

Sample &

Buv

SN54LVC373A, SN74LVC373A

SCAS295T - JANUARY 1993-REVISED JULY 2014

SNx4LVC373A Octal Transparent D-Type Latches With 3-State Outputs

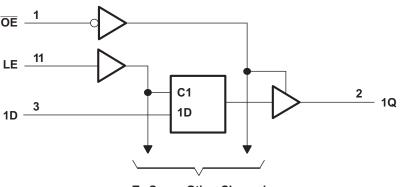
1 Features

- Operate From 1.65 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 6.8 ns at 3.3 V
- Typical V_{OLP} (Output Ground Bounce)
 <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 >2 V at V_{CC} = 3.3 V, T_A = 25°C
- Supports Mixed-Mode Signal Operation on All Ports
 (5.1/1/2)
 - (5-V Input/Output Voltage With 3.3-V V_{CC})
- I_{off} Supports Live-Insertion, Partial-Power-Down Mode, and Back-Drive Protection
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)
- On Products Compliant to MIL-PRF-38535, All Parameters Are Tested Unless Otherwise Noted. On All Other Products, Production Processing Does Not Necessarily Include Testing of All Parameters.

4 Simplified Schematic

2 Applications

- Network Switches
- TV Set-top Boxes
- Motor Drives
- PCs and Notebooks


3 Description

The SN54LVC373A octal transparent D-type latch is designed for 2.7-V to 3.6-V V_{CC} operation, and the SN74LVC373A octal transparent D-type latch is designed for 1.65-V to 3.6-V V_{CC} operation.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
	SSOP (20)	7.20 mm × 5.30 mm		
	SOIC (20)	12.80 mm × 7.50 mm		
SNx4LVC373A	PDIP (20)	24.33 mm 6.35 mm		
	TSSOP (20)	6.50 mm × 4.40 mm		
	VQFN (20)	4.50 mm × 3.50 mm		

(1) For all available packages, see the orderable addendum at the end of the data sheet.

To Seven Other Channels

Pin numbers shown are for the DB, DGV, DW, FK, J, N, NS, PW, RGY, and W packages.

Table of Contents

1	Feat	ures 1
2	Арр	lications 1
3	Des	cription 1
4	Sim	plified Schematic1
5	Rev	ision History 2
6	Pin	Configuration and Functions 3
7	Spe	cifications 4
	7.1	Absolute Maximum Ratings 4
	7.2	Handling Ratings 4
	7.3	Recommended Operating Conditions5
	7.4	Thermal Information 5
	7.5	Electrical Characteristics 6
	7.6	Timing Requirements, SN54LVC373A 6
	7.7	Timing Requirements, SN74LVC373A 6
	7.8	Switching Characteristics, SN54LVC373A7
	7.9	Switching Characteristics, SN74LVC373A7
	7.10	Operating Characteristics7
	7.11	Typical Characteristics 7
8	Para	ameter Measurement Information

9	Deta	iled Description
	9.1	Overview
	9.2	Functional Block Diagram
	9.3	Feature Description 10
	9.4	Device Functional Modes 10
10	Арр	lication and Implementation 11
	10.1	Application Information 11
	10.2	Typical Application 11
11	Pow	er Supply Recommendations 12
12	Laye	out 12
	12.1	Layout Guidelines 12
	12.2	Layout Example 12
13	Dev	ice and Documentation Support 13
	13.1	Related Links 13
	13.2	Trademarks 13
	13.3	Electrostatic Discharge Caution 13
	13.4	Glossary 13
14	Mec Infor	hanical, Packaging, and Orderable mation

5 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

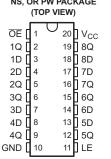
Changes from Revision S (May 2005) to Revision T

Removed Ordering Information table. 1 Changed I_{off} Feature. 1 Added Military Disclaimer to Features...... 1 Changed MAX ambient temperature from 85°C to 125°C.

2

RUMENTS

www.ti.com


Page

www.ti.com

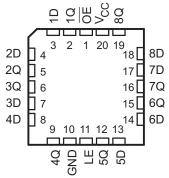
6 Pin Configuration and Functions

SN54LVC373A . . . J OR W PACKAGE SN74LVC373A . . . DB, DGV, DW, N, NS, OR PW PACKAGE

SN74LVC373A . . . RGY PACKAGE (TOP VIEW) Vcc Ю 1 20 1Q 2 8Q 19 1D 3 18 8D 2D 4 17 7D 2Q 16 7Q 5 3Q 6Q 6 15 3D 7 14 6D 4D 8 5D 13

10

GND


12 5Q

11

Ш

4Q 9


SN54LVC373A . . . FK PACKAGE (TOP VIEW)

Pin Functions

PIN		1/0	DESCRIPTION
NO.	NAME	1/0	DESCRIPTION
1	OE	I	Enable Pin
2	1Q	0	Output 1
3	1D	I	Input 1
4	2D	I	Input 2
5	2Q	0	Output 2
6	3Q	0	Output 3
7	3D	I	Input 3
8	4D	I	Input 4
9	4Q	0	Output 4
10	GND	-	Ground Pin
11	LE	I	Latch Enable
12	5Q	0	Output 5
13	5D	I	Input 5
14	6D	I	Input 6
15	6Q	0	Output 6
16	7Q	0	Output 7
17	7D	I	Input 7
18	8D	I	Input 8
19	8Q	0	Output 8
20	VCC	-	Power Pin

GQN OR ZQN PACKAGE (TOP VIEW)

Table 1. Pin Assignments

	1	2	3	4
Α	1Q	OE	V _{CC}	8Q
В	2D	7D	1D	8D
С	3Q	2Q	6Q	7Q
D	4D	5D	3D	6D
Е	GND	4Q	LE	5Q

SCAS295T - JANUARY 1993-REVISED JULY 2014

www.ti.com

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range	e range ⁽²⁾ ge applied to any output in the high-impedance or power-off state ⁽²⁾ ge applied to any output in the high or low state ⁽²⁾⁽³⁾ current $V_1 < 0$ p current $V_0 < 0$			V
VI	Input voltage range ⁽²⁾	Input voltage range ⁽²⁾		6.5	V
Vo	Voltage range applied to any output in the high	n-impedance or power-off state ⁽²⁾	-0.5	6.5	V
Vo	Voltage range applied to any output in the high	n or low state ⁽²⁾⁽³⁾	-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V ₀ < 0		-50	mA
lo	Continuous output current			±50	mA
	Continuous current through V _{CC} or GND			±100	mA

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The value of V_{CC} is provided in the *Recommended Operating Conditions* table.

7.2 Handling Ratings

			MIN	MAX	UNIT
T _{stg}	Storage temperature rang	-65	150	°C	
V _(ESD)	Electrostatio discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	0	2000	N/
	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	0	1000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

4

www.ti.com

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			SN54LVC	373A	SN74LVC	373A		
			MIN	MAX	MIN	MAX	UNIT	
N	Cumplianalta an	Operating	2	3.6	1.65	3.6	V	
V_{CC}	Supply voltage	Data retention only	1.5		1.5		v	
		V _{CC} = 1.65 V to 1.95 V			0.65 × V _{CC}			
V _{IH}	High-level input voltage	V_{CC} = 2.3 V to 2.7 V			1.7		V	
		V_{CC} = 2.7 V to 3.6 V	2		2			
		V_{CC} = 1.65 V to 1.95 V			().35 × V _{CC}		
VIL	Low-level input voltage	V_{CC} = 2.3 V to 2.7 V				0.7	V	
		$V_{CC} = 2.7 V \text{ to } 3.6 V$		0.8		0.8		
VI	Input voltage		0	5.5	0	5.5	V	
<i>\</i> /	O stand we like we	High or low state	0	V _{CC}	0	V _{CC}	V	
Vo	Output voltage	3-state	0	5.5	0	5.5	V	
		V _{CC} = 1.65 V				-4		
		$V_{CC} = 2.3 V$				-8	0	
I _{OH}	High-level output current	$V_{CC} = 2.7 V$		-12		-12	mA	
		$V_{CC} = 3 V$		-24		-24		
		V _{CC} = 1.65 V				4		
	Law law law and a summary	$V_{CC} = 2.3 V$				8		
I _{OL}	Low-level output current	$V_{CC} = 2.7 V$		12		12	mA	
		$V_{CC} = 3 V$		24		24		
Δt/Δv	Input transition rise or fall rate	1		10		10	ns/V	
T _A	Operating free-air temperature		-55	125	-40	125	°C	

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, (SCBA004).

7.4 Thermal Information

		SN74LVC373A	
	THERMAL METRIC ⁽¹⁾	PW	UNIT
		20 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance	102.5	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	35.9	
$R_{ heta JB}$	Junction-to-board thermal resistance	53.5	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	2.2	°C/vv
Ψ_{JB}	Junction-to-board characterization parameter	52.9	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	n/a	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

SN54LVC373A, SN74LVC373A

SCAS295T-JANUARY 1993-REVISED JULY 2014

STRUMENTS

www.ti.com

EXAS

7.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

	TEAT CONDITIONS		V	SN54L	SN54LVC373A			C373A	
PARAMETER	TEST CONDITION	5	V _{cc}	MIN	TYP ⁽¹⁾	MAX	MIN TY	(P ⁽¹⁾ MAX	UNIT
	1 100 4		1.65 V to 3.6 V				$V_{CC} - 0.2$		
	I _{OH} = −100 μA		2.7 V to 3.6 V	$V_{CC} - 0.2$					
	$I_{OH} = -4 \text{ mA}$		1.65 V				1.2		
V _{OH}	$I_{OH} = -8 \text{ mA}$		2.3 V				1.7		V
	1 10 m A		2.7 V	2.2			2.2		
	$I_{OH} = -12 \text{ mA}$		3 V	2.4			2.4		
	I _{OH} = -24 mA		3 V	2.2			2.2		
	$I_{OL} = 100 \ \mu A$ $I_{OL} = 4 \ m A$		1.65 V to 3.6 V					0.2	V
			2.7 V to 3.6 V			0.2			
M			1.65 V					0.45	
V _{OL}	I _{OL} = 8 mA	2.3 V					0.7		
	I _{OL} = 12 mA		2.7 V			0.4		0.4	
	I _{OL} = 24 mA		3 V			0.55		0.55	
I _I	V _I = 0 to 5.5 V		3.6 V			±5		±5	μA
I _{off}	$V_{I} \text{ or } V_{O} = 5.5 \text{ V}$		0					±10	μA
I _{OZ}	$V_0 = 0$ to 5.5 V		3.6 V			±15		±10	μA
1	$V_I = V_{CC}$ or GND		2.6.1/			10		10	
I _{CC}	$3.6 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}^{(2)}$	$I_{O} = 0$	3.6 V			10		10	μA
ΔI_{CC}	One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GN	D	2.7 V to 3.6 V			500		500	μA
Ci	$V_I = V_{CC}$ or GND		3.3 V		4	12		4	pF
Co	$V_0 = V_{CC}$ or GND		3.3 V		5.5	12		5.5	pF

(1) All typical values are at V_{CC} = 3.3 V, T_A = 25°C. (2) This applies in the disabled state only.

7.6 Timing Requirements, SN54LVC373A

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

		SN54			
	PARAMETER	V _{CC} = 2.7 V	V _{CC} : ± 0	= 3.3 V).3 V	UNIT
		MIN MA	X MIN	MAX	
tw	Pulse duration, LE high	3.3	3.3		ns
t _{su}	Setup time, data before LE \downarrow	2	2		ns
t _h	Hold time, data after LE \downarrow	2	2		ns

7.7 Timing Requirements, SN74LVC373A

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

				SN74LVC373A						
PARAMETER		V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
tw	Pulse duration, LE high	9		4		3.3		3.3		ns
t _{su}	Setup time, data before LE↓	6		4		2		2		ns
t _h	Hold time, data after LE \downarrow	4		2		1.5		1.5		ns

www.ti.com

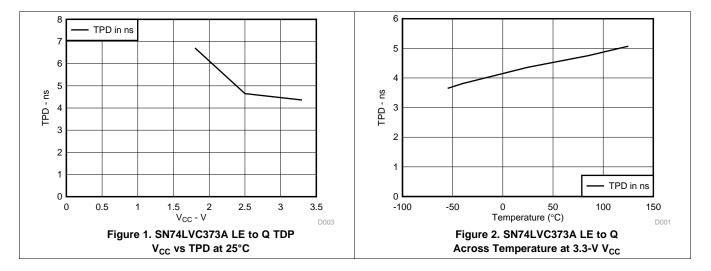
7.8 Switching Characteristics, SN54LVC373A

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

			SN54L\			
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 2.7 V	V _{CC} = 3 ± 0.3	UNIT	
			MIN MAX	MIN	MAX	
	D	0	8.5	1	7.5	
t _{pd}	LE	Q	9.5	1	8.5	ns
t _{en}	ŌĒ	Q	8.7	1	7.7	ns
t _{dis}	OE	Q	8	0.5	7	ns

7.9 Switching Characteristics, SN74LVC373A

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)


			SN74LVC373A								
PARAMETER	FROM (INPUT)	TO (OUTPUT)			2.5 V V	$V_{\rm CC} = 2.7 V$			V _{CC} = 3.3 V ± 0.3 V		
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
+	D	0	1	19.1	1	9.6		7.8	1.5	6.8	20
t _{pd}	LE	Q	1	22.8	1	10.5		8.2	2	7.6	ns
t _{en}	OE	Q	1	20	1	10.5		8.7	1.5	7.7	ns
t _{dis}	OE	Q	1	19.3	1	7.8		7.6	1.5	7	ns
t _{sk(o)}				1		1		1		1	ns

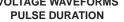
7.10 Operating Characteristics

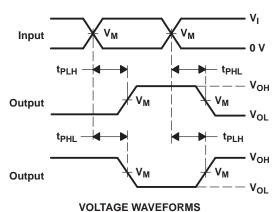

 $T_A = 25^{\circ}C$

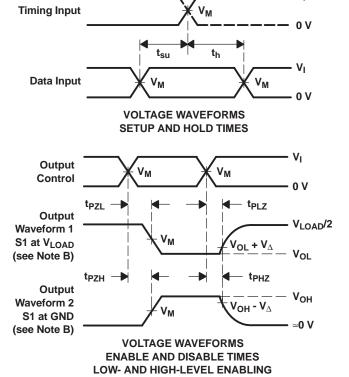
	PARAMETER	TEST CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	UNIT	
C	Power dissipation capacitance	Outputs enabled	f = 10 MHz	61	56	46	۶E
C _{pd}	per latch	Outputs disabled		3	3	3	р⊦

7.11 Typical Characteristics

Parameter Measurement Information 8




LOAD CIRCUIT


TEST	S 1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

	INPUT			V	•	-	
V _{CC}	VI	t _r /t _f	V _M	V _{LOAD}	CL	RL	V_{Δ}
1.8 V \pm 0.15 V	V _{CC}	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	30 pF	1 k Ω	0.15 V
2.5 V \pm 0.2 V	V _{CC}	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
3.3 V \pm 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V

PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

NOTES: A. C₁ includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- t_{PZL} and t_{PZH} are the same as t_{en}. F.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms

8

ISTRUMENTS

V_I

XAS

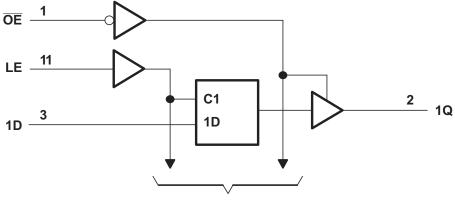
www.ti.com

9 Detailed Description

9.1 Overview

While the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the logic levels set up at the D inputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.


OE does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

These devices are fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

9.2 Functional Block Diagram

To Seven Other Channels

Pin numbers shown are for the DB, DGV, DW, FK, J, N, NS, PW, RGY, and W packages.

SCAS295T – JANUARY 1993 – REVISED JULY 2014

www.ti.com

9.3 Feature Description

- Wide operating voltage range
- Operates from 1.65 V to 3.6 V
- Allows down voltage translation
 - Inputs accept voltages to 5.5 V
- I_{off} feature
 - Allows voltages on the inputs and outputs when V_{CC} is 0 V

9.4 Device Functional Modes

	INPUTS	OUTPUT	
OE	LE	D	Q
L	Н	Н	Н
L	Н	L	L
L	L	х	Q ₀
н	х	Х	Z

Table 2. Function Table (Each Latch)

10 Application and Implementation

10.1 Application Information

The SN74LVC373A is a high-drive CMOS device that can be used for a multitude of bus-interface type applications where the data needs to be retained or latched. It can produce 24 mA of drive current at 3.3 V. Therefore, this device is ideal for driving multiple outputs and for high speed applications up to 100 Mhz. The inputs are 5.5 V tolerant allowing it to translate down to V_{CC} .

10.2 Typical Application

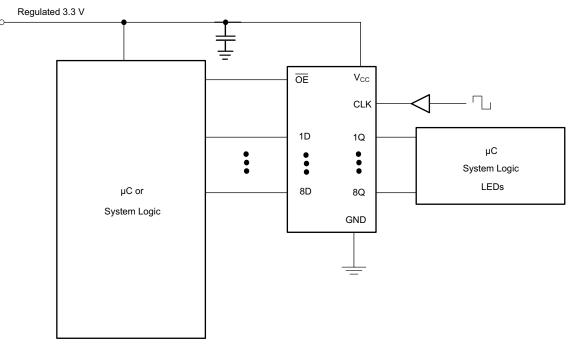
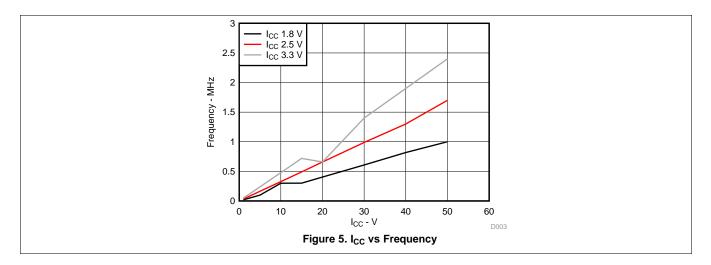


Figure 4. Typical Application Diagram

10.2.1 Design Requirements


This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads; therefore, routing and load conditions should be considered to prevent ringing.

10.2.2 Detailed Design Procedure

- 1. Recommended Input Conditions
 - Rise time and fall time specs: See ($\Delta t/\Delta V$) in the *Recommended Operating Conditions* table.
 - Specified high and low levels: See (V_{IH} and V_{IL}) in the *Recommended Operating Conditions* table.
 - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC}.
- 2. Recommend Output Conditions
 - Load currents should not exceed 50 mA per output and 100 mA total for the part.
 - Outputs should not be pulled above V_{CC}.

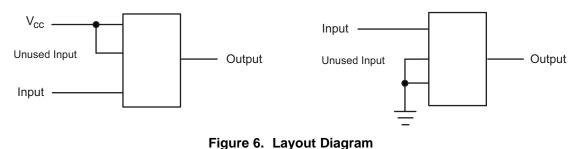
www.ti.com

Typical Application (continued) 10.2.3 Application Curves

11 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the *Recommended Operating Conditions* table.

Each V_{CC} pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 μ f is recommended; if there are multiple V_{CC} pins, then 0.01 μ f or 0.022 μ f is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1 μ f and a 1 μ f are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.


12 Layout

12.1 Layout Guidelines

When using multiple bit logic devices inputs should never float.

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Figure 6 specifies the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} , whichever makes more sense or is more convenient. It is generally acceptable to float outputs, unless the part is a transceiver.

12.2 Layout Example

www.ti.com

13 Device and Documentation Support

13.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
SN54LVC373A	Click here	Click here	Click here	Click here	Click here
SN74LVC373A	Click here	Click here	Click here	Click here	Click here

Table 3. Related Links

13.2 Trademarks

All trademarks are the property of their respective owners.

13.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type		Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
5962-9757301Q2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 9757301Q2A SNJ54LVC 373AFK	Samples
5962-9757301QRA	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9757301QR A SNJ54LVC373AJ	Samples
5962-9757301QSA	ACTIVE	CFP	W	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9757301QS A SNJ54LVC373AW	Samples
SN74LVC373ADBLE	OBSOLETE	SSOP	DB	20		TBD	Call TI	Call TI	-40 to 85		
SN74LVC373ADBR	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LC373A	Samples
SN74LVC373ADBRE4	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LC373A	Samples
SN74LVC373ADGVR	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LC373A	Samples
SN74LVC373ADW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVC373A	Samples
SN74LVC373ADWG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVC373A	Samples
SN74LVC373ADWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVC373A	Samples
SN74LVC373AGQNR	OBSOLETE	BGA MICROSTAR JUNIOR	GQN	20		TBD	Call TI	Call TI	-40 to 85		
SN74LVC373AN	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	SN74LVC373AN	Samples
SN74LVC373ANSR	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVC373A	Samples
SN74LVC373ANSRG4	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVC373A	Samples
SN74LVC373APW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LC373A	Samples

PACKAGE OPTION ADDENDUM

10-Jun-2014

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN74LVC373APWE4	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LC373A	Samples
SN74LVC373APWG4	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LC373A	Samples
SN74LVC373APWLE	OBSOLETE	TSSOP	PW	20		TBD	Call TI	Call TI	-40 to 85		
SN74LVC373APWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-40 to 85	LC373A	Samples
SN74LVC373APWRG4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LC373A	Samples
SN74LVC373APWT	ACTIVE	TSSOP	PW	20	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LC373A	Samples
SN74LVC373APWTE4	ACTIVE	TSSOP	PW	20	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LC373A	Samples
SN74LVC373ARGYR	ACTIVE	VQFN	RGY	20	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	LC373A	Samples
SN74LVC373AZQNR	ACTIVE	BGA MICROSTAR JUNIOR	ZQN	20	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	LC373A	Samples
SNJ54LVC373AFK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 9757301Q2A SNJ54LVC 373AFK	Samples
SNJ54LVC373AJ	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9757301QR A SNJ54LVC373AJ	Samples
SNJ54LVC373AW	ACTIVE	CFP	W	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9757301QS A SNJ54LVC373AW	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

10-Jun-2014

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

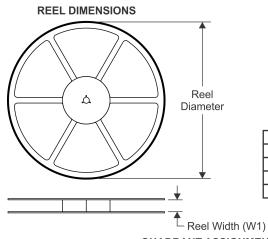
OTHER QUALIFIED VERSIONS OF SN54LVC373A, SN74LVC373A :

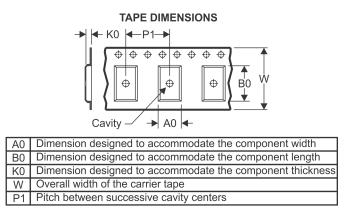
- Catalog: SN74LVC373A
- Automotive: SN74LVC373A-Q1, SN74LVC373A-Q1
- Enhanced Product: SN74LVC373A-EP, SN74LVC373A-EP
- Military: SN54LVC373A

NOTE: Qualified Version Definitions:

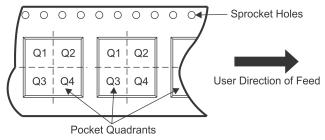
• Catalog - TI's standard catalog product

10-Jun-2014


- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications

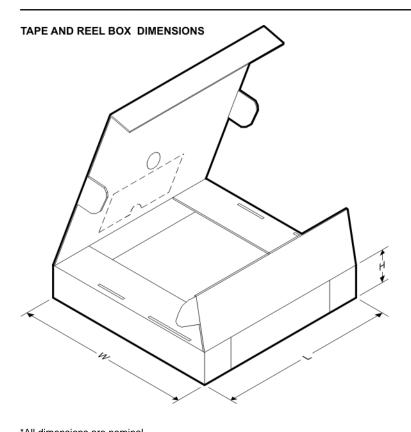

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC373ADBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
SN74LVC373ADGVR	TVSOP	DGV	20	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LVC373ADWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74LVC373ANSR	SO	NS	20	2000	330.0	24.4	9.0	13.0	2.4	4.0	24.0	Q1
SN74LVC373APWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
SN74LVC373APWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
SN74LVC373APWT	TSSOP	PW	20	250	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
SN74LVC373ARGYR	VQFN	RGY	20	3000	330.0	12.4	3.8	4.8	1.6	8.0	12.0	Q1
SN74LVC373AZQNR	BGA MI CROSTA R JUNI OR	ZQN	20	1000	330.0	12.4	3.3	4.3	1.6	8.0	12.0	Q1

Texas Instruments

www.ti.com

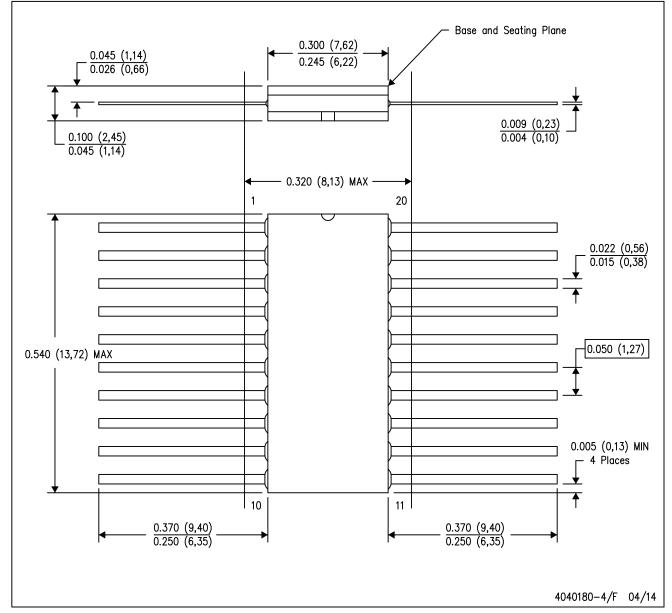
PACKAGE MATERIALS INFORMATION

17-Apr-2015

*All dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC373ADBR	SSOP	DB	20	2000	367.0	367.0	38.0
SN74LVC373ADGVR	TVSOP	DGV	20	2000	367.0	367.0	35.0
SN74LVC373ADWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN74LVC373ANSR	SO	NS	20	2000	367.0	367.0	45.0
SN74LVC373APWR	TSSOP	PW	20	2000	364.0	364.0	27.0
SN74LVC373APWR	TSSOP	PW	20	2000	367.0	367.0	38.0
SN74LVC373APWT	TSSOP	PW	20	250	367.0	367.0	38.0
SN74LVC373ARGYR	VQFN	RGY	20	3000	367.0	367.0	35.0
SN74LVC373AZQNR	BGA MICROSTAR JUNIOR	ZQN	20	1000	338.1	338.1	20.6

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

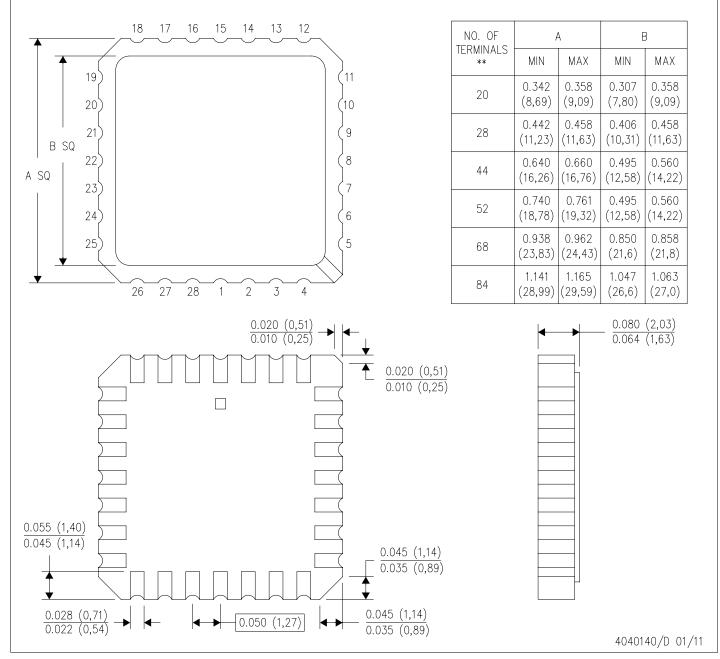


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F20)

CERAMIC DUAL FLATPACK

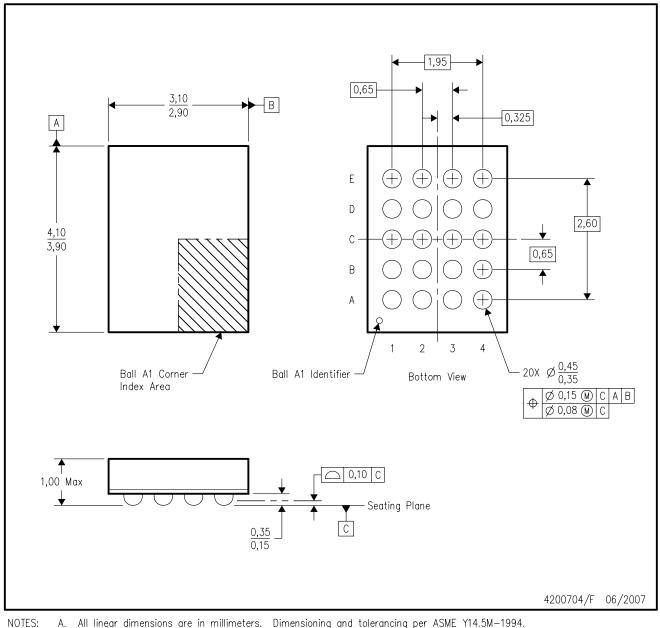


- NOTES: A. All linear dimensions are in inches (millimeters).
 - This drawing is subject to change without notice. В.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 D. Index point is provided on cap for terminal identification only.
 E. Falls within Mil-Std 1835 GDFP2-F20

LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N**) 28 TERMINAL SHOWN

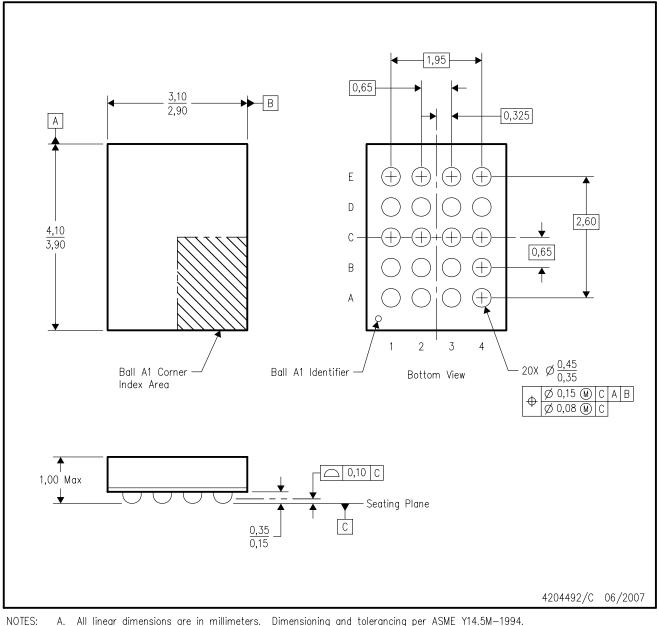
NOTES: A. All linear dimensions are in inches (millimeters).


B. This drawing is subject to change without notice.

- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

GQN (R-PBGA-N20)

PLASTIC BALL GRID ARRAY

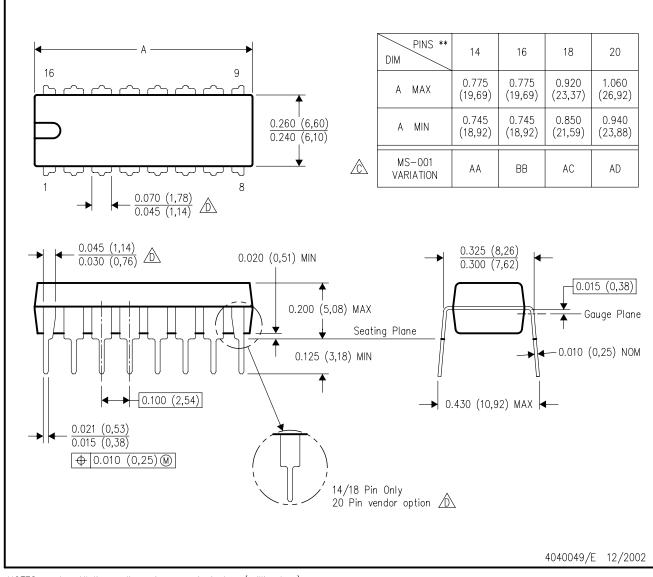

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-285 variation BC-2.
- D. This package is tin-lead (SnPb). Refer to the 20 ZQN package (drawing 4204492) for lead-free.

ZQN (R-PBGA-N20)

PLASTIC BALL GRID ARRAY

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.


- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-285 variation BC-2.
- D. This package is lead-free. Refer to the 20 GQN package (drawing 4200704) for tin-lead (SnPb).

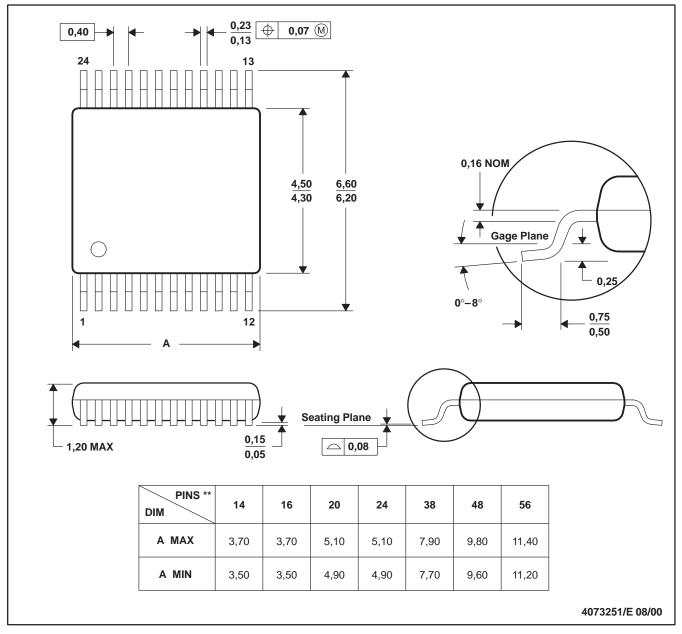
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.


MECHANICAL DATA

PLASTIC SMALL-OUTLINE

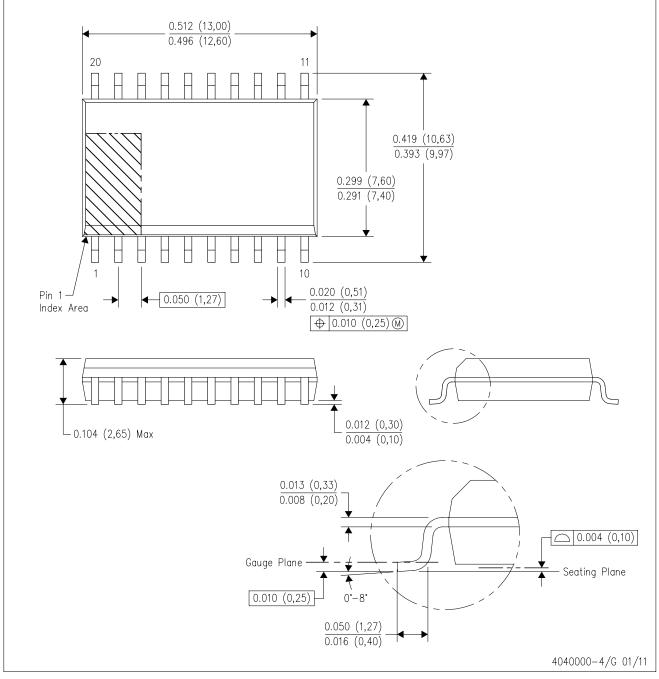
MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

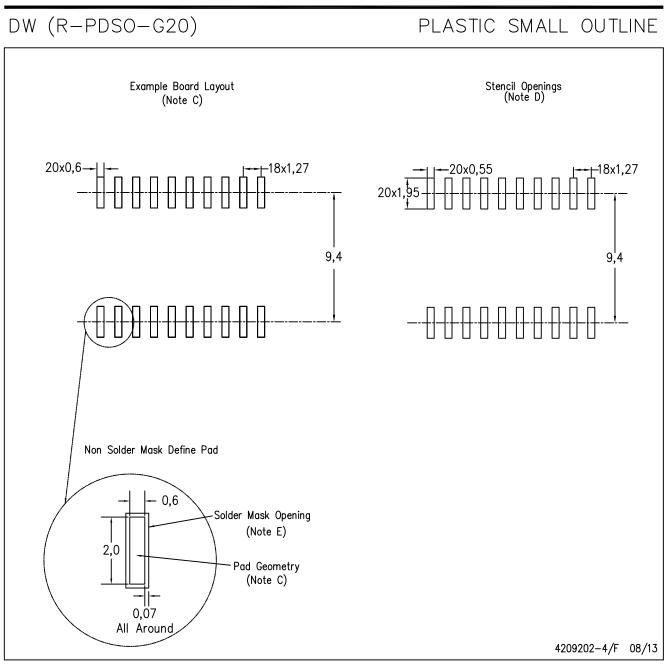

- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

14/16/20/56 Pins – MO-194

DW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

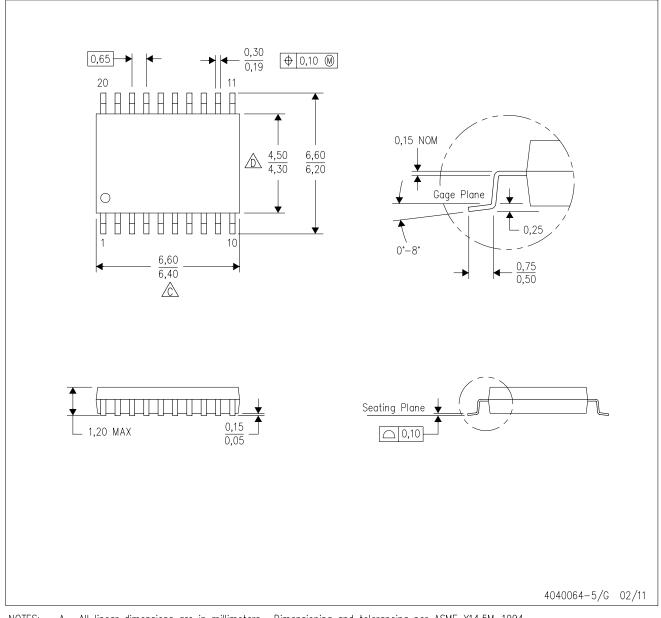
NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AC.

LAND PATTERN DATA


NOTES:

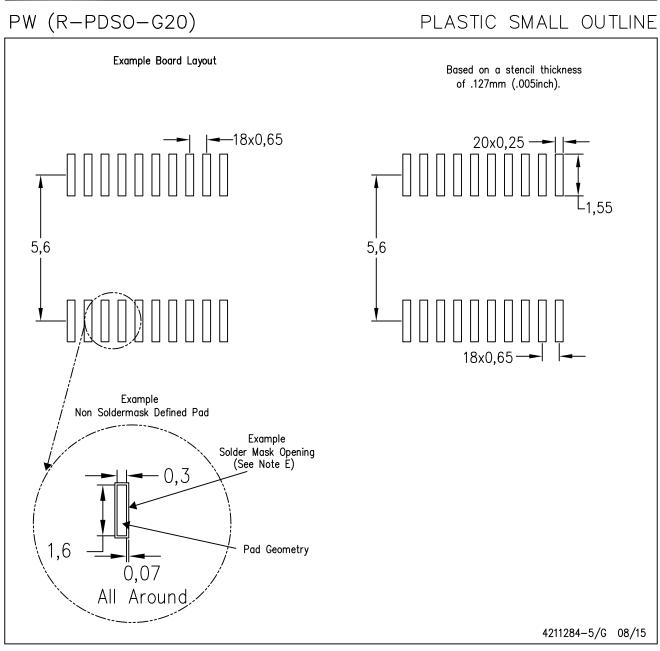
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. β . This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

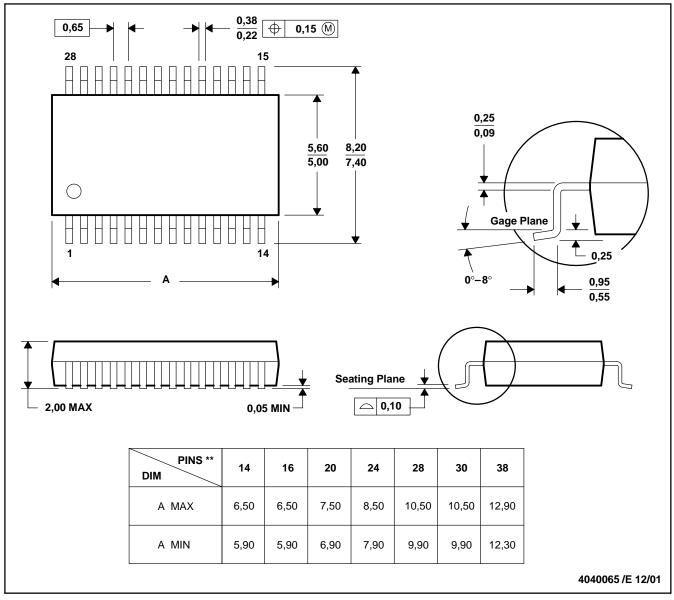
Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

LAND PATTERN DATA

NOTES: Α. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
 C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

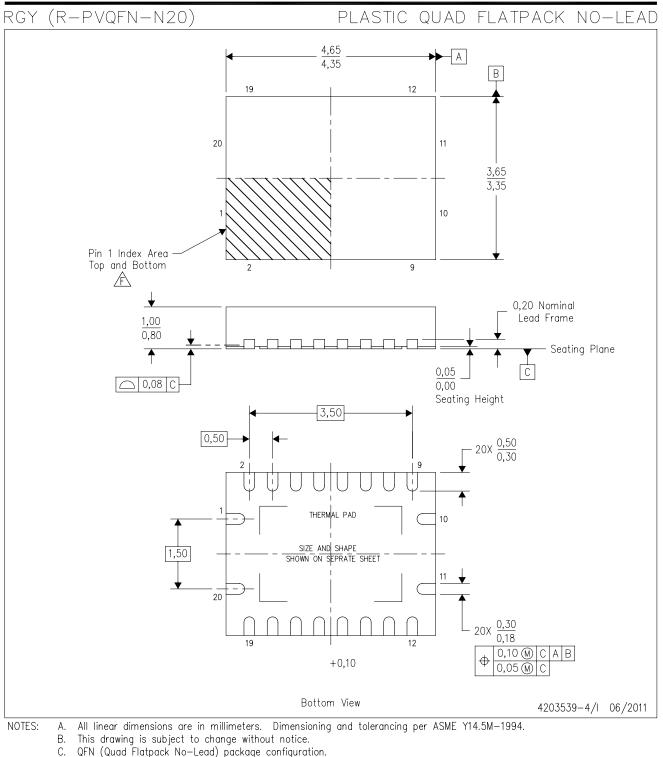

MECHANICAL DATA

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN



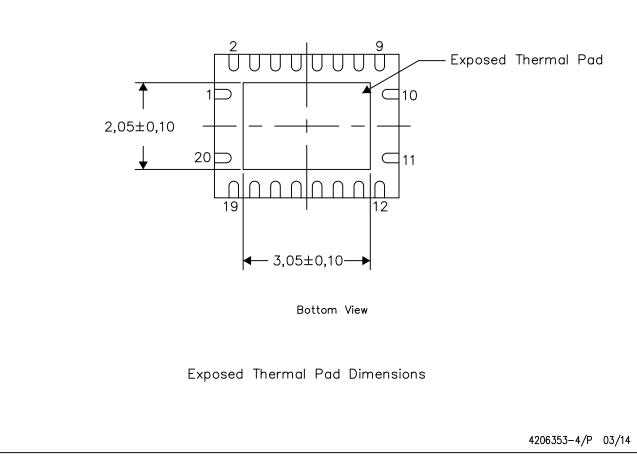
NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

MECHANICAL DATA

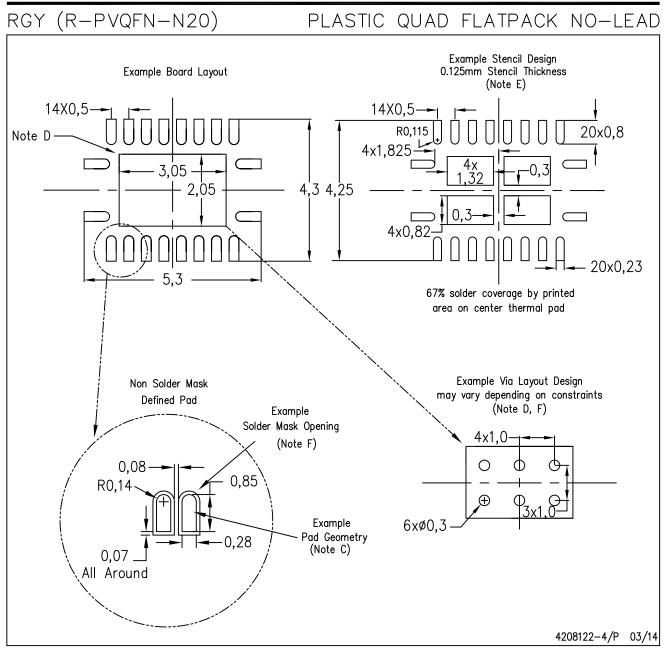
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- The Pin 1 identifiers are either a molded, marked, or metal feature.
- G. Package complies to JEDEC MO-241 variation BA.

RGY (R-PVQFN-N20)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).


For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated