TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74HC157AP,TC74HC157AF,TC74HC157AFN TC74HC158AP,TC74HC158AF,TC74HC158AFN

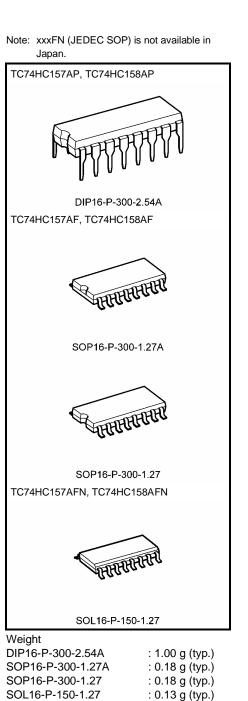
TC74HC157AP/AF/AFN Quad 2-Channel Multiplexer

TC74HC158AP/AF/AFN Quad 2-Channel Multiplexer (inverting)

The TC74HC157A and TC74HC158A are high speed CMOS 2-CHANNEL MULTIPLEXERs fabricated with silicon gate C²MOS technology.

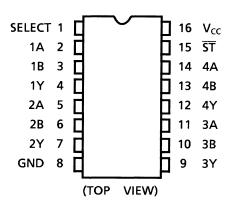
They achieve the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.

The TC74HC158A is an inverting multiplexer while the TC74HC157A is a non-inverting.

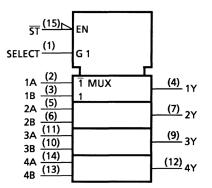

When STROBE is held high, selection of data is inhibited and all the outputs become low in the case of HC157A or high in the case of HC158A.

The SELECT decoding determines whether the A or B inputs get transferred to their corresponding Y (\overline{Y}) outputs.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.


Features

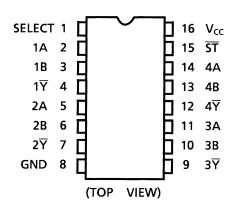
- High speed: $t_{pd} = 10 \text{ ns}$ (typ.) at $V_{CC} = 5 \text{ V}$
- Low power dissipation: $I_{CC} = 4 \mu A (max)$ at $Ta = 25^{\circ}C$
- High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min)
- Output drive capability: 10 LSTTL loads
- Symmetrical output impedance: |IOH| = IOL = 4 mA (min)
- Balanced propagation delays: $t_{pLH} \simeq t_{pHL}$
- Wide operating voltage range: VCC (opr) = 2 to 6 V
- Pin and function compatible with 74LS157/158


Pin Assignment

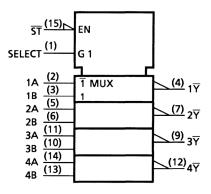
TC74HC157A

IEC Logic Symbol

TC74HC157A



Truth Table


	Input	S	Outputs				
ST	SELECT	А	В	Y (157A)	<u>¥</u> (158A)		
н	Х	Х	Х	L	Н		
L	L	L	Х	L	Н		
L	L	Н	Х	Н	L		
L	Н	Х	L	L	Н		
L	Н	Х	Н	Н	L		

X: Don't care

TC74HC158A

TC74HC158A

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	–0.5 to 7	V
DC input voltage	V _{IN}	-0.5 to V _{CC} + 0.5	V
DC output voltage	V _{OUT}	-0.5 to V _{CC} + 0.5	V
Input diode current	I _{IK}	±20	mA
Output diode current	I _{OK}	±20	mA
DC output current	IOUT	±25	mA
DC V _{CC} /ground current	ICC	±50	mA
Power dissipation	PD	500 (DIP) (Note 2)/180 (SOP)	mW
Storage temperature	T _{stg}	-65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Note 2: 500 mW in the range of Ta = -40 to 65°C. From Ta = 65 to 85°C a derating factor of -10 mW/°C shall be applied until 300 mW.

Recommended Operating Conditions (Note)

Characteristics	Symbol	Rating	Unit
Supply voltage	V _{CC}	2 to 6	V
Input voltage	V _{IN}	0 to V _{CC}	V
Output voltage	V _{OUT}	0 to V _{CC}	V
Operating temperature	T _{opr}	-40 to 85	°C
		0 to 1000 (V _{CC} = 2.0 V)	
Input rise and fall time	t _r , t _f	0 to 500 (V_{CC} = 4.5 V)	ns
		0 to 400 (V _{CC} = 6.0 V)	

Note: The recommended operating conditions are required to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND.

Electrical Characteristics

DC Characteristics

Characteristics	Symbol	Test Condition			Ta = 25°C			Ta = -40 to 85°C		Unit
	,			$V_{CC}(V)$	Min	Тур.	Max	Min	Max	
		_		2.0	1.50	_	_	1.50	_	
High-level input voltage	VIH			4.5	3.15	—	—	3.15	—	V
0				6.0	4.20	_	_	4.20	_	
				2.0	—	—	0.50	—	0.50	
Low-level input voltage	VIL	—		4.5	—	—	1.35	—	1.35	V
0				6.0	_	_	1.80	_	1.80	
	V _{OH}	V _{IN} = VIH or VIL .		2.0	1.9	2.0		1.9		
			$I_{OH}=-20~\mu A$	4.5	4.4	4.5	—	4.4	—	
High-level output voltage				6.0	5.9	6.0	_	5.9	_	V
Ű			$I_{OH} = -4 \text{ mA}$	4.5	4.18	4.31	—	4.13	—	
			$I_{OH} = -5.2 \text{ mA}$	6.0	5.68	5.80	_	5.63	_	
	V _{OL}	VIN = VIH or VIL		2.0		0.0	0.1		0.1	
			$I_{OL}=20~\mu A$	4.5	—	0.0	0.1	—	0.1	
Low-level output voltage				6.0	_	0.0	0.1	—	0.1	V
0			$I_{OL} = 4 \text{ mA}$	4.5	_	0.17	0.26	_	0.33	
			$I_{OL} = 5.2 \text{ mA}$	6.0	_	0.18	0.26	—	0.33	
Input leakage current	I _{IN}	V _{IN} = V _{CC} or	GND	6.0	_	_	±0.1		±1.0	μA
Quiescent supply current	ICC	V _{IN} = V _{CC} or	GND	6.0		_	4.0		40.0	μA

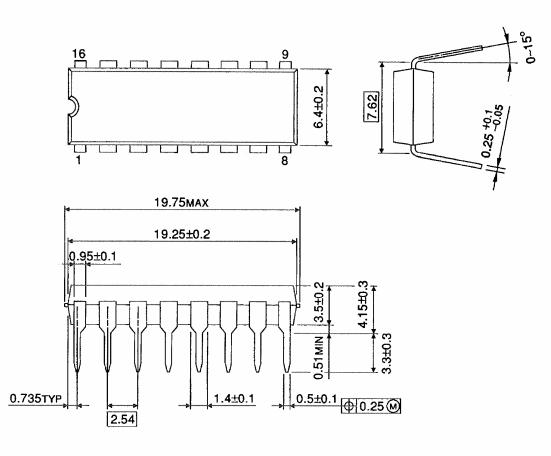
AC Characteristics (C_L = 15 pF, V_{CC} = 5 V, Ta = 25°C, input: $t_r = t_f = 6 \text{ ns}$)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Output transition time	t _{TLH} t _{THL}	_	_	4	8	ns
Propagation delay time (A, B-Y, \overline{Y})	t _{pLH} t _{pHL}	_	_	10	16	ns
Propagation delay time (SELECT-Y, \overline{Y})	t _{pLH} t _{pHL}	_		13	21	ns
Propagation delay time $(\overline{\text{STOROBE}} - Y, \overline{Y})$	t _{pLH} t _{pHL}	_		10	19	ns

AC Characteristics (C_L = 50 pF, input: $t_r = t_f = 6 \text{ ns}$)

Characteristics	Symbol	Test Condition		Ta = 25°C			Ta = -40 to 85°C		Unit
	,		$V_{CC}(V)$	Min	Тур.	Max	Min	Max	
Output transition time	tт∟н tтн∟	_	2.0 4.5 6.0		30 8 7	75 15 13		95 19 16	ns
Propagation delay time $(A, B-Y, \overline{Y})$	t _{pLH} t _{pHL}	_	2.0 4.5 6.0		36 12 10	100 20 17		125 25 21	ns
Propagation delay time (SELECT-Y, \overline{Y})	tpLH tpHL	_	2.0 4.5 6.0		50 16 14	125 25 21		155 31 26	ns
Propagation delay time (STOROBE -Y, Y)	^t pLH t _{pHL}	_	2.0 4.5 6.0		36 12 10	115 23 20		145 29 25	ns
Input capacitance	C _{IN}	—			5	10		10	pF
Power dissipation capacitance	C _{PD} (Note)	TC74HC157A TC74HC158A			57 53				pF

Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

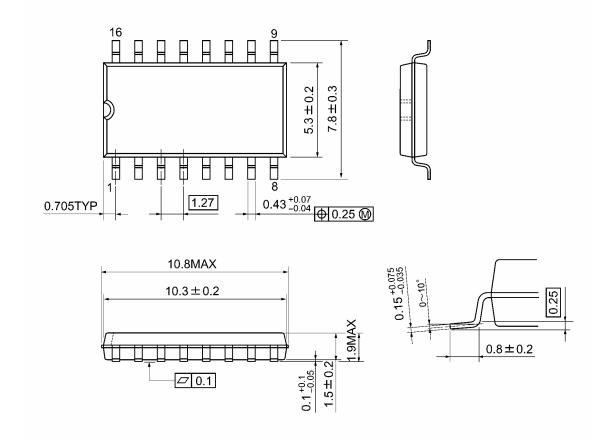

Average operating current can be obtained by the equation:

 I_{CC} (opr) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/4$ (per bit)

Package Dimensions

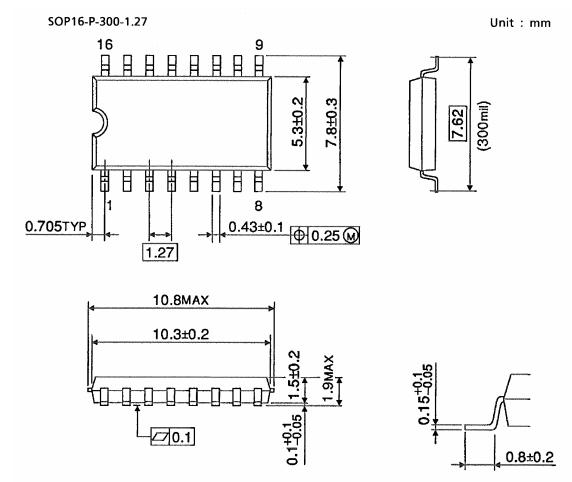
DIP16-P-300-2.54A

Unit : mm



Weight: 1.00 g (typ.)

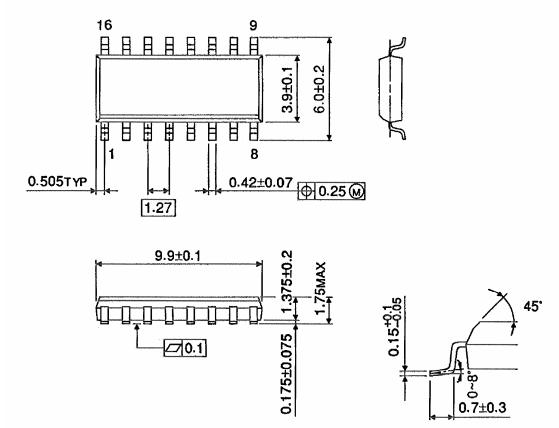
Package Dimensions


SOP16-P-300-1.27A

Unit: mm

Weight: 0.18 g (typ.)

Package Dimensions



Weight: 0.18 g (typ.)

Package Dimensions (Note)

SOL16-P-150-1.27

Unit : mm

Note: This package is not available in Japan.

Weight: 0.13 g (typ.)

Note: Lead (Pb)-Free Packages DIP16-P-300-2.54A SOP16-P-300-1.27A SOL16-P-150-1.27

RESTRICTIONS ON PRODUCT USE

060116EBA

• The information contained herein is subject to change without notice. 021023_D

document shall be made at the customer's own risk. 021023 B

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability

Handbook" etc. 021023_A
The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,

• The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q

medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this

- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. 021023_C
- The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E