54LS/74LS78

DESCRIPTION

The "78" is a Dual JK Negative Edge-Triggered Flip-Flop featuring individual J, K, Set, common Clock and common Reset inputs. The Set (\overline{S}_D) and Reset (\overline{R}_D) inputs, when LOW, set or reset the outputs as shown in the Truth Table regardless of the levels at the other inputs. A HIGH level on the Clock (\overline{CP}) input enables the J and K

inputs and data will be accepted. The logic levels at the J and K inputs may be allowed to change while the \overline{CP} is HIGH and the flipflop will perform according to the Truth Table as long as minimum setup and hold times are observed. Output state changes are initiated by the HIGH-to-LOW transition of \overline{CP}

ORDERING CODE (See Section 9 for further Package and Ordering Information)

PACKAGES	PIN CONF.	COMMERCIAL RANGES V _{CC} = 5V ± 5%; T _A = 0°C to ·70°C	MILITARY RANGES V _{CC} = 5V ± 10%; T _A = -55°C to ·125°C
Plastic DIP	Fig A	N74LS78N	
Ceramic DIP	Fig A	N74LS78F	S54LS78F
Flatpak	Fig A		S54LS78W

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE (a)

	PINS		54/74	54H/74H	54\$/74\$	54LS/74LS
СP	Common Clock input	I _{IH} (μΑ) I _{IL} (mA)				160 -1.6
\overline{R}_D	Common Reset input	I _{IH} (μΑ) I _{IL} (mA)				120 -1.6
- S _D	Set input	I _{IH} (μΑ) I _{IL} (mA)				60 -0.8
JK	Data inputs	I _{IH} (μΑ) I _{IL} (mA)				20 -0.4
Q &	Q Outputs	IOH (µA) IOL (mA)				-400 4/8 ^(a)

LOGIC SYMBOL

PIN CONFIGURATION

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (b)

	PARAMETER	TEST CONDITIONS	54/74		54H/74H		54\$/74\$		54LS/74LS		UNIT
	FANAMETER	1201 CONDITIONS	Min	Max	Min	Max	Min	Max	Min	Max	
lcc	Supply current	V _{CC} = Max, V _{CP} = 0V								8.0	mA

NOTES

- The slashed numbers indicate different parametric values for Military/Commercial temperature ranges respectively.
- b. For family dc characteristics, see inside front cover for 54/74 and 54H/74H and see inside back cover for 54S/74S and 54LS/74LS specification.

LOGIC DIAGRAM

MODE SELECT-TRUTH TABLE

OPERATING MODE		II.	OUTPUTS				
	ξD	R _D	CP	J	K	Q	ā
Asynchronous Set	L	Н	Х	Х	х	Н	L
Asynchronous Reset (Clear)		L	х	х	х	L	Н
Undetermined (C)	L	L	х	х	х	н	Н
Toggle	н	н	1	h	h	q	q
Load "0" (Reset)	Н	Н	1	1	h	L	н
Load "1" (Set)	н	н	1	h	1	Н	L
Hold "no change"	Н	Н	1	1	1	q	q

HIGH voltage level steady state.

 ${\bf h}~=~{\sf HIGH}$ voltage level one setup time prior to the HIGH to LOW Clock transition.

L = LOW voltage level steady state.

= LOW voltage level one setup time prior to the HIGH to LOW Clock transition.

q = Lower case letters indicate the state of the referenced output prior to the HIGH to LOW Clock transition.

X = Don't care.

AC CHARACTERISTICS $T_A = 25^{\circ}C$ (See Section 4 for Waveforms and Conditions)

PARAMETER			54/74		54H/74H		545/745		54LS/74LS		
		TEST CONDITIONS							CL = RL =	15pF 2kΩ	UNIT
			Min	Max	Min	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock frequency	Waveform 4					_		30		MHz
tpLH tpHL	Propagation delay Clock to output	Waveform 4								20 30	ns ns
tpLH tpHL	Propagation delay Sp or Rp to output	Waveform 5								20 30	ns ns

AC SET-UP REQUIREMENTS: T_A = 25°C (See Section 4 for Waveforms and Conditions)

PARAMETER		TEST CONDITIONS	54/74		54H/74H		545/745		54LS/74LS		T
			Min	Max	Min	Max	Min	Max	Min	Max	UNIT
tw(H)	Clock pulse width (HIGH)	Waveform 4							20		ns
t _W (L)	Clock pulse width (LOW)	Waveform 4							13		ns
tw(L)	Set or Reset pulse width (LOW)	Waveform 5							25		ns
ts	Setup time J or K to Clock	Waveform 4							20		ns
th	Hold time J or K to Clock	Waveform 4							0		ns

c. Both outputs will be HIGH while both \overline{S}_D and \overline{R}_D are LOW, but the output states are unpredictable if SD and RD go HIGH simultaneously.