HARRIS HMM-11510

GaAs MMIC Amplifier 7.5 - 15 GHz

PRODUCT DATA SHEET

June 1991

Features

- On-Chip Source Resistor Network for Easy Bias **Point Selection**
- Directly Cascadable without Interstage Matching
- DC Blocking of Both RF Input and Output
- Ti/Pt/Au Metallization and Large Gate Cross Section for Enhanced Reliability
- Dielectric Scratch/Short Circuit Protection Improves Durability
- Individual Die Serialization Provides the Ultimate in Traceability

Description

The HMM-11510 is a cascadable, broadband gain block designed for gain and driver circuit applications. A completely integrated amplifier, the HMM-11510 includes DC blocking of the RF input and output and an on-chip source bias resistor network.

A distributed amplifier design, the HMM-11510 is designed to replace MIC hybrids, while its small size and ruggedness offer distinct advantages in demanding military applications or, wherever space is at a premium.

Produced using the same mask set as the HMM-11810, HMM-11510 dice carry the 'HMM-11810' marking; but are distinguished from the HMM-11810 by separate RF qualification in addition to separate labels on the Gel-Pak shipping containers.

Standard wafer qualification includes 100 percent onwafer DC probe, and visual inspection, as well as RF evaluation on a sample test basis.

INPUT

OUTPUT

Device Outline

47 pF

Bonding Diagram

VDD.

່ງ axx-yy

Gain Bias Configuration

CHIP THICKNESS 5 MILS Au BACKSIDE METALLIZATION

NEW PRODUCT INFORMATION

DIMENSIONS IN MILS

T-74-13-01

Electrical Specifications at $T_A = 25^{\circ}C$

SYMBOL	PARAMETER	UNITS	MIN	TYP	МАХ	
Freq.	Operating Frequency Range	GHz	7.5		15	
S ₂₁	Small Signal Gain	dB	4.5	6.0		
ΔG	Gain Flatness (over full bandwidth)	dB		± 0.5	± 1.0	
P _{1dB}	Output Power at 1dB Gain Compression	dBm	15.0	16.0		
VSWR	Input VSWR			1.5:1	2.5:1	
VSWR	Output VSWR			1.5:1	2.5:1	
NF	Noise Figure	dB		6.0		
	Conditions for above: V _{DD} = 7.0 V, I _{DD} = 100 mA (typical), Gain Bias Configuration					
I _{DD}	Drain Current, $V_{DD} = 3.0 \text{ V}$, $R_S = 0 \Omega$	mA	125	200	275	

NOTES: 1.Typical RF performance and minimum limits are based on testing of sample units from each wafer on 50 Ω test carriers and do not include correction for tuner/fixture losses. DC min/max limits are guaranteed by 100% on-wafer probe testing.

2. Max I_{DD} is the terminal current with $R_S = 0 \Omega$. This is the saturated source drain current (I_{DSS}) for the parallel combination of FETs in the circuit.

Product Ratings

SYMBOL	PARAMETER	MAXIMUM OPERATING CONDITIONS				
		RECOMMENDED	ABSOLUTE			
V _{DD}	Supply Voltage	+8 V	+10 V			
T _{CH}	Channel Temperature, Operating	+180°C	+250°C			
T _{STG}	Storage Temperature	-65°C to +180°C	-65°C to +250°C			

Permanent damage may result from operation at conditions beyond NOTE: absolute maximum ratings.

Refer to Application Note 201 for die attachment and wire-bonding recommendations.

60E D ■ 7964142 0012006 294 ■SMGK
HMM-11510

Return Loss

Input Return Loss (S₁₁) and Output Return Loss (S₂₂) vs. Frequency. $V_{DD} = 7.0 \text{ V}$, Gain Bias.

Reverse Isolation

Reverse Isolation (S_{12}) vs. Frequency. V_{DD} = 7.0 V, Gain Bias.

HMM-11510

T-74-13-01

Device Schematic

Typical S-Parameters, $V_{\rm DS}$ = 7.0 V, $I_{\rm DD}$ = 100 mA (Gain Bias Configuration)

FREQ	S ₁₁		S ₂₁		S ₁₂		S ₂₂	
(GHz)	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
4.0	.103	-86.6	1.691	138.8	.046	52.5	.260	-170.6
5.0	.193	-120.1	1.811	105.8	.047	29.1	.122	-167.7
6.0	.179	-138.9	1.908	71.9	.077	-6.2	.075	-150.0
6.5	.182	-137.3	1.973	58.6	.073	-20.5	.065	-112.5
7.0	.170	-153.8	2.032	42.8	.080	-32.5	.090	-108.8
7.5	.144	-178.6	2.043	26.2	.086	–45.9	.100	-111.7
8.0	.127	149.6	2.049	10.3	.090	-58.5	.102	-115.3
8.5	.167	135.0	2.008	-2.1	.110	-70.9	.113	-124.1
9.0	.200	96.1	2.059	-18.1	.108	-88.8	.092	-132.4
9.5	.217	72.6	2.025	-32.6	.112	-100.8	.080	-135.0
10.0	.232	49.9	2.034	-47.3	.115	-111.8	.070	-136.0
11.0	.256	0.6	1.996	– 77.8	.121	-132.9	.061	-126.0
12.0	.253	-46.0	1.945	-106.0	.131	-156.9	.059	-108.3
13.0	.226	-104.3	1.964	-136.3	.144	175.6	.056	-111.1
14.0	.211	-179.6	1.863	-168.6	.156	146.8	.035	-116.2
15.0	219	112.3	1.840	161.0	.159	113.6	.032	-86.8
16.0	.256	42.4	1.847	124.9	.165	76.4	.066	-70.7
	1	I		1		I		

NOTE: S-Parameters include bond wire inductances and are measured in a 50 Ω microstrip fixture.