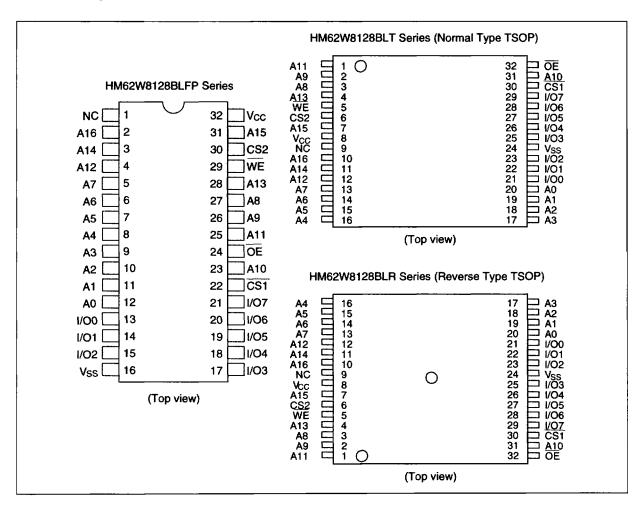
131,072-word × 8-bit High Speed CMOS Static RAM

HITACHI

ADE-203-656A (Z) Rev. 1.0 Oct. 14, 1996

Description

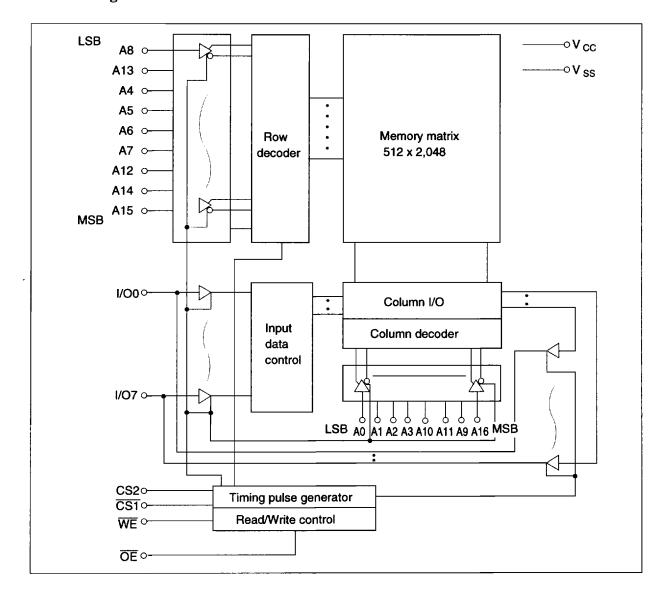
The Hitachi HM62W8128B is a CMOS static RAM organized 131,072-word \times 8-bit. It realizes higher density, higher performance and low power consumption by employing $0.8 \mu m$ Hi-CMOS shrink process technology. It offers low power standby power dissipation; therefore, it is suitable for battery backup systems. The device, packaged in a 525-mil SOP (460-mil body SOP) or a $8 \text{ mm} \times 20 \text{ mm}$ TSOP with thickness of 1.2 mm, is available for high density mounting. TSOP package is suitable for cards, and reverse type TSOP is also provided.


Features

- Single 3.3 V supply
- Fast access time: 100/120 ns (max)
- Power dissipation:
 - Active: 23 mW/MHz (typ)
 - --- Standby: 4 μW (typ)
- Completely static memory. No clock or timing strobe required
- Equal access and cycle times
- · Common data input and output. Three state output
- Directry CMOS compatible all inputs and outputs.
- Capability of battery backup operation. 2 chip selection for battery backup

Ordering Information

Type No.	Access time	Package
HM62W8128BLFP-10	100 ns	525-mil 32-pin plastic SOP (FP-32D)
HM62W8128BLFP-12	120 ns	_
HM62W8128BLFP-10SL	100 ns	
HM62W8128BLFP-12SL	120 ns	
HM62W8128BLT-10	100 ns	8 mm × 20 mm 32-pin TSOP (normal-bend type) (TFP-32D)
HM62W8128BLT-12	120 ns	_
HM62W8128BLT-10SL	100 ns	
HM62W8128BLT-12SL	120 ns	
HM62W8128BLR-10	100 ns	8 mm × 20 mm 32-pin TSOP (reverse-bend type) (TFP-32DR)
HM62W8128BLR-12	120 ns	
HM62W8128BLR-10SL	100 ns	
HM62W8128BLR-12SL	120 ns	


Pin Arrangement

Pin Description

Pin name	Function
A0 to A16	Address input
I/O0 to I/O7	Data input/output
CS1	Chip select 1
CS2	Chip select 2
WE	Write enable
ŌĒ	Output enable
NC	No connection
V _{cc}	Power supply
V _{ss}	Ground

Block Diagram

Function Table

WE	CS1	CS2	ŌE	Mode	V_{cc} current	VO pin	Ref. cycle
×	Н	×	×	Standby	I _{SB} , I _{SB1}	High-Z	****
×	×	L	×	Standby	I _{SB} , I _{SB1}	High-Z	_
Н	L	Н	Н	Output disable	I _{cc}	High-Z	_
Н	L	Н	L	Read	Icc	Dout	Read cycle
L	L	Н	Н	Write	I _{cc}	Din	Write cycle (1)
L	L	Н	L	Write	I _{cc}	Din	Write cycle (2)

Note: x: H or L

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit	
Power supply voltage*1	V _{cc}	-0.5 to + 4.6	V	
Terminal voltage*1	V _T	-0.5^{*2} to $V_{cc} + 0.3^{*3}$	٧	
Power dissipation	P _T	1.0	W	
Operating temperature Topr		0 to +70	°C	
Storage temperature	Tstg	-55 to +125	°C	
Storage temperature under bias	Tbias	-10 to 85	°C	

Notes: 1. Relative to V_{ss}

2. V_T min: -3.0 V for pulse half-width \leq 30 ns

3. Maximum voltage is 4.6 V

Recommended DC Operating Conditions (Ta = 0 to $+70^{\circ}$ C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{cc}	3.0	3.3	3.6	V
	V _{ss}	0	0	0	٧
Input voltage	V _{IH}	2.0		V _{cc} + 0.3	V
	V _{IL}	-0.3 *1		0.8	٧

Note: 1. V_{IL} min: -3.0 V for pulse half-width ≤ 30 ns

DC Characteristics (Ta = 0 to +70°C, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$, $V_{SS} = 0 \text{ V}$)

Parameter		Symbol	Min	Typ*1	Max	Unit	Test conditions
Input leaka	Input leakage current				1	μΑ	Vin = V _{ss} to V _{cc}
Output leal	kage current	II _{LO} I		-	1	μА	$\overline{CS1} = V_{IH} \text{ or } CS2 = V_{IL} \text{ or } \overline{OE} = V_{IH} \text{ or } \overline{WE} = V_{IL}, \ V_{I/O} = V_{SS} \text{ to } V_{CC}$
Operating current: DC	power supply	I _{cc}	_	6	10	mA	$\overline{\text{CS1}} = \text{V}_{\text{IL}}, \text{ CS2} = \text{V}_{\text{IH}},$ Others = $\text{V}_{\text{IH}}/\text{V}_{\text{IL}}, \text{I}_{\text{I/O}} = 0 \text{ mA}$
Operating power supply current	supply			22	30	mA	Min. cycle, duty = 100%, $I_{VO} = 0$ mA, $\overline{CS1} = V_{IL}$, $CS2 = V_{IH}$, Others = V_{IH}/V_{IL}
•	HM62W8128B-12	I _{CC1}	_	20	25		
		I _{cc2}	_	7	10	mA	Cycle time = 1 μ s, duty = 100%, I_{NO} = 0 mA, $\overline{CS1} \le 0.2$ V, $CS2 \ge V_{\text{CC}} - 0.2$ V $V_{\text{IH}} \ge V_{\text{CC}} - 0.2$ V, $V_{\text{L}} \le 0.2$ V
Standby po	ower supply	I _{SB}	_	0.5	1	mA	(1) CS1 = V _{IH} , CS2 = V _{IH} or (2) CS2 = V _{IL}
	Standby power supply current (1): DC			1.2*2	70*²	μА	0 V ≤ Vin (1) 0 V ≤ CS2 ≤ 0.2 V or (2) $\overline{CS1}$ ≥ V _{cc} − 0.2 V, CS2 ≥ V _{cc} − 0.2 V
		i _{SB1}		1.2*3	30*³	μΑ	_
Output volt	Output voltage				0.4	٧	I _{oL} = 2 mA
			_		0.2	٧	I _{oL} = 100 μA
		V _{OH}	2.4		_	٧	I _{OH} = -2 mA
			V _{cc} -	0.2 —		٧	I _{OH} = -100 μA

Notes: 1. Typical values are at $V_{cc} = 3.3 \text{ V}$, $Ta = +25^{\circ}\text{C}$ and not guaranteed.

- 2. This characteristic is guaranteed only for L version.
- 3. This characteristic is guaranteed only for L-SL version.

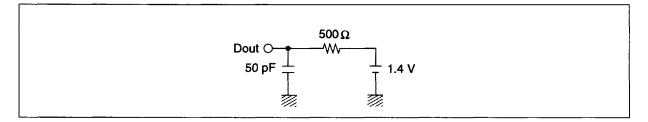
Capacitance (Ta = 25°C, f = 1.0 MHz)

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Input capacitance*1	Cin		_	8	pF	Vin = 0 V
Input/output capacitance*1	Cvo			10	pF	$V_{VO} = 0 V$

Note: 1. This parameter is sampled and not 100% tested.

AC Characteristics (Ta = 0 to +70°C, V_{CC} = 3.3 V ±0.3 V, unless otherwise noted.)

Test Conditions


• Input pulse levels: 0.4 V to 2.4 V

• Input rise and fall time: 5 ns

Input timing reference levels: 1.4 V

• output timing reference levels: 2.0 V/0.8 V

Output load (Including scope and jig)

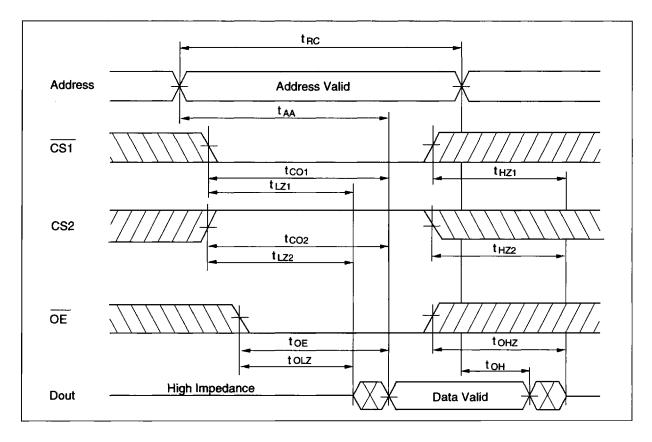
Read Cycle

		HM62\	W8128B				
		-10		-12			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Read cycle time	t _{RC}	100	_	120		ns	
Address access time	t _{AA}		100	_	120	ns	
Chip selection to output valid	t _{co1}	****	100		120	ns	
	t _{co2}	_	100		120	ns	
Output enable to output valid	toE		50	_	60	ns	
Chip selection to output in low-Z	t _{LZ1}	10	_	10		ns	2, 3
	t _{1.72}	10	_	10		ns	_
Output enable to output in low-Z	toLZ	5		5		ns	2, 3
Chip deselection to output in high-Z	t _{HZ1}	0	35	0	40	ns	1, 2, 3
	t _{HZ2}	0	35	0	40	ns	_
Output disable to output in high-Z	tonz	0	35	0	40	ns	1, 2, 3
Output hold from address change	t _{oH}	10		10		ns	

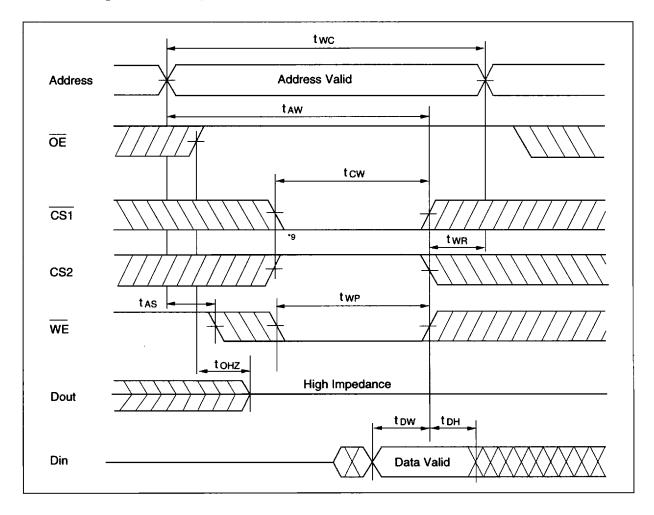
Write Cycle

ควพ		

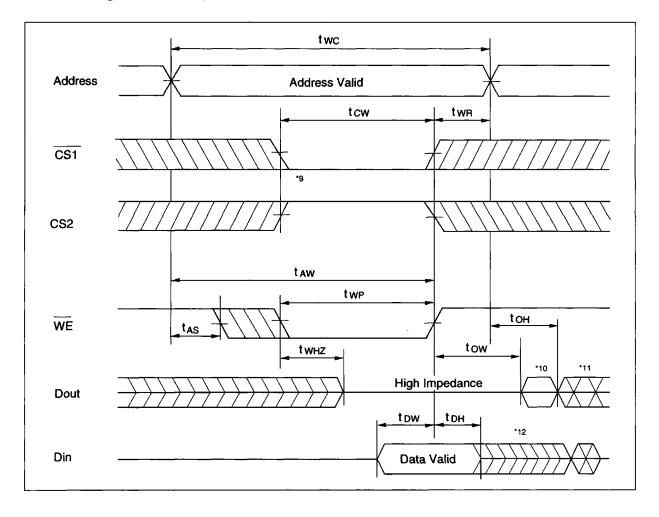
		-10		-12		x Unit	
Parameter	Symbol	Min	Max	Min	Max		Notes
Write cycle time	t _{wc}	100		120	_	ns	
Chip selection to end of write	t _{cw}	80	_	85	_	ns	5
Address setup time	t _{AS}	0	_	0	_	ns	6
Address valid to end of write	t _{aw}	80	_	85	_	ns	
Write pulse width	t _{wp}	60	_	65	_	ns	4, 13
Write recovery time	t _{wR}	0		0	_	ns	7
Write to output in high-Z	t _{wHZ}	0	35	0	40	ns	1, 2, 8
Data to write time overlap	t _{DW}	40	-	45	_	ns	
Data hold from write time	t _{DH}	0		0		ns	
Output active from end of write	tow	5		5		ns	2
Output disable to output in High-Z	t _{oHZ}	0	35	0	40	ns	1, 2, 8


Notes: 1. t_{HZ}, t_{OHZ} and t_{WHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.

- 2. This parameter is sampled and not 100% tested.
- At any given temperature and voltage condition, t_{HZ} max is less than t_{LZ} min both for a given device and from device to device.
- 4. A write occures during the overlap of a low CS1, a high CS2, and a low WE. A write begins at the latest transition among CS1 going low, CS2 going high, and WE going low. A write ends at the earliest transition among CS1 going high, CS2 going low, and WE going high. two is measured from the beginning of write to the end of write.
- 5. t_{cw} is measured from the later of CS1 going low or CS2 going high to the end of write.
- 6. t_{AS} is measured from the address valid to the beginning of write.
- t_{wn} is measured from the earliest of CS1 or WE going high or CS2 going low to the end of write cycle.
- 8. During this period, I/O pins are in the output state; therefore, the input signals of the opposite phase to the outputs must not be applied.
- If CS1 goes low simultaneously with WE going low or after WE going low, the outputs remain in a high impedance state.
- 10. Dout is the same phase of the latest written data in this write cycle.
- 11. Dout is the read data of next address.
- 12. If $\overline{\text{CS1}}$ is low and CS2 high during this period, I/O pins are in the output state. Therefore, the input signals of the opposite phase to the outputs must not be applied to them.
- 13. In the write cycle with \overline{OE} low fixed, t_{WP} must satisfy the following equation to avoid a problem of data bus contention.

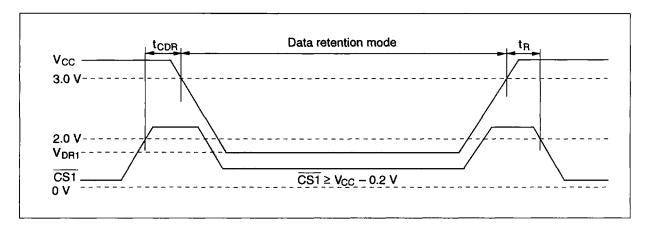

 $t_{WP} \ge t_{DW} \min + t_{WHZ} \max$

Timing Waveform

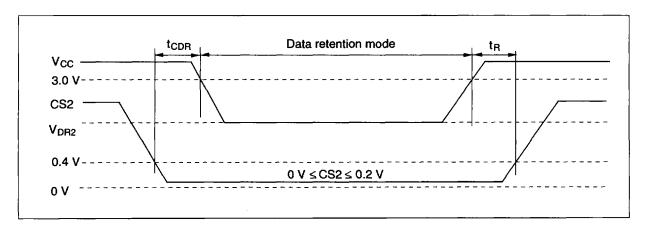

Read Timing Waveform $(\overline{WE} = V_{IH})$

Write Timing Waveform (1) (OE Clock)

Write Timing Waveform (2) (OE Low Fixed)


Low V_{CC} **Data Retention Characteristics** (Ta = 0 to $+70^{\circ}$ C)

Parameter	Symbol	Min	Typ*4	Max	Unit	Test conditions ³
V _{cc} for data retention	V _{DR}	2.0			. V	Vin ≥ 0V (1) 0 V ≤ CS2 ≤ 0.2 V or (2) $\frac{\text{CS2}}{\text{CS1}} \ge \text{V}_{\text{cc}} - 0.2 \text{ V}$
Data retention current	I _{ccon} (L version)		1	50*1	μА	$V_{cc} = 3.0 \text{ V}, \text{ Vin } \ge 0 \text{V}$ (1) $0 \text{ V} \le \text{CS2} \le 0.2 \text{ V}$ or (2) $\frac{\text{CS2}}{\text{CS1}} \ge \text{V}_{cc} - 0.2 \text{ V}$, $\frac{\text{CS1}}{\text{CS1}} \ge \text{V}_{cc} - 0.2 \text{ V}$
	I _{ccor} (L-SL version)		1	15"2	μА	_
Chip deselect to data retention time	t _{CDR}	0		_	ns	See retention waveform
Operation recovery time	t _R	5	_		ms	_


Notes: 1. This characteristic is guaranteed only for L version, 20 μ A max. at Ta = 0 to 40°C.

- 2. This characteristic is guaranteed only for L-SL version, 3 μ A max. at Ta = 0 to 40°C.
- 3. CS2 controls address buffer, WE buffer, CS1 buffer, OE buffer, and Din buffer. If CS2 controls data retention mode, Vin levels (address, WE, OE, CS1, I/O) can be in the high impedance state. If CS1 controls data retention mode, CS2 must be CS2 ≥ V_{cc} − 0.2 V or 0 V ≤ CS2 ≤ 0.2 V. The other input levels (address, WE, OE, I/O) can be in the high impedance state.
- 4. Typical values are at $V_{cc} = 3.0 \text{ V}$, $Ta = +25^{\circ}\text{C}$ and not guaranteed.

Low V_{cc} Data Retention Timing Waveform (1) ($\overline{CS1}$ Controlled)

Low V_{CC} Data Retention Timing Waveform (2) (CS2 Controlled)

