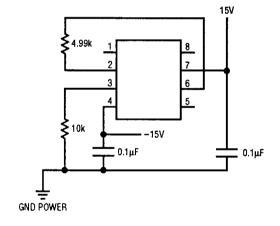


100MHz Current Feedback Amplifier

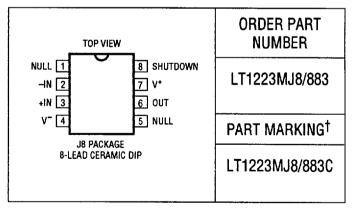
DESCRIPTION

The LT1223M/883 is a 100MHz current feedback amplifier with very good DC characteristics. The LT1223's high slew rate (1000V/ μ s), wide supply range (\pm 15V), and large output drive (\pm 15mA) make it ideal for driving analog signals over double-terminated cables. The current feedback amplifier has high gain bandwidth at high gains, unlike conventional op amps.

The LT1223M/883 comes in the industry-standard pinout and can upgrade the performance of many older products.


The LT1223M/883 is manufactured on Linear Technology's proprietary complementary bipolar process.

The device is processed to the requirements of MIL-STD-883 Class B to yield circuits usable in precision military applications.


ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18V
Differential Input Voltage	
Input Voltage	Equal to Supply Voltage
Output Short-Circuit Duration (N	lote 1) Continuous
Operating Temperature Range	55°C to 125°C
Storage Temperature Range	65°C to 150°C
Junction Temperature	175°C
Lead Temperature (Soldering, 10	

BURN-IN CIRCUIT

PACKAGE/ORDER INFORMATION

[†] The suffix letter "C" of the part mark indicates compliance per MIL-STD-883, para 1.2.1.1.

TABLE 1: ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	MIN	A = 25° TYP	C MAX	SUB- GROUP	−55°C MIN	≤ T _A ≤ TYP	125°C Max	SUB- Group	UNITS
Vos	Input Offset Voltage	V _{CM} = 0V		±1	±3	1		±1	±5	2,3	mV
I _{IN} +	Noninverting Input Current	V _{CM} = 0V		±1	±3	1		±1	±5	2,3	μΑ
I _{IN} -	Inverting Input Current	V _{CM} = 0V		±1	±3	1		±1	±10	2,3	μΑ
R _{IN}	Input Resistance	$V_{IN} = \pm 10V$	1	10			1	10		2,3	MΩ
	Input Voltage Range		±10	±12		1	±10	±12		2,3	V
CMRR	Common-Mode Rejection Ratio	$V_{CM} = \pm 10V$	56	63		1	56	63		2,3	dB
	Inverting Input Current Common-Mode Rejection	V _{CM} = ±10V		30	100	1		30	100	2,3	nA/V
PSRR	Power Supply Rejection Ratio	$V_S = \pm 4.5V \text{ to } \pm 18V$ $V_S = \pm 4.5V \text{ to } \pm 15V$	68	80		1	68	80		2,3	dB
	Noninverting Input Current Power Supply Rejection	$V_S = \pm 4.5V \text{ to } \pm 18V$ $V_S = \pm 4.5V \text{ to } \pm 15V$		12	100	1		12	200	2,3	nA/V
	Inverting Input Current Power Supply Rejection	$V_S = \pm 4.5V$ to $\pm 18V$ $V_S = \pm 4.5V$ to $\pm 15V$		60	500	1		60	500	2,3	nA/V
A _V	Large-Signal Voltage Gain	$R_L = 400\Omega$, $V_{OUT} = \pm 10V$	70	89		4	70	89		5,6	dB
R _{OL}	Transresistance, ΔV _{OUT} /ΔI _{IN} -	$R_L = 400\Omega$, $V_{OUT} = \pm 10V$	1.5	5		1	1.5	5		5,6	MΩ
Vour	Maximum Output Voltage Swing	$R_L = 200\Omega$	±10	±12		4	±7	±12		5,6	V
lout	Maximum Output Current	R _L = 200Ω	50	60		1	35	60		2,3	m/
SR	Slew Rate	R _F = 1.5k, R _G = 1.5k (Note 2)	800	1300		4					V/µs
Is	Supply Current	V _{IN} = 0V		6	10	1		6	10	2,3	mA
	Supply Current, Shutdown	Pin 8 Current = 200µA		2	4	1		2	4	2,3	mA

Note 1: A heat sink may be required.

Note 2: Noninverting operation, $V_{OUT} = \pm 10V$, measured at $\pm 5V$.

TABLE 2: ELECTRICAL TEST REQUIREMENTS

SUBGROUP 1*,2,3,4		
1		

^{*} PDA Applies to subgroup 1. See PDA Test Notes.

PDA Test Notes

The PDA is specified as 5% based on failures from group A, subgroup 1, tests after cooldown as the final electrical test in accordance with method 5004 of MIL-STD-883 Class B. The verified failures of group A, subgroup 1, after burn-in divided by the total number of devices submitted for burn-in in that lot shall be used to determine the percent for the lot.

Linear Technology Corporation reserves the right to test to tighter limits than those given.

I.D. No. 66-10-0214 Rev. O 10/13/92