Dual 1.3A White LED Step-Up Converters with Wide Dimming

feATURES

- Wide (1000:1) PWM Dimming Range with No ColorShift
 - Independent Dimming and Shutdown Control of the LEDDivers
 - Drives Up to 16 White LHDs at 25mA (8 per Driver) froma Single \mathbf{L}-Ion Cell
 - Drives Upto 16 White LEDs at 100 mA (8 per Driver) from 12V Supply
 - $\mathbf{3 \%}$ LED Current Programming Accuracy
 - Open LED Protection 36V1amp Voltage

- Fixed Frequency Operation: Up to 2.5 MHz
- Wide Input Voltage Range: 2.5V to 24 V
- Low Shutdown Current: ICC < $1 \mu \mathrm{~A}$
- Overtemperature Protection
- Available in ($5 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.75 \mathrm{~mm}$) 16-Pin DFN and 16-Pin Thermally Enhanced TSSOP Packages

APPLICATIOOS

- Notebook PC Display
- LED Camera Light for Cell Phones
- Car Dashboard Lighting
- Avionics Displays

DESCRIPTIOn

The LTC®3486 is a dual step-up DC/DC converter specifically designed to drive up to 16 White LEDs (8 in series per converter) at constant current from a single Li-lon cell. Series connection of the LEDs provides identical LED currents resulting in uniform brightness. The two independent converters are capable of driving asymmetric LED strings.

The dimming of the two LED strings can be controlled independently via the respective CTRL pins. An internal dimming system allows the dimming range to be extended up to 1000:1 by feeding a PWM signal to the respective PWM pins. The LT3486 operating frequency can be set with an external resistor over a 200 kHz to 2.5 MHz range. A low 200 mV feedback voltage ($\pm 3 \%$ accuracy) minimizes power loss in the current setting resistor for better efficiency. Additional features include output voltage limiting when LEDs are disconnected and overtemperature protection.
The LT3486 is available in a space saving 16-pin DFN ($5 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.75 \mathrm{~mm}$) and 16-pin thermally enhanced TSSOP packages.
$\mathbf{\Sigma \boldsymbol { \gamma }}, \mathrm{LT}, \mathrm{LTC}$ and LTM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

Li-Ion Powered Diver for Camera Fash and LCD Backlighting

3486 TA01b

ABSOLUTE MAXIMUM RATINGS (Note I)

Input Voltage (V_{IN}). 25 V
SHDN Voltage 25 V
SW1, SW2 Voltages 40V
OVP1, OVP2 Voltages 40V
CTRL1, CTRL2 Voltages 10 V
PWM1, PWM2 Voltages. 10V
FB1, FB2 Voltages 10 V

Operating Junction Temperature Range (Note 2)
LT3486E.. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT3486I....................................... $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range
DFN .. $65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
TSSOP ... $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Junction Temperature........................ $125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, $10 \mathrm{sec}, \mathrm{TSSOP}$) $300^{\circ} \mathrm{C}$

LT3486E $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT3486I$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$Maximum Junction Temperature.$125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec, TSSOP) $300^{\circ} \mathrm{C}$

PIn COnfiGURATIOn

ORDER INFORMATION

LEADPREE RNSH	TAPEANDREEL	PARTMARKNG	PACKAGE DESCRIPION	TEMPERATRE RANGE
LTC3486EDHC\#PBF	LTC3486EDHC\#TRPBF	3486	16 -Lead ($5 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC3486EFE\#PBF	LTC3486EFE\#TRPBF	$3486 E F E$	16 -Lead Plastic TSSOP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC3486IFE\#PBF	LTC3486IFE\#TRPBF	3486 IFE	16 -Lead Plastic TSSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LEADBASEDFNSH	TAPEANDREEL	PARTMARKNG	PACKAGE DESCRIPION	TEMPERAURE RANGE
LTC3486EDHC	LTC3486EDHC\#TR	3486	16 -Lead (5mm $\times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC3486EFE	LTC3486EFE\#TR	$3486 E F E$	16 -Lead Plastic TSSOP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC3486IFE	LTC3486IFE\#TR	$3486 I F E$	16 -Lead Plastic TSSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS Theo denctes the specifications which apply over thefill pperating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\text {IN }}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTRLI}}=3 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{CTRL2}}=3 \mathrm{~V} \mathrm{~V}_{\text {PMML }}=3 \mathrm{~V}, \mathrm{~V}_{\text {PMMR }}=3 \mathrm{~V}$, $V_{\text {SHDN }}=3 \mathrm{~V}$, unless otherwise noted.

PARAMEIER	CONDIIONS		MN	TYP	MAX	UNTS
Minimum Operating Voltage			2.5			V
Maximum Operating Voltage					24	V
Feedback Voltage (FB1, FB2)		\bullet	194	200	206	mV
Offset between FB1 and FB2	$V_{0 S}=\|F B 1-F B 2\|$		0	3	6	mV
Feedback Pin Bias Current (FB1, FB2)	$\mathrm{V}_{\text {FB1 }}=\mathrm{V}_{\text {FB2 }}=0.2 \mathrm{~V}$ (Note 3)		10	45	100	nA
Quiescent Current	$\begin{aligned} & V_{\text {FB1 }}=V_{\text {FB2 }}=1 \mathrm{~V} \\ & \mathrm{SHDN}=0 \mathrm{~V}, \mathrm{CTRL} 1=\mathrm{CTRL} 2=0 \mathrm{~V} \end{aligned}$			$\begin{gathered} 9 \\ 0.1 \end{gathered}$	$\begin{gathered} 14 \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{mA} \\ \mu \mathrm{~A} \end{gathered}$
Switching Frequency	$\begin{aligned} & R_{T}=53.6 \mathrm{k} \\ & R_{T}=20.5 \mathrm{k} \end{aligned}$	\bullet	$\begin{gathered} 0.75 \\ 1.7 \end{gathered}$	$\begin{gathered} 1 \\ 22 \end{gathered}$	$\begin{aligned} & 1.25 \\ & 2.7 \end{aligned}$	MHz MHz
Oscillator Frequency Range (Typical Value)	(Note 4)		200		2500	kHz
Nominal R R Pin Voltage	$\mathrm{R}_{\mathrm{T}}=53.6 \mathrm{k}$			0.54		V
Maximum Duty Cycle	$\begin{aligned} & \hline \mathrm{R}_{\mathrm{T}}=53.6 \mathrm{k} \\ & \mathrm{R}_{\mathrm{T}}=20.5 \mathrm{k} \\ & \mathrm{R}_{\mathrm{T}}=309 \mathrm{k} \\ & \hline \end{aligned}$	\bullet	90	$\begin{aligned} & 96 \\ & 90 \\ & 98 \end{aligned}$		\% $\%$ $\%$
Switch Current Limit (SW1, SW2)			1	1.3	1.6	A
Switch V CESAT	$\mathrm{I}_{\text {SW } 1}=\mathrm{I}_{\text {SW } 2}=0.75 \mathrm{~A}$			300		mV
Switch Leakage Current	$\mathrm{V}_{\text {SW } 1}=\mathrm{V}_{\text {SW } 2}=10 \mathrm{~V}$			0.1	5	$\mu \mathrm{A}$
Error Amplifier Transconductance	$\Delta \mathrm{l}= \pm 5 \mu \mathrm{~A}$			220		$\mu \mathrm{A} / \mathrm{V}$
Error Amplifier Voltage Gain				120		
$\mathrm{V}_{\text {C1 }}, \mathrm{V}_{\text {C2 }}$ Switching Threshold				0.85		V
$\mathrm{V}_{\text {C1 }}, \mathrm{V}_{\text {C2 }}$ Clamp Voltage				1.5		V
$\mathrm{V}_{\mathrm{C} 1}, \mathrm{~V}_{\mathrm{C} 2}$ Source Current	$\mathrm{V}_{\mathrm{FB} 1}=\mathrm{V}_{\mathrm{FB} 2}=0 \mathrm{~V}$			25		$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{C} 1}, \mathrm{~V}_{\mathrm{C} 2}$ Sink Current	$V_{\text {FB1 }}=\mathrm{V}_{\text {FB2 }}=1 \mathrm{~V}$			25		$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{C} 1}, \mathrm{~V}_{\mathrm{C} 2}$ Pin Leakage Current	$\mathrm{V}_{\mathrm{C} 1}=\mathrm{V}_{\text {C2 }}=1 \mathrm{~V}, \mathrm{~V}_{\text {PWM } 1}=\mathrm{V}_{\text {PWM }}=0 \mathrm{~V}$			1	10	nA
OVP1, OVP2 Overvoltage Threshold Voltage			34	35	36	V
CTRL1, CTRL2 Voltages to Turn Off LED1, 2 Currents		\bullet			75	mV
CTRL1, CTRL2 Voltages to Turn On LED1, 2 Currents			150			mV
CTRL1, CTRL2 Voltages for Full LED1, 2 Currents			1.8			V
CTRL1, CTRL2 Pin Bias Current	$\mathrm{V}_{\text {CTRL1 }}=\mathrm{V}_{\text {CTRL2 }}=3 \mathrm{~V}$	\bullet	20	30	40	$\mu \mathrm{A}$
PWM1, PWM2 Voltage High		\bullet	0.9			V
PWM1, PWM2 Voltage Low		\bullet			0.4	V
PWM1, PWM2 Pin Bias Current	$\mathrm{V}_{\text {PWM } 1}=\mathrm{V}_{\text {PWM2 }}=3 \mathrm{~V}$			0.1	1	$\mu \mathrm{A}$
$\overline{\text { SHDN }}$ Voltage High			1.6			V
SHDN Voltage Low					0.4	V
$\overline{\text { SHDN }}$ Pin Bias Current	$V_{\text {SHDN }}=3 \mathrm{~V}$			20		$\mu \mathrm{A}$
REF Voltage	$\mathrm{I}_{\text {REF }}=10 \mu \mathrm{~A}$		1.2	1.25	1.3	V
REF Source Current		\bullet	50	80		$\mu \mathrm{A}$

Note $\mathbf{1}$: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note2: The LT3486E is guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ and is designed, characterized and expected to meet
these extended temperature limits, but is not tested at $-40^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$. The LT3486l specifications are guaranteed over the $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ temperature range.
Note 3: Current flows out of the pin.
Note 4: Guaranteed by design and test correlation, not production tested.

TYPICAL PERFORMAOCE CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{Curless}$ othervise specified

©

BLOCK DIAGRAM

OPGRATION

Main Control Loop

The LT3486 uses a constant frequency, current mode control schemeto provide excellent line and load regulation. It incorporates two identical, but fully independent PWM converters. Operation can be best understood by referring to the block diagram in Figure 1. The oscillator, start-up bias and the bandgap reference are shared between the two converters. The control circuitry, power switch, dimming control etc., are all identical for both converters.

At power-up, the output capacitors of both converters are charged up to $\mathrm{V}_{\text {IN }}$ (input supply voltage) viatheir respective inductor and the Schottky diode. If the SHDN pin is taken above 1.6 V , the bandgap reference, start-up bias and the oscillator are turned on. Grounding the $\overline{\text { SHDN }}$ pin shuts down the part.

The CTRL1 and CTRL2 pins perform independent dimming and shutdown control for the two converters. Taking the CTRL pins high, enables the respective converters. Connecting these pins to ground, shuts down each converter by pulling their respective V_{C} pin low.

Working of the main control loop can be understood by following the operation of converter 1. At the start of each oscillator cycle, the power switch Q1 is turned on. A voltage proportional to the switch current is added to a stabilizing ramp and the resulting sum is fed into the positive terminal of the PWM comparator A2. When this voltage exceeds the level at the negative input of A2, the PWM logic turns off the power switch. The level at the negative input of A2 is set by the error amplifier A1, and is simply an amplified version of the difference between the feedback voltage and the 200 mV reference voltage. In this manner, the error amplifier A1 regulates the feedback voltage to 200 mV reference voltage. The output of the error amplifier A1 sets the correct peak current level in inductor L1 to keep the output in regulation. The CTRL1 pin voltage is used to adjust the reference voltage.

The PWM1, 2 control pins are used to extend the dimming range for the individual converter. The LED current in each string can be controlled down to $\mu \mathrm{A}$ levels by feeding a PWM signal to these pins. Refer to the Applications Information section for more detail.

If only one of the converters is turned on, the otherconverter will stay off and its output will remain charged up to $V_{I N}$ (input supply voltage).

MinimumOuput Curent

The LT3486 can drive an 8-LED string at 4mA LED current without pulse skipping. As current is further reduced, the device may begin skipping pulses. This will result in some Iow frequency ripple, although the LED current remains regulated on an average basis down to zero. The photo in Figure 2 shows circuit operation with 8 white LEDs at 4 mA current driven from 3.6 V supply. Peak inductor current is less than 200 mA and the regulator operates in discontinuous mode implying that the inductor current reached zero during the discharge phase. After the inductor current reaches zero, the switch pin exhibits ringing due to the LC tank circuit formed by the inductor in combination with switch and diode capacitance. This ringing is not harmful; far less spectral energy is contained in the ringing than in the switch transitions. The ringing can be damped by application of a 300Ω resistor across the inductors, although this will degrade efficiency.

Figure 2. Suitching Waveforms

Open-Gircuit Protection

The LT3486 has internal open-circuit protection for both the converters. Connect the overvoltage protection pins (OVP1, OVP2) to the output of the respective converter. When the LEDs are disconnected from the circuit or fail open, the on-chip voltage detectors monitor the voltages at the OVP1 and OVP2 pins and limits these voltages to 36V (typ) by turning off the respective switcher. The converter will then switch at a very low frequency to minimize the input current. Output voltage and input current during

operation

output open circuit are shown in the Typical Performance Characteristics graphs.
Figure 3a shows the transient response of switcher 1 with the LEDs disconnected from the output. When the LED1 string is disconnected from the output, the voltage at the feedback pin (FB1) drops to OV. As a result, the error amplifier charges up the V_{C} node to the clamp voltage level of 1.5 V (typ). The converter starts switching at peak current limit and ramps up the output voltage. When the output voltage reaches the OVP clamp voltage level of 36 V (typ), the LT3486 shuts off the converter by pulling the V_{C} node to ground. The converter then regulates the output voltage at 36 V (typ) by switching at a very low frequency.
In the event one of the converters has an output opencircuit, its output voltage will be clamped at 36 V (typ). However, the other converter will continue functioning properly. The photo in Figure 3b shows circuit operation with converter 1 output open-circuit and converter2 driving

Figure 3a. Transient Response of Switcher 1 with LDD Discormected from the Output

Figure 3h. Switching Waveforms with Ouput 1 Open Grait
eight LEDs at 25 mA . Converter 1 starts switching at a very low frequency, reducing its input current.

Soft-Start

The LT3486 has a separate internal soft-start circuitry for each converter. Soft-start helps to limit the inrush current during start-up. Soft-start is achieved by clamping the output of the error amplifier during the soft-start period. This limits the peak inductor current and ramps up the output voltage in a controlled manner.
The converter enters into soft-start mode whenever the respective CTRL pin is pulled from low to high. Figure 4 shows the start-up waveforms with converter 2 driving eight LEDs at 25 mA . The filtered input current, as shown in Figure 4, is well controlled. The soft-start circuit is more effective when driving a smaller number of LEDs.

Undervoltage Lodkout

The LT3486 has an undervoltage lockout circuit which shuts down both the converters when the input voltage drops below 2.1V (typ). This prevents the converter to operate in an erratic mode when powered from low supply voltages.

Overtemperature Protection

The maximum allowable junction temperature for LT3486 is $125^{\circ} \mathrm{C}$. In normal operation, the IC's junction temperature should be kept below $125^{\circ} \mathrm{C}$ at an ambient temperature of $85^{\circ} \mathrm{C}$ or less. Ifthe junctiontemperature exceeds $150^{\circ} \mathrm{C}$, the internal thermal shutdown circuitry kicks in and turns-off both the converters. The converters will remain off until the die temperature falls below $150^{\circ} \mathrm{C}$.

Figure4. Start-Up Waveforms

APPLICATIONS InFORMATION

Duty Cyde

The duty cycle for a step-up converter is given by:

$$
D=\frac{V_{O U T}+V_{D}-V_{I N}}{V_{O U T}+V_{D}-V_{\text {CESAT }}}
$$

where:
$\mathrm{V}_{\text {OUT }}=$ Output voltage
$V_{D}=$ Schottky forward voltage drop
$V_{\text {CESAT }}=$ Saturation voltage of the switch
$\mathrm{V}_{\text {IN }}=$ Input battery voltage
The maximum duty cycle achievable for LT3486 is 96% (typ) when running at 1 MHz switching frequency. It increases to 98% (typ) when run at 200 kHz and drops to 90% (typ) at 2 MHz . Always ensure that the converter is not duty-cycle limited when powering the LEDs at a given switching frequency.

Setting the Switching Frequency

The LT3486 uses a constant frequency architecture that can be programmed over a 200 kHz to 2.5 MHz range with a single external timing resistor from the R_{\top} pin to ground. The nominal voltage on the R_{\top} pin is 0.54 V , and the current that flows into the timing resistor is used to charge and discharge an internal oscillator capacitor. A graph for selecting the value of R_{\top} for a given operating frequency is shown in the Figure 5.

$3486 \mathrm{G09}$

Operating Frequency Selection

The choice of operating frequency is determined by several factors. There is a tradeoff between efficiency and component size. Higher switching frequency allows the use of smaller inductors albeit at the cost of increased switching losses and decreased efficiency.
Another consideration is the maximum duty cycle achievable. In certain applications the converter needs to operate at the maximum duty cycle in orderto light up the maximum number of LEDs. The LT3486 has a fixed oscillator off-time and a variable on-time. As a result, the maximum duty cycle increases as the switching frequency is decreased.

The circuit of Figure 6a is operated with different values of timing resistor $\left(R_{T}\right)$. R_{T} is chosen so as to runthe converters at $800 \mathrm{kHz}\left(\mathrm{R}_{\mathrm{T}}=63.4 \mathrm{k}\right), 1.25 \mathrm{MHz}\left(\mathrm{R}_{\mathrm{T}}=39.1 \mathrm{k}\right)$ and 2 MHz ($\mathrm{R}_{\mathrm{T}}=21.5 \mathrm{k}$). The CTRL pins are used to provide dimming for the respective LED strings. The efficiency comparison for different R_{T} values is shown in Figure 6 b .

Figure6a. 5Vto 8/8White LEDs

Figure 5. Timing Resistor $\left(\mathrm{R}_{\mathrm{T}}\right)$ Value

APPLICATIONS INFORMATION

3486 F06b
Figure 6b. Efficiency Comparison for Different R_{T} Resistors

Inductor Selection

The choice of the inductor will depend on the selection of switching frequency of LT3486. The switching frequency can be programmed from 200 kHz to 2.5 MHz . Higher switching frequency allows the use of smaller inductors albeit at the cost of increased switching losses.
The inductor current ripple $\left(\Delta l_{\mathrm{L}}\right)$, neglecting the drop across the Schottky diode and the switch, is given by:
where:

$$
\begin{aligned}
& L=\text { Inductor } \\
& f=\text { Operating frequency } \\
& V_{\text {IN(MIN })}=\text { Minimum input voltage } \\
& V_{\text {OUT }}(\mathrm{MAX})=\text { Maximum output voltage }
\end{aligned}
$$

The ΔI_{L} is typically set to 20% to 40% of the maximum inductor current.

The inductor should have a saturation current rating greater than the peak inductor current required for the application. Also, ensure that the inductor has a low DCR (copper wire resistance) to minimize $I^{2} R$ power losses. Recommended inductor values range from $4.7 \mu \mathrm{H}$ to $22 \mu \mathrm{H}$.

Several inductors that work well with the LT3486 are listed in Table 1. Consult each manufacturerfor more detailed information and for their entire selection of related parts.
Talle 1. Recommended Inductors

PART	$\underset{(\mu H)}{L}$	$\begin{aligned} & \text { MAX } \\ & \text { DCR } \\ & (\Omega) \end{aligned}$	CURRENT RAING (A)	Vendor
LQH55DN150M	15	0.150	1.40	Murata
LQH55DN220M	22	0.190	1.20	(814) 237-1431 www.murata.com
A915AY-4R7M	4.7	0.045	2.49	Toko
A915AY-6R8M	6.8	0.068	2.01	(847) 297-0070
A915AY-100M	10	0.090	1.77	www.toko.com
A918CY-100M	10	0.098	1.22	
A918CY-150M	15	0.149	0.94	
CDRH4D28-100	10	0.048	1.30	Sumida
CDRH5D18-150	15	0.145	0.97	(847) 956-0666 www.sumida.com

Capaditor Selection

The small size of ceramic capacitors make them ideal for LT3486 applications. Use only X5R and X7R types because they retain their capacitance over wider voltage and temperature ranges than other types such as Y 5 V or Z5U. A $4.7 \mu \mathrm{~F}$ or larger input capacitor is sufficient for most applications. Always use a capacitor with sufficient voltage rating.
Table 2 shows a list of several ceramic capacitor manufacturers. Consult the manufacturers for detailed information on their entire selection of ceramic parts.

Table 2. Ceramic Capaditor Manufacturers

Taiyo Yuden	(408) 573-4150 www.t-yuden.com
AVX	$\left(\begin{array}{l}\text { (803) 448-9411 } \\ \text { www.avxcorp.com }\end{array}\right.$
Murata	(714) 852-2001 www.murata.com

Diode Selection

Schottky diodes with their low forward voltage drop and fast reverse recovery, are the ideal choices for LT3486 applications. The diode conducts current only during the switch off time. The peak reverse voltage that the diode must withstand is equal to the regulator output voltage.

APPLICATIONS INFORMATION

The average forward current in normal operation is equal to the output current, and the peak current is equal to the peak inductor current. A Schottky diode rated at 1 A is sufficient for most LT3486 applications. Some recommended Schottky diodes are listed in Table 3.

Table 3. Recommended Schottky Diodes

PART NUMBER	$\mathbf{V}_{\mathbf{R}}(\mathbf{V})$	$\mathbf{I}_{\mathbf{A G G}}(\mathbf{A})$	MANUFACTURER
MBR0530	30	0.5	On Semiconductor
MBRM120E	20	1	www.onsemi.com
ZLLS400	40	0.4	Zetex
ZLLS1000	40	1	www.zetex.com
ZHCS400	40	0.4	
ZHCS1000	40	1	

When the LT3486 is set up for PWM dimming operation, choose a Schottky diode with low reverse leakage current. During PWM dimming operation, the output capacitor is required to hold up the charge in the PWM "off" period. A low reverse leakage Schottky helps in that mode of operation. The Zetex ZLLS400 and ZLLS1000 are available in a small surface mount package and are a good fit for this application.

MOSFET Selection

The power MOSFET used in LT3486 applications with wide dimming range requirements should be chosen based on the maximum drain-source voltage. The maximum drain current $I_{D(M A X)}$ and gate-to-source voltages should also be considered when choosing the FET.

Choose a MOSFET with maximum V ${ }_{\text {DS }}$ (drain source) voltage greater than the output clamp voltage i.e., 36 V (typ). Fairchild Semiconductor's FDN5630 (60V, 1.7A N-channel FET) is a good fit for most LT3486 applications. For dimming low current LEDs ($\sim 25 \mathrm{~mA}$), Fairchild 2N7002 is a good alternative.

Programming LEDCurent

The current in each LED string can be set independently by the choice of resistors $\mathrm{R}_{\mathrm{FB} 1}$ and $\mathrm{R}_{\mathrm{FB} 2}$ respectively (see front page application). The feedback reference is 200 mV . In order to have accurate LED current, precision resistors are preferred (1% is recommended).

$$
\begin{aligned}
& R_{F B 1}=\frac{200 \mathrm{mV}}{l_{\mathrm{LED} 1}} \\
& \mathrm{R}_{\mathrm{FB} 2}=\frac{200 \mathrm{mV}}{\mathrm{l}_{\mathrm{LED} 2}}
\end{aligned}
$$

Table 4. R_{fB} Value Selection

$\mathbf{l}_{\mathbf{L D}}(\mathbf{m A})$	$\mathbf{R}_{\boldsymbol{\not r B}} \mathbf{(\Omega)}$
5	40.2
10	20.0
15	13.3
20	10.0
25	8.06

Most low power white LEDs are driven at maximum currents of 15 mA to 25 mA . The LT3486 can be used to power high power LEDs as well. Refer to the Typical Applications for more detail.

Dimming Control

The dimming of the two LED strings can be controlled independently by modulating the respective CTRL and PWM pins. There are two ways to control the intensity of the LEDs.

Adjusting the LED Current Value

Controlling the current flowing through the LEDs controls the intensity of the LEDs. This is the easiest way to control the intensity of the LEDs. The LED forward current can be controlled by modulating the DC voltage at the respective CRTL pin. The PWM pins are not in use when appying this scheme. They must be connected to a 0.9 V supply or higher. The DC voltage at the CTRL pin can be modulated in two ways.

(a) Using a DC Voltage Source

For some applications, the preferred method of brightness control is a variable DC voltage fed to the CTRL pins. The CTRL1, CTRL2 pin voltage can be modulated to set the dimming of the respective LED string. As the voltage on the CTRL1, CTRL2 pin increases from $0 V$ to 1.8 V , the LED current increases from 0 to $l_{\text {LED. }}$. As the CTRL1, CTRL2 pin voltage increases beyond 1.8 V , it has no effect on the LED current.

APPLICATIONS INFORMATION

The LED current can be set by:

$$
\begin{aligned}
& I_{\text {LED }} \approx\left(200 \mathrm{mV} / \mathrm{R}_{\mathrm{FB}}\right) \text {, when } V_{\mathrm{CTRL}}>1.8 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{LED}} \approx\left(\mathrm{~V}_{\mathrm{CTRL}} / 5 \cdot \mathrm{R}_{\mathrm{FB}}\right) \text {, when } V_{\mathrm{CTRL}}<1 \mathrm{~V}
\end{aligned}
$$

Feedback voltage variation versus control voltage is given in the Typical Performance Characteristics graphs.

(b) Using a Filtered PWMSignal

A variable duty cycle PWM can be used to control the brightness of the LED string. The PWM signal is filtered (Figure 7) by an RC network and fed to the CTRL1, CTRL2 pins.

The corner frequency of R1, C1 should be much lower than the frequency of the PWM signal. R1 needs to be much smaller than the internal impedance in the CTRL pins, which is $100 \mathrm{k} \Omega$.

Figure 7. Dimming Control Using a Filtered PMMSignal

Pulse-Widh Moculation (PWM)

Adjusting the forward current flowing in the LEDs changes the intensity of the LEDs, as explained in the previous section. However, a change in forward currentalso changes the color of the LEDs. The chromaticity of the LEDs changes with the change in forward current. Many applications cannot tolerate any shift in the color of the LEDs. Controlling the intensity of the LEDs via applying a PWM signal allows dimming of the LEDs without changing the color.

Dimming the LEDs via a PWM signal essentially involves turning the LEDs on and off at the PWM frequency. The human eye has a limit of 60 frames per second. By increasing the PWM frequency to say, 80 Hz , the eye can be deceived into believing that the pulsed light source is continously on. Additionally by modulating the duty cycle (amount of "on-time"), the intensity of the LEDs can be controlled. The color of the LEDs remains unchanged in this scheme since the LED current value is either zero or a constant value.

Figure 8(a) shows a 12V to 8/8 white LED driver. The PWM dimming control method requires an external NMOS tied to the cathode of the lowest LED in the string, as shown in

Figure 8a. 12Vto 8/8 White LiDs

APPLICATIONS InFORMATION
the figure. A PWM logic input is applied to the gate of the NMOS and the PWM pin of the LT3486. When the PWM input is taken high, the LEDs are connected to the $R_{F B}$ resistor and a current $I_{\text {LED }}=200 \mathrm{mV} / \mathrm{R}_{\text {FB }}$ flows through the LEDs. When the PWM input is taken Iow, the LEDs are disconnected and turn off. The low PWM input applied to the LT3486 ensures that the respective converter turns off and its V_{C} pin goes high impedance. This ensures that the capacitor connected to the V_{C} pin retains its voltage which in turn allows the LEDs to turn on faster, as shown in Figure 8(b). The CTRL pin is not used to modulate the LED current in the scheme. It can be connected to a supply voltage greater than 1.8 V .
The dimming control pins (PWM1, PWM2) can be used to extend the dimming range for the individual switching converters. The LED current can be controlled down to μ A levels by feeding a PWM signal with frequencies in the range of 80 Hz to 50 kHz . The LED current can be controlled by PWM frequencies above 50 kHz but the controllable current decreases with increasing frequency. Pulling the PWM pins below 0.4 V disables the respective switcher. Taking it higher than 0.9 V resumes normal operation. Connect these pins to 0.9 V or higher if not in use.

3486 F09
Figure9. LEDCurent Variation vs PMM Duky Cyde

Figure 9 shows the LED current variation vs PWM duty cycle. The LED current is controlled by applying a PWM of frequency $100 \mathrm{~Hz}, 1 \mathrm{kHz}$ and 25 kHz to the circuit of Figure 8a. As seen in the curves, the LED string is able to get a wide (1000:1) dimming range with PWM frequency of 100 Hz . The dimming range decreases as PWM frequency goes up.

Board Layout Consideration

As with all switching regulators, careful attention must be paid to the PCB board layout and component placement. To prevent electromagnetic interference (EMI) problems, proper layout of high frequency switching paths is essential. Minimize the length and area of all traces connected to the switching node pins (SW1 and SW2). Keep the feedback pins (FB1 and FB2) away from the switching nodes.
The DFN and FE packages both have an exposed paddle that must be connected to the system ground. The ground connection for the feedback resistors should be tied directly to the ground plane and not shared with any other component, except the R_{T} resistor, ensuring a clean, noise-free connection. Recommended component placement for the DFN package is shown in the Figure 10.

Figure 10. Recommended Layout for L3486

TYPICAL APPLICATIONS

Li-Ion Cell Powered Diver for Camera Rash and LCDBacklighting

$\mathrm{C}_{\text {IN }}$: 6.3V, X5R OR X7R DIELECTRIC
Cout1, Cout2: 35V, X5R OR X7R
D1: ZETEX ZHCS1000
D2: ZETEX ZHCS400

Efficiencyus V_{IN}

3486 TA01b

LT3486

TYPICAL APPLICATIONS

1 Li-Ion Cell to8/8 White LFDs

LEDCurentand Efficiency vs PMMDAy Cycle

Wide (250:1) Dimming Range (LDCCurnt 0.1 mA to 25 mA)

PMMDimming Waveforms

TYPICAL APPLICATIONS

5Vto 16/16 White LDS

LEDCurrent and Efficiency vs PWM Duky Cycle

3486 TA08b

PWM Dimming Waveforms

PACKAGE DESCRIPTION

DHC Padage

16-Lead Plastic DRN ($5 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1706)

recommendedsolder pad pitch and dimensions

E Padage
16-Lead Plastic TSSOP (4.4mm)
(Reference LTC DWG \# 05-08-1663)

Exposed Pad Variation BB

TYPICAL APPLICATION

12Vto8/8 White LEDs

LEDCurentand Efficiency vs PMM Duty Cycle

RELATED PARTS

PART NUMBER	DESCRIPION	COMMENIS
LT1618	Constant Current, Constant Voltage 1.24MHz, High Efficiency Boost Regulator	Up to 16 White LEDs, $V_{\text {IN: }} 1.6 \mathrm{~V}$ to $18 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX) }}=34 \mathrm{~V}$, $\mathrm{I}_{\mathrm{Q}}=1.8 \mathrm{~mA}, \mathrm{I}_{\text {SD }}<1 \mu \mathrm{~A}$, MS Package
LT1932	Constant Current, 1.2MHz, High Efficiency White LED Boost Regulator	Up to 8 White LEDs, $\mathrm{V}_{\text {IN: }}$: 1 V to $10 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX) }}=34 \mathrm{~V}$, $\mathrm{I}_{\mathrm{O}}=1.2 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, ThinSOT ${ }^{\text {TM }}$ Package
LT1937	Constant Current, 1.2MHz, High Efficiency White LED Boost Regulator	Up to 4 White LEDs, $V_{\text {IN: }}$: 2.5 V to $10 \mathrm{~V}, \mathrm{~V}_{\text {out(Max) }}=34 \mathrm{~V}$, $I_{Q}=1.9 \mathrm{~mA}, I_{S D}<1 \mu A$, ThinSOT, SC70 Packages
LTC3200	Low Noise, 2MHz, Regulated Charge Pump White LED Driver MS Package	Up to 6 White LEDs, $\mathrm{V}_{\text {IN }}$: 2.7 V to 4.5V, $\mathrm{I}_{\mathrm{Q}}=8 \mathrm{~mA}$, $\mathrm{I}_{\text {SD }}<1 \mu \mathrm{~A}$,
LTC3200-5	Low Noise, 2MHz, Regulated Charge Pump White LED Driver ThinSOT Package	Up to 6 White LEDs, $\mathrm{V}_{\text {IN }}$: 2.7 V to 4.5V, $\mathrm{I}_{\mathrm{Q}}=8 \mathrm{~mA}$, $\mathrm{I}_{\text {SD }}<1 \mu \mathrm{~A}$,
LTC3201	Low Noise, 1.7MHz, Regulated Charge Pump White LED Driver MS Package	Up to 6 White LEDs, $\mathrm{V}_{\text {IN }}$: 2.7 V to $4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=6.5 \mathrm{~mA}$, $\mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$,
LTC3202	Low Noise, 1.5MHz, Regulated Charge Pump White LED Driver MS Package	Up to 8 White LEDs, $\mathrm{V}_{\text {IN }}$: 2.7 V to $4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=5 \mathrm{~mA}$, $\mathrm{I}_{\text {SD }}<1 \mu \mathrm{~A}$,
LTC3205	High Efficiency, Multidisplay LED Controller	Up to 4 (Main), 2 (Sub) and RGB, Vin: 2.8V to 4.5V, $\mathrm{I}_{\mathrm{Q}}=50 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, \mathrm{QFN}-24$ Package
LT3465/LT3465A	Constant Current, 1.2MHz/2.7MHz, High Efficiency White LED Boost Regulator with Integrated Schottky Diode	Up to Six White LEDs, VIN: 2.7V to 16V, Vout(MAX) $=34 \mathrm{~V}$, $I_{Q}=1.9 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, ThinSOT Package
LT3466	Dual Full Function White LED Boost Regulator with Integrated Schottky Diode	Drives Up to 20 LEDs, $\mathrm{V}_{\text {IN: }}$: 2.7 V to 24V, $\mathrm{V}_{\text {OUT(MAX) }}=40 \mathrm{~V}$, $I_{Q}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<16 \mu \mathrm{~A}$, DFN Package

