GRADE: B = MIL-STD-883 Compliant M = Military Screened -55° C to $+125^{\circ}$ C I = Industrial -40° C to $+85^{\circ}$ C C = Commercial 0° C to $+70^{\circ}$ C	
RoHS COMPLIANT:	

ORDERING INFORMATION

PLASTIC PLUS®:		
SRAM:		
ORGANIZATION, 512K x 8:		
POWER: Blank = Standard Power L = Low Power		
IMPROVEMENT MARK: B = Burn-in T = Temperature Cycling C = Burn-in and Temperature Cycle		
ACCESS TIME (ns):		
PACKAGE: RJ = Revolutionary		
DEVICE GRADE: M = Military Temperature -55°C to +125°C I = Industrial Temperature -40°C to +85°C		
RoHS COMPLIANT:		

Microsemi Corporation reserves the right to change products or specifications without notice.

February 2011 © 2011 Microsemi Corporation. All rights reserved. Rev. 10

Document Title

512K x 8 Plastic Monolithic SRAM CMOS

Revision History

Rev #	History	Release Date	Status
Rev 7	Added RoHS compliance	November 2008	Final
Rev 8	Changes (Pg. 2, 8) 8.1 Add solder dipped to package options 8.2 Change CI to 8pF 8.3 Change V _{IH} to 2.0V and V _{IL} to -0.5V	February 2009	Final
Rev 9	Changes (Pg. 9) 9.1 Change document title: 512K x 8 Plastic Monolithic SRAM CMOS	March 2009	Final
Rev 10	Changes (Pg. 1-9) 10.1 Change document layout from White Electronic Designs to Microsemi	February 2011	Final