

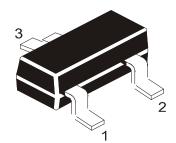
Continental Device India Limited

An ISO/TS 16949, ISO 9001 and ISO 14001 Certified Company

SOT-23 Formed SMD Package

CMBT5551

SILICON N-P-N HIGH-VOLTAGE TRANSISTOR


N-P-N transistor

Marking

CMBT5551 = G1

This product is available in AEC-Q101 Compliant also.

NOTE: For AEC-Q101 compliant products, please use suffix -AQ in the part number while ordering.

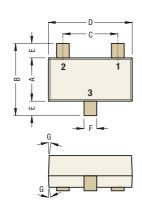
Pin configuration

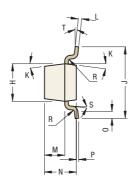
1 = BASE

2 = EMITTER

3 = COLLECTOR

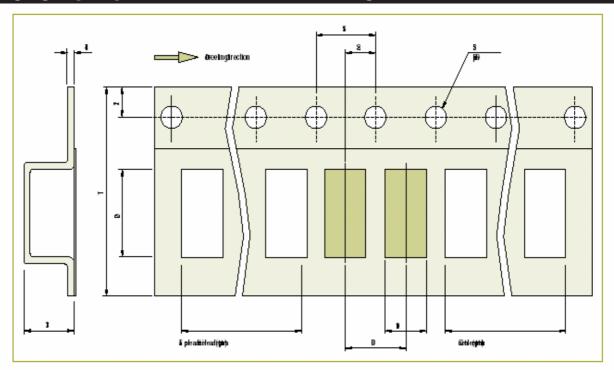
ABSOLUTE MAXIMUM RATINGS


ABSOLUTE WAXINOW RATINGS				
Collector-base voltage (open emitter)	V_{CBO}	max.	180	V
Collector-emitter voltage (open base)	$V_{C\!E\!O}$	max.	160	V
Collector current	I_C	max.	600	mA
Total power dissipation up to $T_{amb} = 25$ °C	P_{tot}	max	<i>250</i>	mW
Junction temperature	T_{j}	max.	<i>150</i>	$^{\circ}$ C
Collector-emitter saturation voltage	3			
$I_C = 50 \text{ mA}; I_B = 5 \text{ mA}$	V_{CEsat}	max.	0.2	V
D.C. current gain				
$I_C = 10 \text{ mA}; V_{CE} = 5 \text{ V}$	h_{FE}	min.	80	
RATINGS (at $T_A = 25^{\circ}C$ unless otherwise specified)				
Limiting values				
Collector-base voltage (open emitter)	V_{CBO}	max.	180	V
Collector-emitter voltage (open base)	$V_{C\!E\!O}$	max.	160	V
Emitter-base voltage (open collector)	V_{EBO}	max.	6	V


CMBT5551

Collector current Total power dissipation up to $T_{amb} = 25$ °C Junction temperature Storage temperature range	I_{C} P_{tot} T_{j} T_{stg}	max. max max. –55 to	250 150	mA mW ° C ° C
THERMAL RESISTANCE				
from junction to ambient	$R_{th\ j-a}$		500	K/W
CHARACTERISTICS (at $T_A = 25^{\circ}C$ unless otherwise	specified)			
Collector cut-off current				
$I_E = 0; \ V_{CB} = 120 \ V$	I_{CBO}	max.	<i>50</i>	nA
$I_E = 0$; $V_{CB} = 120 \ V$; $T_{amb} = 100 \ ^{\circ}C$	I_{CBO}	max.	<i>50</i>	μA
Emitter cut-off current				
$I_C = 0$; $V_{EB} = 4 V$	I_{EBO}	max.	<i>50</i>	nΑ
Breakdown voltages				
$I_C = 1 \text{ mA}; I_B = 0$	$V_{(BR)CEO}$	min.	160	V
$I_C = 100 \ \mu A; I_E = 0$	$V_{(BR)CBO}$	min.	180	V
$I_C = 0$; $I_E = 10 \mu A$	$V_{(BR)EBO}$	min.	6	V
Saturation voltages				
$I_C = 10 \text{ mA}; I_B = 1 \text{ mA}$	$V_{C\!E\!sat}$	max.	0.15	V
	V_{BEsat}	max.	1	V
$I_C = 50 \text{ mA}; I_B = 5 \text{ mA}$	V_{CEsat}	max.	0.2	V
	V_{BEsat}	max.	1	V
D.C. current gain				
$I_C = 1 \text{ mA}; V_{CE} = 5 \text{ V}$	h_{FE}	min.	80	
$I_C = 10 \text{ mA}; V_{CE} = 5 \text{ V}$	h_{FE}	min.	80	
IC = 10 mA, VCE = 3 V	IIFE	max.	<i>250</i>	
$I_C = 50 \text{ mA}; V_{CE} = 5 \text{ V}$	h_{FE}	min.	30	
Small-signal current gain				
$I_C = 1 \text{ mA}; V_{CE} = 10 \text{ V}; f = 1 \text{ kHz}$	h_{fe}	min.	50	
-C, -CL,	16	max.	200	
Output capacitance at $f = 1$ MHz				
$I_E = 0$; $V_{CB} = 10 V$	C_{o}	max.	6	рF
Input capacitance at $f = 1 MHz$				
$I_C = 0; \ V_{EB} = 0.5 \ V$	C_{i}	max.	30	рF
Transition frequency at $f = 100 \text{ MHz}$			100	MIL
$I_C = 10 \text{ mA}; V_{CE} = 10 \text{ V}$	f_T	min.		MHz
		max.	300	MHz

SOT-23 SMD Plastic Package

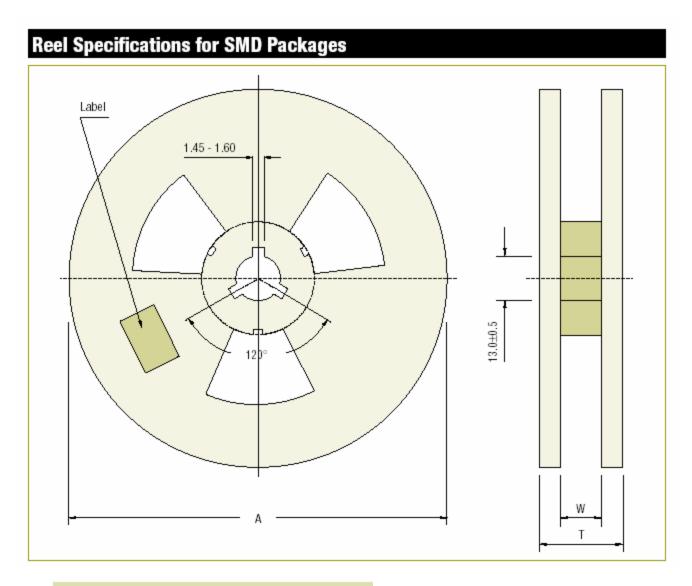


DIM	Min	Max		
Α	1.20 1.40			
В	2.10	2.64		
С	1.85	1.95		
D	2.80	3.04		
Е	0.54 0.67			
F	0.30 0.50			
G	3°			
Н	— 1.30			
J	2.10	2.64		

DIM	Min Max				
K	7°				
L	0.08	0.20			
M	0.58	0.62			
N	0.70	1.02			
0	0.21	_			
Р	0.02	0.15			
R	_	0.08			
S	2°	8°			
Т	2°	10°			

Pin Configuration Pin 1: Base Pin 2: Emitter Pin 3: Collector

Packaging Tape Specifications for SMD Packages


SMD Tape Specifications (8-12 mm)

Device	D1	D2	D3	Tí	T2	T3	T4	S1	S2	S3
						Max	Max			Dia
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
S0T-23	3.2±0.1	2.8±0.1	4.0±0.1	8.0±0.2	1.75±0.1	1.60	0.35	4.0±0.1	2.0±0.1	1.5±0.1

Packaging Specifications

T & A: Tape and Ammo Pack: T & R: Tape and Reel: Bulk: Loose in Poly Bags: Tube: Tube and Carton: K: 1.000

Package / Case Type	Packaging Type	Std. Packing		Inner Carton		Outer Carton			
		Qty	Qty	Qty Size L x W x H Gross Weight			Size L x W x H	Gross Weight	
				(cm)	(Kg)		(cm)	(Kg)	
S0T-23	T&R	3,000	15K	19 x 19 x 8	0.6	51K	23 x 23 x 23	2.2	
	T&R	3,000	15K	19 x 19 x 8	0.6	408K	48 x 48 x 51	20.2	
	T&R	10,000	50K	35.5 x 35.5 x 8.9	2.4	350K	48 x 48 x 51	19.2	

Reel Specifications

Package	Tape	Reel Dia.	Devices	Inside	Reel
	Width		per Reel	Thickness	Thickness
		A - Max	and MOQ	W	T - Max
S0T-23	8	180	3,000	8.4±2	14.4
	8	330	10,000	8.4±2	14.4

Customer Notes CMBT5551

Component Disposal Instructions

- 1. CDIL Semiconductor Devices are RoHS compliant, customers are requested to please dispose as per prevailing Environmental Legislation of their Country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished on the CDIL Web Site/CD are believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered Trademark of
Continental Device India Limited
C-120 Naraina Industrial Area, New Delhi 110 028, India.
Telephone + 91-11-2579 6150, 4141 1112 Fax + 91-11-2579 5290, 4141 1119
email@cdil.com www.cdilsemi.com