54LS/74LS78 ### **DESCRIPTION** The "78" is a Dual JK Negative Edge-Triggered Flip-Flop featuring individual J, K, Set, common Clock and common Reset inputs. The Set (\overline{S}_D) and Reset (\overline{R}_D) inputs, when LOW, set or reset the outputs as shown in the Truth Table regardless of the levels at the other inputs. A HIGH level on the Clock (\overline{CP}) input enables the J and K inputs and data will be accepted. The logic levels at the J and K inputs may be allowed to change while the \overline{CP} is HIGH and the flipflop will perform according to the Truth Table as long as minimum setup and hold times are observed. Output state changes are initiated by the HIGH-to-LOW transition of \overline{CP} ### ORDERING CODE (See Section 9 for further Package and Ordering Information) | PACKAGES | PIN
CONF. | COMMERCIAL RANGES V _{CC} = 5V ± 5%; T _A = 0°C to ·70°C | MILITARY RANGES V _{CC} = 5V ± 10%; T _A = -55°C to ·125°C | |-------------|--------------|---|---| | Plastic DIP | Fig A | N74LS78N | | | Ceramic DIP | Fig A | N74LS78F | S54LS78F | | Flatpak | Fig A | | S54LS78W | ### INPUT AND OUTPUT LOADING AND FAN-OUT TABLE (a) | | PINS | | 54/74 | 54H/74H | 54\$/74\$ | 54LS/74LS | |---------------------|--------------------------|--|-------|---------|-----------|----------------------------| | СP | Common
Clock
input | I _{IH} (μΑ)
I _{IL} (mA) | | | | 160
-1.6 | | \overline{R}_D | Common
Reset
input | I _{IH} (μΑ)
I _{IL} (mA) | | | | 120
-1.6 | | -
S _D | Set
input | I _{IH} (μΑ)
I _{IL} (mA) | | | | 60
-0.8 | | JK | Data
inputs | I _{IH} (μΑ)
I _{IL} (mA) | | | | 20
-0.4 | | Q & | Q Outputs | IOH (µA)
IOL (mA) | | | | -400
4/8 ^(a) | ### LOGIC SYMBOL ### PIN CONFIGURATION ### DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (b) | | PARAMETER | TEST CONDITIONS | 54/74 | | 54H/74H | | 54\$/74\$ | | 54LS/74LS | | UNIT | |-----|----------------|---|-------|-----|---------|-----|-----------|-----|-----------|-----|------| | | FANAMETER | 1201 CONDITIONS | Min | Max | Min | Max | Min | Max | Min | Max | | | lcc | Supply current | V _{CC} = Max, V _{CP} = 0V | | | | | | | | 8.0 | mA | #### NOTES - The slashed numbers indicate different parametric values for Military/Commercial temperature ranges respectively. - b. For family dc characteristics, see inside front cover for 54/74 and 54H/74H and see inside back cover for 54S/74S and 54LS/74LS specification. ### **LOGIC DIAGRAM** ### MODE SELECT-TRUTH TABLE | OPERATING MODE | | II. | OUTPUTS | | | | | |----------------------------|----|----------------|---------|---|---|---|---| | | ξD | R _D | CP | J | K | Q | ā | | Asynchronous Set | L | Н | Х | Х | х | Н | L | | Asynchronous Reset (Clear) | | L | х | х | х | L | Н | | Undetermined (C) | L | L | х | х | х | н | Н | | Toggle | н | н | 1 | h | h | q | q | | Load "0" (Reset) | Н | Н | 1 | 1 | h | L | н | | Load "1" (Set) | н | н | 1 | h | 1 | Н | L | | Hold "no change" | Н | Н | 1 | 1 | 1 | q | q | HIGH voltage level steady state. ${\bf h}~=~{\sf HIGH}$ voltage level one setup time prior to the HIGH to LOW Clock transition. L = LOW voltage level steady state. = LOW voltage level one setup time prior to the HIGH to LOW Clock transition. q = Lower case letters indicate the state of the referenced output prior to the HIGH to LOW Clock transition. X = Don't care. # AC CHARACTERISTICS $T_A = 25^{\circ}C$ (See Section 4 for Waveforms and Conditions) | PARAMETER | | | 54/74 | | 54H/74H | | 545/745 | | 54LS/74LS | | | |------------------|--------------------------------------|-----------------|-------|-----|---------|-----|---------|-----|--------------|-------------|----------| | | | TEST CONDITIONS | | | | | | | CL =
RL = | 15pF
2kΩ | UNIT | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | f _{MAX} | Maximum Clock frequency | Waveform 4 | | | | | _ | | 30 | | MHz | | tpLH
tpHL | Propagation delay
Clock to output | Waveform 4 | | | | | | | | 20
30 | ns
ns | | tpLH
tpHL | Propagation delay Sp or Rp to output | Waveform 5 | | | | | | | | 20
30 | ns
ns | ## AC SET-UP REQUIREMENTS: T_A = 25°C (See Section 4 for Waveforms and Conditions) | PARAMETER | | TEST CONDITIONS | 54/74 | | 54H/74H | | 545/745 | | 54LS/74LS | | T | |--------------------|--------------------------------|-----------------|-------|-----|---------|-----|---------|-----|-----------|-----|------| | | | | Min | Max | Min | Max | Min | Max | Min | Max | UNIT | | tw(H) | Clock pulse width (HIGH) | Waveform 4 | | | | | | | 20 | | ns | | t _W (L) | Clock pulse width (LOW) | Waveform 4 | | | | | | | 13 | | ns | | tw(L) | Set or Reset pulse width (LOW) | Waveform 5 | | | | | | | 25 | | ns | | ts | Setup time
J or K to Clock | Waveform 4 | | | | | | | 20 | | ns | | th | Hold time
J or K to Clock | Waveform 4 | | | | | | | 0 | | ns | c. Both outputs will be HIGH while both \overline{S}_D and \overline{R}_D are LOW, but the output states are unpredictable if SD and RD go HIGH simultaneously.