

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

4-Mbit (512K x 8) Static RAM

Features

High Speed: 70 ns4.5V-5.5V operationLow active power

Typical active current: 2.5 mA @ f = 1 MHz
 Typical active current: 12.5 mA @ f = f_{max}(70 ns)

Low standby current

• Automatic power-down when deselected

• TTL-compatible inputs and outputs

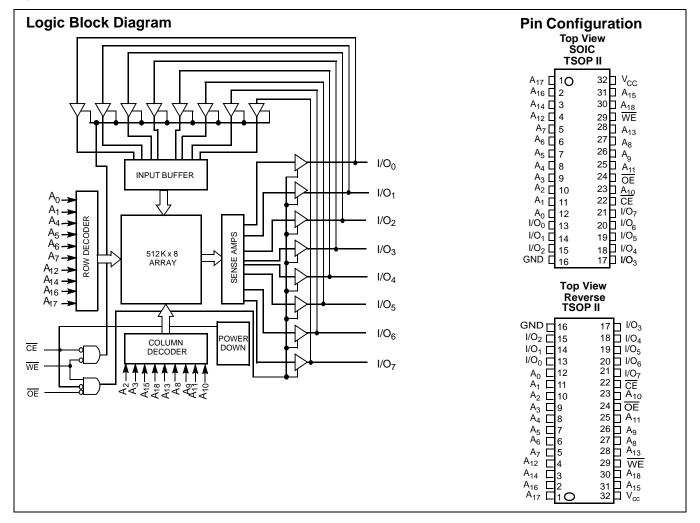
• Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ features

• CMOS for optimum speed/power

 Available in standard 32-lead (450-mil) SOIC, 32-lead TSOP II and 32-lead Reverse TSOP II packages

Functional Description

The CY62148B is a high-performance CMOS static RAM organized as 512K words by 8 bits. Easy memory expansion


is provided by an active LOW Chip Enable ($\overline{\text{CE}}$), an active LOW Output Enable ($\overline{\text{OE}}$), and three-state drivers. This device has an automatic power-down feature that reduces power consumption by more than 99% when deselected.

Writing to the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable ($\overline{\text{WE}}$) inputs LOW. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₁₈).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing Write Enable (WE) HIGH for read. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation (CE LOW, and WE LOW).

The CY62148B is available in a standard 32-pin 450-mil-wide body width SOIC, 32-pin TSOP II, and 32-pin Reverse TSOP II packages.

Product Portfolio

							Power Di	ssipation	
						Operati	ing, Icc	Standb	y (I _{SB2})
	,	V _{CC} Range	•			f = f	max		
Product	Min.	Тур.	Max.	Speed	Temp.	Typ. ^[3]	Max.	Typ. ^[3]	Max.
CY62148BLL	4.5 V	5.0V	5.5V	70 ns	Com'l	12.5 mA	20 mA	4 μΑ	20 μΑ
					Ind'l				

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......55°C to +125°C Supply Voltage on V_{CC} to Relative GND...... –0.5V to +7.0V DC Voltage Applied to Outputs in High Z State $^{[1]}$ -0.5V to $\rm V_{CC}$ +0.5V DC Input Voltage^[1].....-0.5V to V_{CC} +0.5V

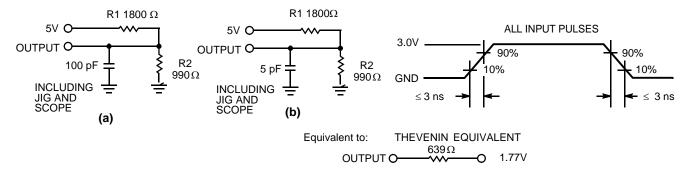
Current into Outputs (LOW)	20 mA
Static Discharge Voltage	2001V
(per MIL-STD-883, Method 3015)	
Latch-Up Current>	200 mA

Operating Range

Range	Ambient Temperature ^[2]	V _{CC}
Commercial	0°C to +70°C	4.5V-5.5V
Industrial	–40°C to +85°C	

Electrical Characteristics Over the Operating Range

				(CY62148B-	·70	
Parameter	Description	Test Con	ditions	Min.	Typ. [3]	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -	– 1 mA	2.4			V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 2$	2.1 mA			0.4	V
V _{IH}	Input HIGH Voltage			2.2		V _{CC} +0.3	V
V _{IL}	Input LOW Voltage			-0.3		0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_{CC}$	-1		+1	μΑ	
I _{OZ}	Output Leakage Current	$GND \leq V_I \leq V_{CC}, C$	– 1		+1	μА	
I _{CC}	V _{CC} Operating Supply Current	$f = f_{MAX} = 1/t_{RC}$ $f = 1 \text{ MHz}$	Com/Ind'I I _{OUT} =0 mA V _{CC} = Max.,		12.5 2.5	20	mA mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\begin{split} & \frac{Max.\ V_{CC},}{CE \geq V_{IH}} \\ & V_{IN} \geq V_{IH} \ or \\ & V_{IN} \leq V_{IL}, \ f = f_{MAX} \end{split}$	Com/Ind'I			1.5	mA
I _{SB2}	Automatic CE Power-Down Current —CMOS Inputs	$\label{eq:max_vcc} \begin{split} & \underline{\text{Max}}. \ V_{CC}, \\ & \text{CE} \geq V_{CC} - 0.3 \text{V}, \\ & \text{V}_{IN} \geq V_{CC} - 0.3 \text{V}, \\ & \text{or} \ V_{IN} \leq 0.3 \text{V}, \ f = 0 \end{split}$	Com/Ind'I		4	20	μА


- V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
 T_A is the "Instant On" case temperature.
- 3. Typical values are measured at V_{CC} = 5V, T_A = 25°C, and are included for reference only and are not tested or guaranteed.

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	8	pF

AC Test Loads and Waveforms

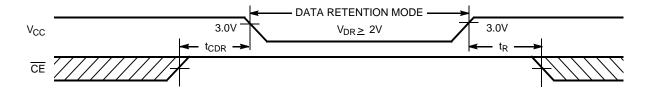
Note:

^{4.} Tested initially and after any design or process changes that may affect these parameters.

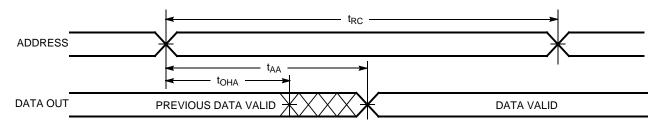
Switching Characteristics^[5] Over the Operating Range

		62148	BLL-70	
Parameter	Description	Min.	Max.	Unit
READ CYCLE		<u>.</u>		
t _{RC}	Read Cycle Time	70		ns
t _{AA}	Address to Data Valid		70	ns
t _{OHA}	Data Hold from Address Change	10		ns
t _{ACE}	CE LOW to Data Valid		70	ns
t _{DOE}	OE LOW to Data Valid		35	ns
t _{LZOE}	OE LOW to Low Z ^[6]	5		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		25	ns
t _{LZCE}	CE LOW to Low Z ^[6]	10		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		25	ns
t _{PU}	CE LOW to Power-Up	0		ns
t _{PD}	CE HIGH to Power-Down		70	ns
WRITE CYCLE ^[8]		<u>.</u>		
t _{WC}	Write Cycle Time	70		ns
t _{SCE}	CE LOW to Write End	60		ns
t _{AW}	Address Set-Up to Write End	60		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE}	WE Pulse Width	55		ns
t _{SD}	Data Set-Up to Write End	30		ns
t _{HD}	Data Hold from Write End	0		ns
t _{LZWE}	WE HIGH to Low Z ^[6]	5		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		25	ns

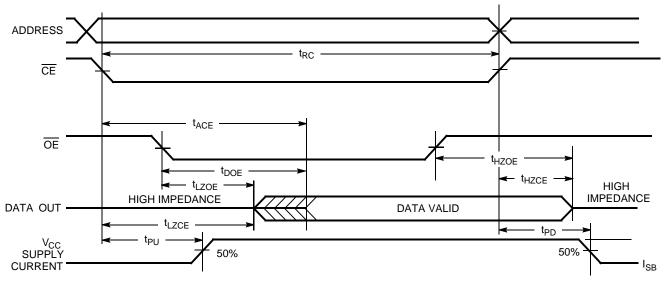
Notes:


<sup>Notes:
5. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified loL/loH and 100-pF load capacitance.
6. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any given device.
7. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
8. The internal write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.</sup>

Data Retention Characteristics (Over the Operating Range)


Parameter	Description			Conditions	Min.	Typ. ^[3]	Max.	Unit
V_{DR}	V _{CC} for Data Retention				2.0			V
I _{CCDR}	Data Retention Current	Com'l LL		No input may exceed			20	μΑ
		Ind'I LL		$V_{CC} + 0.3V$ $\underline{V_{CC}} = V_{DR} = 3.0V$			20	μΑ
t _{CDR} ^[4]	Chip Deselect to Data Retention Time		$CE > V_{CC} - 0.3V$ $V_{IN} > V_{CC} - 0.3V$ or $V_{IN} < 0.3V$	0			ns	
t _R ^[9]	Operation Recovery Time	Operation Recovery Time			t _{RC}			ns

Data Retention Waveform

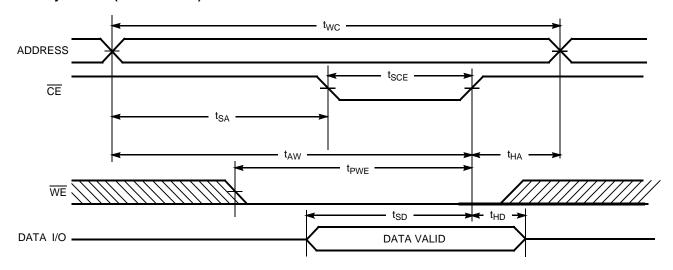


Switching Waveforms

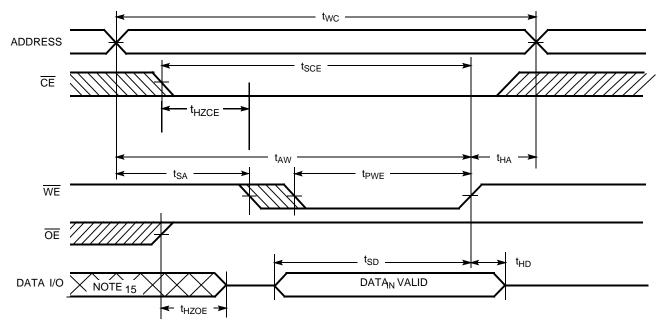
Read Cycle No.1^[10, 11]

Read Cycle No. 2 (OE Controlled)[11, 12]

Notes:


- Full Device operatin requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 100 μs or stable at V_{cc(min)} ≥ 100 μs.
 Device is continuously selected. OE, CE = V_{IL}.
 WE is HIGH for read cycle.

- 12. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.

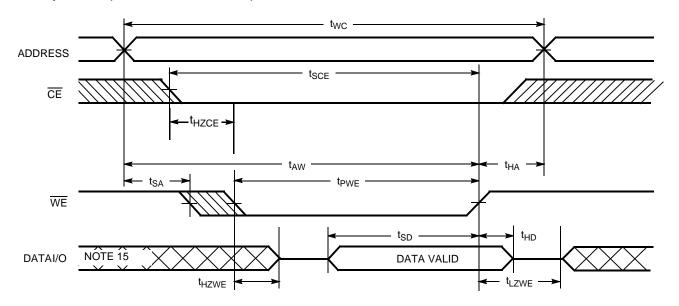


Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)^[13]

Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[13, 14]

- 13. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.


 14. Data I/O is high-impedance if OE = V_{IH}.

 15. During this period the I/Os are in the output state and input signals should not be applied.

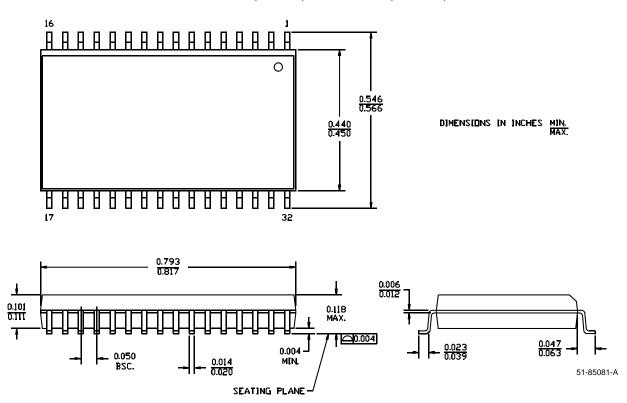
Switching Waveforms (continued)

Write Cycle No.3 (WE Controlled, OE LOW)[13, 14]

Truth Table

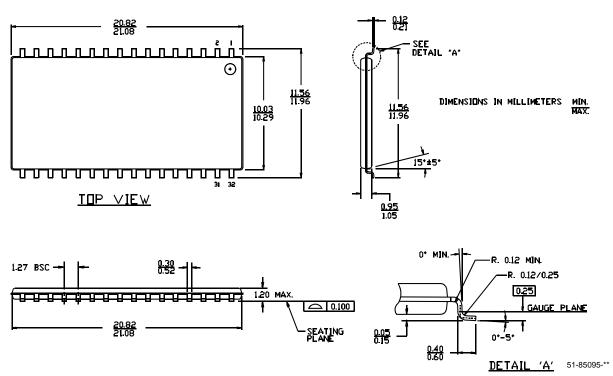
CE	OE	WE	I/O ₀ – I/O ₇	Mode	Power
Н	Х	Х	High Z	Power-Down	Standby (I _{SB})
L	L	Н	Data Out	Read	Active (I _{CC})
L	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

Ordering Information


Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
70	CY62148BLL-70SC	51-85081	32-lead (450-Mil) Molded SOIC	Commercial
	CY62148BLL-70ZC	51-85095	32-lead TSOP II	
	CY62148BLL-70ZRC	51-85138	32-lead RTSOP II	
	CY62148BLL-70SI	51-85081	32-lead (450-Mil) Molded SOIC	Industrial
	CY62148BLL-70ZI	51-85095	32-lead TSOP II	
	CY62148BLL-70ZRI	51-85138	32-lead RTSOP II	

Please contact your local Cypress sales representative for availability of these parts

Package Diagrams


32-lead (450 MIL) Molded SOIC (51-85081)

Package Diagrams (continued)

32-lead Thin Small Outline Package Type II (51-85095)

All products and company names mentioned in this document may be the trademarks of their respective holders.

Package Diagrams (continued)

32-lead Reverse Thin Small Outline Package Type II (51-85138)

DIMENSIONS IN MILLIMETERS -SEE DETAIL "A" (\underbrace{f}) 11.56 11.96 11.56 11.96 10.03 10.29 TOP VIEW BOTTOM VIEW 0.95 1.05 O. MIN-R. 0.12 MIN. R. 0.12/0.25 L27 BSC -0.25 GAUGE PLANE L20 MAX <u></u> 0.100 0.05 0°-5* SEATING PLANE DETAIL 'A'

51-85138-**

Document History Page

	nt Title: CY62 nt Number: 3		(312K X 0)	Static KAIVI
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	106833	05/01/01	SZV	Change from Spec number 38-01104 to 38-05039
*A	106970	07/16/01	GAV	Modified annotations on Pin Configurations; t _{SD} = 30 ns
*B	109766	10/09/01	MGN	Remove 55-ns devices
*C	485639	See ECN	VKN	Changed address of Cypress Semiconductor Corporation on Page# 1 from "3901 North First Street" to "198 Champion Court" Corrected the typo in the Array size in the Logic Block Diagram on page# 1 Renamed Package Name column with Package Diagram in the Ordering Information Table