

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

LM120/LM320

Series 3-Terminal Negative Regulators

General Description

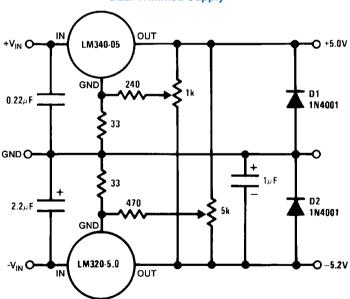
The LM120 series are three-terminal negative regulators with a fixed output voltage of –5V, –12V, and –15V, and up to 1.5A load current capability. Where other voltages are required, the LM137 and LM137HV series provide an output voltage range of –1.2V to –47V.

The LM120 need only one external component—a compensation capacitor at the output, making them easy to apply. Worst case guarantees on output voltage deviation due to any combination of line, load or temperature variation assure satisfactory system operation.

Exceptional effort has been made to make the LM120 Series immune to overload conditions. The regulators have current limiting which is independent of temperature, combined with thermal overload protection. Internal current limiting protects against momentary faults while thermal shutdown prevents junction temperatures from exceeding safe limits during prolonged overloads.

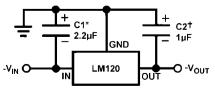
Although primarily intended for fixed output voltage applications, the LM120 Series may be programmed for higher output voltages with a simple resistive divider. The low guiescent drain current of the devices allows this technique to be used with good regulation.

Features


- Preset output voltage error less than ±3%
- Preset current limit
- Internal thermal shutdown
- Operates with input-output voltage differential down to 1V
- Excellent ripple rejection
- Low temperature drift
- Easily adjustable to higher output voltage

LM120 Series Packages and Power Capability

Device	Package	Rated Power Dissipation	Design Load Current
LM120/LM320	TO-3 (K)	20W	1.5A
	TO-39 (H)	2W	0.5A
LM320	TO-220 (T)	15W	1.5A


Typical Applications

Dual Trimmed Supply

77670

Fixed Regulator

*Required if regulator is separated from filter capacitor by more than 3 inches. For value given, capacitor must be solid tantalum. 25 μF aluminum electrolytic may be substituted.

†Required for stability. For value given, capacitor must be solid tantalum. 25 μF aluminum electrolytic may be substituted. Values given may be increased without limit.

For output capacitance in excess of 100 μ F, a high current diode from input to output (1N4001, etc.) will protect the regulator from momentary input shorts

Absolute Maximum Ratings -5 Volt Regulators (Note 5, Note 3)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Power Dissipation Internally Limited Input Voltage -25V Input-Output Voltage Differential 25V Junction Temperatures (Note 1)
Storage Temperature Range -65°C to +150°C

Lead Temperature

(Soldering, 10 sec.) 300°C Plastic 260°C

LM120K-5.0 and LM320K-5.0 Electrical Characteristics (Note 3)

		Metal Can Package						
	Order Numbers		LM120K-5.0 (TO-3)			LM320K-5.0 (TO-3)		
	sign Output Current (I _D)		1.5A					
D	evice Dissipation (P _D)			20	W			
Parameter	Conditions (Note 1)	Min	Тур	Max	Min	Тур	Max	
Output Voltage	$T_J = 25^{\circ}C, V_{IN} = 10V,$	-5.1	-5	-4.9	-5.2	-5	-4.8	V
	$I_{LOAD} = 5 \text{ mA}$							
Line Regulation	$T_J = 25$ °C, $I_{LOAD} = 5$ mA,		10	25		10	40	mV
	$V_{MIN} \le V_{IN} \le V_{MAX}$							
Input Voltage		-25		-7	-25		-7	V
Ripple Rejection	f = 120 Hz	54	64		54	64		dB
Load Regulation,	$T_J = 25^{\circ}C, V_{IN} = 10V,$		50	75		60	100	mV
(Note 2)	$5 \text{ mA} \le I_{\text{LOAD}} \le I_{\text{D}}$							
Output Voltage,	$-7.5V \le V_{IN} \le V_{MAX}$	-5.20		-4.80	-5.25		-4.75	V
(Note 1)	$5 \text{ mA} \le I_{LOAD} \le I_D, P \le P_D$							
Quiescent Current	$V_{MIN} \le V_{IN} \le V_{MAX}$		1	2		1	2	mA
Quiescent Current	T _J = 25°C							
Change	$V_{MIN} \le V_{IN} \le V_{MAX}$		0.1	0.4		0.1	0.4	mA
	5 mA ≤ I _{LOAD} ≤ I _D		0.1	0.4		0.1	0.4	mA
Output Noise Voltage	$T_A = 25^{\circ}C, C_L = 1 \mu F, I_L = 5 \text{ mA},$		150			150		μV
	$V_{IN} = 10V, 10 \text{ Hz} \le f \le 100 \text{ kHz}$							
Long Term Stability			5	50		5	50	mV
Thermal Resistance								
Junction to Case				3			3	°C/W
Junction to Ambient				35			35	°C/W

LM120H-5.0 Electrical Characteristics (Note 3)

Order Numbers Design Output Current (I _D) Device Dissipation (P _D)		-	Metal Can Package LM120H-5.0 (TO-39)			
			0.5A 2W			
Parameter	Conditions (Note 1)	Min	Тур	Max		
Output Voltage	$T_J = 25^{\circ}C, V_{IN} = 10V,$ $I_{LOAD} = 5 \text{ mA}$	-5.1	-5	-4.9	V	
Line Regulation	$T_J = 25$ °C, $I_{LOAD} = 5$ mA, $V_{MIN} \le V_{IN} \le V_{MAX}$		10	25	mV	
Input Voltage		-25		-7	V	
Ripple Rejection	f = 120 Hz	54	64		dB	
Load Regulation,	$T_J = 25^{\circ}C, V_{IN} = 10V,$		30	50	mV	
(Note 2)	$5 \text{ mA} \le I_{\text{LOAD}} \le I_{\text{D}}$					
Output Voltage,	$-7.5V \le V_{IN} \le V_{MAX}$	-5.20		-4.80	V	
(Note 6)	$5 \text{ mA} \le I_{LOAD} \le I_D, P \le P_D$					
Quiescent Current	$V_{MIN} \le V_{IN} \le V_{MAX}$		1	2	mA	
Quiescent Current	$T_J = 25^{\circ}C$					
Change	$V_{MIN} \le V_{IN} \le V_{MAX}$		0.05	0.4	mA	
	5 mA ≤ I _{LOAD} ≤ I _D		0.04	0.4	mA	
Output Noise Voltage	$T_A = 25^{\circ}C, C_L = 1 \mu F, I_L = 5 \text{ mA},$		150		μV	
	$V_{IN} = 10V$, 10 Hz $\le f \le 100$ kHz					
Long Term Stability			5		mV	
Thermal Resistance						
Junction to Case				(Note 4)	°C/W	
Junction to Ambient				(Note 4)	°C/W	

Note 1: This specification applies over –55°C \leq T $_{J}$ \leq +150°C for the LM120 and 0°C \leq T $_{J}$ \leq +125°C for the LM320.

Note 2: Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects must be taken into account separately. To ensure constant junction temperature, low duty cycle, pulse testing is used. The LM120/LM320 series does have low thermal feedback, improving line and load regulation. On all other tests, even though power dissipation is internally limited, electrical specifications apply only up to P_D.

Note 3: For –5V 3 amp regulators, see LM145 data sheet.

Note 4: Thermal resistance of typically 85°C/W (in 400 linear feet air flow), 224°C/W (in static air) junction to ambient, of typically 21°C/W junction to case.

Note 5: Refer to RETS120-5H drawing for LM120H-5.0 or RETS120-5K drawing for LM120-5K military specifications.

Absolute Maximum Ratings -12 Volt Regulators (Note 9)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Power Dissipation Internally Limited Input Voltage -35V Input-Output Voltage Differential 30V Junction Temperatures (Note 6) Storage Temperature Range -65°C to +150°C

Lead Temperature

(Soldering, 10 sec.) 300°C

LM120K-12 Electrical Characteristics

	Meta L	Units			
	Design Output Current (I _D)				
	Device Dissipation (P _D)		20W	!	l
Parameter	Conditions (Note 6)	Min	Тур	Max	
Output Voltage	$T_J = 25^{\circ}C, V_{IN} = 17V,$	-12.3	-12	-11.7	V
	I _{LOAD} = 5 mA		1	'	1
Line Regulation	$T_J = 25^{\circ}C$, $I_{LOAD} = 5$ mA,		4	10	mV
	$V_{MIN} \le V_{IN} \le V_{MAX}$!	1	'	1
Input Voltage		-32		-14	V
Ripple Rejection	f = 120 Hz	56	80		dB
Load Regulation,	T _J = 25°C, V _{IN} = 17V,		30	80	mV
(Note 7)	$5 \text{ mA} \le I_{\text{LOAD}} \le I_{\text{D}}$!	1	'	1
Output Voltage,	$14.5V \le V_{IN} \le V_{MAX},$	-12.5		-11.5	V
(Note 6)	$5 \text{ mA} \le I_{LOAD} \le I_D, P \le P_D$		l		l
Quiescent Current	$V_{MIN} \le V_{IN} \le V_{MAX}$		2	4	mA
Quiescent Current	T _J = 25°C				
Change	$V_{MIN} \le V_{IN} \le V_{MAX}$		0.1	0.4	mA
	$5 \text{ mA} \le I_{\text{LOAD}} \le I_{\text{D}}$!	0.1	0.4	mA
Output Noise Voltage	$T_A = 25^{\circ}C, C_L = 1 \mu F, I_L = 5 mA,$		400		μV
	V _{IN} = 17V, 10 Hz ≤ f ≤ 100 kHz	!			1
Long Term Stability			12	120	mV
Thermal Resistance					
Junction to Case			1	3	°C/W
Junction to Ambient		'	1	35	°C/W

LM120H-12 Electrical Characteristics

Order Numbers Design Output Current (I _D) Device Dissipation (P _D)		Me			
			0.2A		Units
			2W		
Parameter	Conditions (Note 6)	Min	Тур	Max	
Output Voltage	$T_J = 25^{\circ}C, V_{IN} = 17V,$	-12.3	-12	-11.7	V
	$I_{LOAD} = 5 \text{ mA}$				
Line Regulation	$T_J = 25^{\circ}C$, $I_{LOAD} = 5$ mA,		4	10	mV
	$V_{MIN} \le V_{IN} \le V_{MAX}$				
Input Voltage		-32		-14	V
Ripple Rejection	f = 120 Hz	56	80		dB
Load Regulation,	$T_J = 25^{\circ}C, V_{IN} = 17V,$		10	25	mV
(Note 7)	$5 \text{ mA} \le I_{LOAD} \le I_{D}$				
Output Voltage,	$14.5V \le V_{IN} \le V_{MAX},$	-12.5		-11.5	V
(Note 6)	$5 \text{ mA} \le I_{\text{LOAD}} \le I_{\text{D}}, P \le P_{\text{D}}$				
Quiescent Current	$V_{MIN} \le V_{IN} \le V_{MAX}$		2	4	mA
Quiescent Current	T _J = 25°C				
Change	$V_{MIN} \le V_{IN} \le V_{MAX}$		0.05	0.4	mA
	5 mA ≤ I _{LOAD} ≤ I _D		0.03	0.4	mA
Output Noise Voltage	$T_A = 25^{\circ}C, C_L = 1 \mu F, I_L = 5 mA,$		400		μV
	$V_{IN} = 17V, 10 \text{ Hz} \le f \le 100 \text{ kHz}$				
Long Term Stability			12	120	mV
Thermal Resistance					
Junction to Case				(<i>Note 8</i>)	°C/W
Junction to Ambient				(<i>Note 8</i>)	°C/W

LM320T-12 Electrical Characteristics

		Powe	Power Plastic Package LM320T-12 (TO 220)				
	Order Numbers						
			(TO-220) 1A				
Design Output Current (I _D) Device Dissipation (P _D)							
			15W				
Parameter	Conditions (Note 6)	Min	Тур	Max			
Output Voltage	$T_{J} = 25^{\circ}C, V_{IN} = 17V,$	-12.4	-12	-11.6	V		
	$I_{LOAD} = 5 \text{ mA}$						
Line Regulation	$T_J = 25^{\circ}C$, $I_{LOAD} = 5$ mA,		4	20	mV		
	$V_{MIN} \le V_{IN} \le V_{MAX}$						
Input Voltage		-32		-14.5	V		
Ripple Rejection	f = 120 Hz	56	80		dB		
Load Regulation,	$T_J = 25^{\circ}C, V_{IN} = 17V,$		30	80	mV		
(Note 7)	$5 \text{ mA} \le I_{LOAD} \le I_{D}$						
Output Voltage,	$14.5V \le V_{IN} \le V_{MAX},$	-12.6		-11.4	V		
(Note 6)	$5 \text{ mA} \le I_{LOAD} \le I_D, P \le P_D$						
Quiescent Current	$V_{MIN} \le V_{IN} \le V_{MAX}$		2	4	mA		
Quiescent Current	$T_J = 25^{\circ}C$						
Change	$V_{MIN} \le V_{IN} \le V_{MAX}$		0.1	0.4	mA		
	$5 \text{ mA} \le I_{LOAD} \le I_{D}$		0.1	0.4	mA		
Output Noise Voltage	$T_A = 25^{\circ}C, C_L = 1 \mu F, I_L = 5 \text{ mA},$		400		μV		
	V _{IN} = 17V, 10 Hz ≤ f ≤ 100 kHz						
Long Term Stability			24		mV		
Thermal Resistance							
Junction to Case			4		°C/W		
Junction to Ambient			50		°C/W		

Note 6: This specification applies over –55°C \leq T $_{\rm J}$ \leq +150°C for the LM120 and 0°C \leq T $_{\rm J}$ \leq +125°C for the LM320.

Note 7: Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects must be taken into account separately. To ensure constant junction temperature, low duty cycle, pulse testing is used. The LM120/LM320 series does have low thermal feedback, improving line and load regulation. On all other tests, even though power dissipation is internally limited, electrical specifications apply only up to P_D.

 $\textbf{Note 8:} \ \ \textbf{Thermal resistance of typically 85°C/W (in 400 linear feet/min air flow), 224°C/W (in static air) junction to ambient, of typically 21°C/W junction to case.}$

Note 9: Refer to RETS120H-12 drawing for LM120H-12 or RETS120-12K drawing for LM120K-12 military specifications.

Absolute Maximum Ratings-15 Volt Regulators (Note 13)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Power Dissipation Internally Limited
Input Voltage

LM120/LM320 -40V

LM320T -35V
Input-Output Voltage Differential 30V

Junction Temperatures (Note 10)
Storage Temperature Range -65°C to +150°C

Lead Temperature (Soldering, 10 sec.) 300°C

LM120K-15 and LM320K-15 Electrical Characteristics

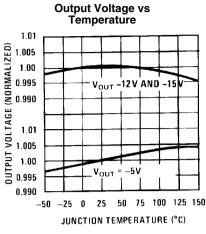
			r	Metal Ca	n Packa	ge		
	Order Numbers	L	LM120K-15 L (TO-3)			LM320K-15 (TO-3)		1
								Units
-	gn Output Current (I _D)				IA			00
Device Dissipation (P _D)				1	ow	1		
Parameter	Conditions (Note 10)	Min	Тур	Max	Min	Тур	Max	
Output Voltage	$T_J = 25^{\circ}C, V_{IN} = 20V,$	-15.3	-15	-14.7	-15.4	-15	-14.6	V
	I _{LOAD} = 5 mA							
Line Regulation	$T_J = 25$ °C, $I_{LOAD} = 5$ mA,		5	10		5	20	mV
	$V_{MIN} \le V_{IN} \le V_{MAX}$							
Input Voltage		-35		-17	-35		-17	V
Ripple Rejection	f = 120 Hz	56	80		56	80		dB
Load Regulation,	$T_J = 25^{\circ}C, V_{IN} = 20V,$		30	80		30	80	mV
(Note 11)	$5 \text{ mA} \le I_{\text{LOAD}} \le I_{\text{D}}$							
Output Voltage,	$17.5V \le V_{IN} \le V_{MAX}$	-15.5		-14.5	-15.6		-14.4	V
(Note 10)	$5 \text{ mA} \le I_{LOAD} \le I_D, P \le P_D$							
Quiescent Current	$V_{MIN} \le V_{IN} \le V_{MAX}$		2	4		2	4	mA
Quiescent Current	$T_J = 25^{\circ}C$							
Change	$V_{MIN} \le V_{IN} \le V_{MAX}$		0.1	0.4		0.1	0.4	mA
	$5 \text{ mA} \le I_{\text{LOAD}} \le I_{\text{D}}$		0.1	0.4		0.1	0.4	mA
Output Noise Voltage	$T_A = 25^{\circ}C, C_L = 1 \mu F, I_L = 5 \text{ mA},$		400			400		μV
	$V_{IN} = 20V, 10 \text{ Hz} \le f \le 100 \text{ kHz}$							
Long Term Stability			15	150		15	150	mV
Thermal Resistance								
Junction to Case				3			3	°C/W
Junction to Ambient				35			35	°C/W

LM120H-15 Electrical Characteristics

Order Numbers		Me			
- 1	Design Output Current (I _D)		0.2A		Units
	Device Dissipation (P _D)		2W		
Parameter	Conditions (Note 10)	Min	Тур	Max]
Output Voltage	$T_J = 25^{\circ}C, V_{IN} = 20V,$	-15.3	-15	-14.7	V
	I _{LOAD} = 5 mA				
Line Regulation	$T_J = 25$ °C, $I_{LOAD} = 5$ mA,		5	10	mV
	$V_{MIN} \le V_{IN} \le V_{MAX}$				
Input Voltage		-35		-17	V
Ripple Rejection	f = 120 Hz	56	80		dB
Load Regulation,	$T_J = 25^{\circ}C, V_{IN} = 20V,$		10	25	mV
(Note 11)	$5 \text{ mA} \le I_{\text{LOAD}} \le I_{\text{D}}$				
Output Voltage,	$17.5V \le V_{IN} \le V_{MAX},$	-15.5		-14.5	V
(Note 10)	$5 \text{ mA} \le I_{LOAD} \le I_{D}, P \le P_{D}$				
Quiescent Current	$V_{MIN} \le V_{IN} \le V_{MAX}$		2	4	mA
Quiescent Current	T _J = 25°C				
Change	$V_{MIN} \le V_{IN} \le V_{MAX}$		0.05	0.4	mA
	$5 \text{ mA} \leq I_{\text{LOAD}} \leq I_{\text{D}}$		0.03	0.4	mA
Output Noise Voltage	$T_A = 25^{\circ}C, C_L = 1 \mu F, I_L = 5 \text{ mA},$		400		μV
	$V_{IN} = 20V, 10 \text{ Hz} \le f \le 100 \text{ kHz}$				
Long Term Stability			15	150	mV
Thermal Resistance					
Junction to Case				(Note 12)	°C/W
Junction to Ambient				(Note 12)	°C/W

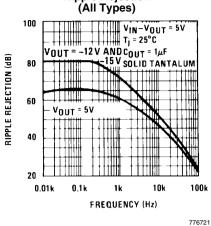
LM320T-15 Electrical Characteristics

		Powe	Power Plastic Package				
Order Numbers			LM320T-15 (TO-220)				
	Design Output Current (I _D)		1A		Units		
Device Dissipation (P _D)			15W				
Parameter	Conditions (Note 10)	Min	Тур	Max			
Output Voltage	$T_J = 25^{\circ}C, V_{IN} = 20V,$	-15.5	-15	-14.5	V		
	$I_{LOAD} = 5 \text{ mA}$						
Line Regulation	$T_J = 25^{\circ}C, I_{LOAD} = 5 \text{ mA},$		5	20	mV		
	$V_{MIN} \le V_{IN} \le V_{MAX}$						
Input Voltage		-35		-17.5	V		
Ripple Rejection	f = 120 Hz	56	80		dB		
Load Regulation,	$T_J = 25^{\circ}C, V_{IN} = 20V,$		30	80	mV		
(Note 11)	$5 \text{ mA} \le I_{\text{LOAD}} \le I_{\text{D}}$						
Output Voltage,	$17.5V \le V_{IN} \le V_{MAX}$	-15.7		-14.3	V		
(Note 10)	$5 \text{ mA} \le I_{LOAD} \le I_D, P \le P_D$						
Quiescent Current	$V_{MIN} \le V_{IN} \le V_{MAX}$		2	4	mA		
Quiescent Current	T _J = 25°C						
Change	$V_{MIN} \le V_{IN} \le V_{MAX}$		0.1	0.4	mA		
	5 mA ≤ I _{LOAD} ≤ I _D		0.1	0.4	mA		
Output Noise Voltage	$T_A = 25^{\circ}C, C_L = 1 \mu F, I_L = 5 \text{ mA},$		400		μV		
	$V_{IN} = 20V$, 10 Hz $\leq f \leq 100 \text{ kHz}$						
Long Term Stability			30		mV		
Thermal Resistance							
Junction to Case			4		°C/W		
Junction to Ambient			50		°C/W		

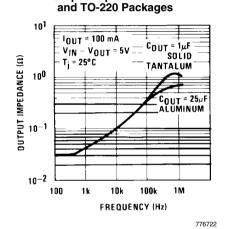

Note 10: This specification applies over $-55^{\circ}\text{C} \le \text{T}_{\text{J}} \le +150^{\circ}\text{C}$ for the LM120 and $0^{\circ}\text{C} \le \text{T}_{\text{J}} \le +125^{\circ}\text{C}$ for the LM320.

Note 11: Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects must be taken into account separately. To ensure constant junction temperature, low duty cycle, pulse testing is used. The LM120/LM320 series does have low thermal feedback, improving line and load regulation. On all other tests, even though power dissipation is internally limited, electrical specifications apply only up to P_D.

 $\textbf{Note 12:} \ Thermal\ resistance\ of\ typically\ 85^{\circ}C/W\ (in\ 400\ linear\ feet/min\ air\ flow),\ 224^{\circ}C/W\ (in\ static\ air)\ junction\ to\ ambient,\ of\ typically\ 21^{\circ}C/W\ junction\ to\ case.$


Note 13: Refer to RETS120-15H drawing for LM120H-15 or RETS120-15K drawing for LM120K-15 military specifications.

Typical Performance Characteristics



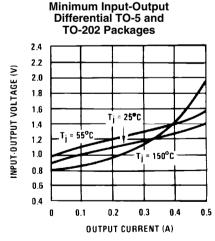
776720

Output Impedance TO-5 and TO-202 Packages

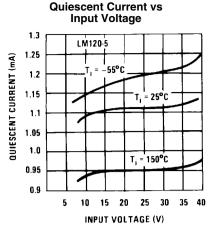
Ripple Rejection

Output Impedance TO-3

Differential TO-3 and TO-220 Packages 2.5 2.3 2.1 1.9 1.7 1.5 1.3 1.1 = 25°C 0.9 = 150°C 0.7 0.5 0.75 1.25

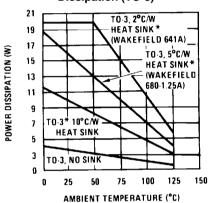

OUTPUT CURRENT (A)

776724

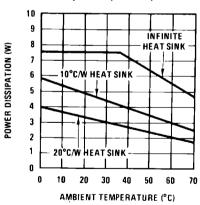

Minimum Input-Output

I_{OUT} = 100 mA C_{OUT} = 5µF ALUMINUM $V_{IN} - V_{OUT} = 5V$ T, = 25°C OUTPUT IMPEDANCE (12) 10⁰ C_{OUT} = 1.0μF SOLID TANTALUM 10-1 = 10µF SOLID TANTALUM 10-2 100k 1M 0.1k 1k 10k 0.01k FREQUENCY (Hz)

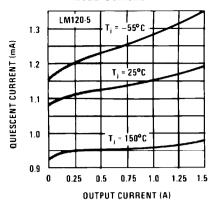
776723



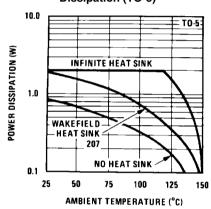
776725


776726

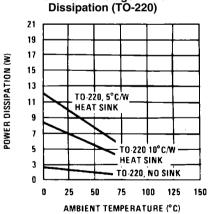
Maximum Average Power Dissipation (TO-3)


776728

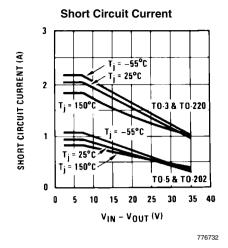
Maximum Average Power Dissipation (TO-202)


776730

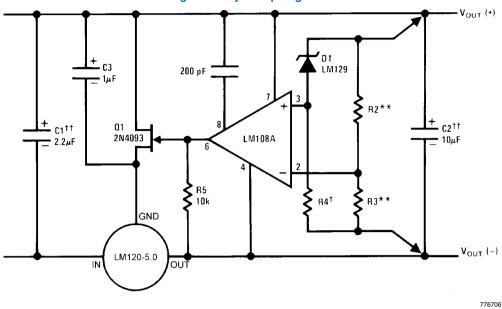
Quiescent Current vs Load Current


776727

Maximum Average Power Dissipation (TO-5)


776729

Maximum Average Power

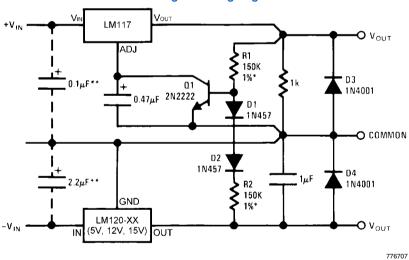

776731

^{*}These curves for LM120. Derate 25°C further for LM320.

Typical Applications

High Stability 1 Amp Regulator

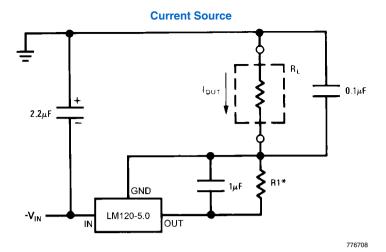
Lead and line regulation — 0.01% temperature stability — 0.2%


†Determines Zener current.

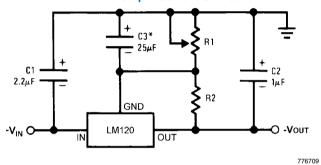
††Solid tantalum.

An LM120-12 or LM120-15 may be used to permit higher input voltages, but the regulated output voltage must be at least –15V when using the LM120-12 and –18V for the LM120-15.

**Select resistors to set output voltage. 2 ppm/°C tracking suggested.


Wide Range Tracking Regulator

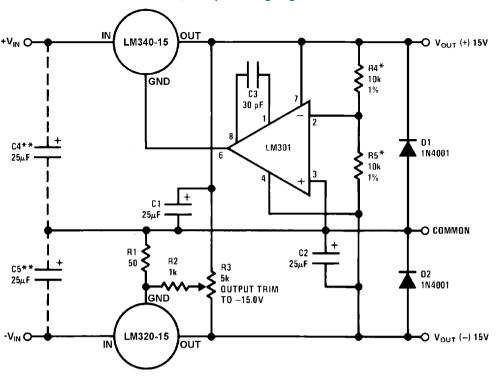
*Resistor tolerance of R1 and R2 determine matching of (+) and (-) inputs.


**Necessary only if raw supply capacitors are more than 3 from regulators

An LM3086N array may substitute for Q1, D1 and D2 for better stability and tracking. In the array diode transistors Q5 and Q4 (in parallel) make up D2; similarly, Q1 and Q2 become D1 and Q3 replaces the 2N2222.

$$*I_{OUT} = 1 \text{ mA} + \frac{5.0 \text{V}}{\text{R1}}$$

Variable Output Current Source


SELECT R2 AS FOLLOWS:

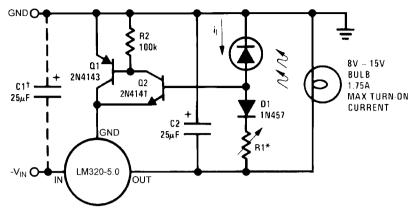
LM120-5 300ΩLM120-12 750ΩLM120-15 1k

$$V_{OUT} = V_{SET} \frac{R1 + R2}{R2}$$

 $^{\star}\text{C3}$ optional. Improves transient response and ripple rejection.

±15V, 1 Amp Tracking Regulators

776712


Performance (Typical)

Load Regulation at $\Delta I_1 = 1A$ 10 mV 1 mV Output Ripple, C_{IN} = 3000 μ F, 100 μVrms 100 μVrms $I_L = 1A$

Temperature Stability +50 mV +50 mV Output Noise 10 Hz \leq f \leq 10 kHz 150 μ Vrms 150 µVrms

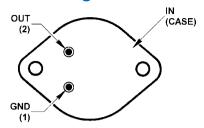
^{*}Resistor tolerance of R4 and R5 determine matching of (+) and (-) outputs.
**Necessary only if raw supply filter capacitors are more than 2 inches from regulators.


Light Controllers Using Silicon Photo Cells

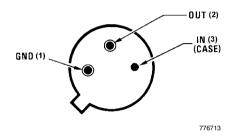
776710

*Lamp brightness increases until $i_1 = 5V/R1$ (i_1 can be set as low as 1 μ A).

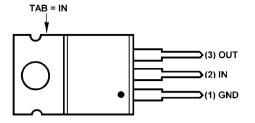
†Necessary only if raw supply filter capacitor is more than 2 inches from LM320MP.



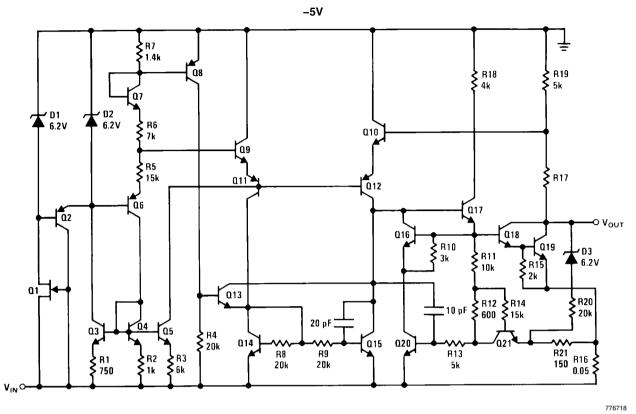
776711


*Lamp brightness increases until $i_l = i_Q (1 \text{ mA}) + 5 \text{V/R1}$.

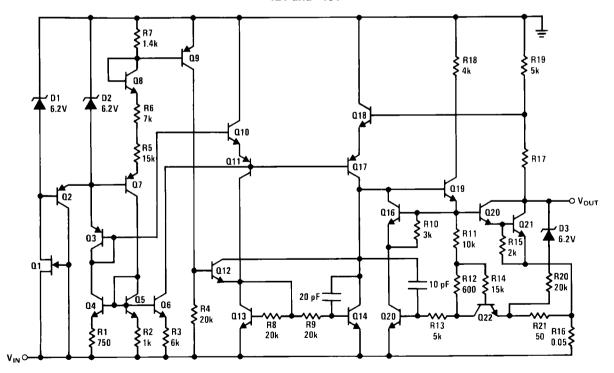
†Necessary only if raw supply filter capacitor is more than 2 inches from LM320.


Connection Diagrams

Bottom View
Steel Metal Can Package TO-3 (K)
Order Number LM120K-5.0/883, LM120K-12/883,
LM120K-15/883, LM320K-5.0, LM320K-15
See NS Package Number K02A

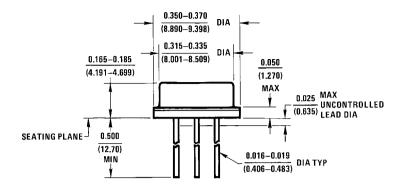


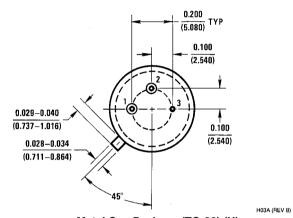
Bottom View
Metal Can Package TO-39 (H)
Order Number LM120H-5.0, LM120H-12, LM120H-15,
LM120H-5.0/883, LM120H-12/883, LM120H-15/883
See NS Package Number H03A

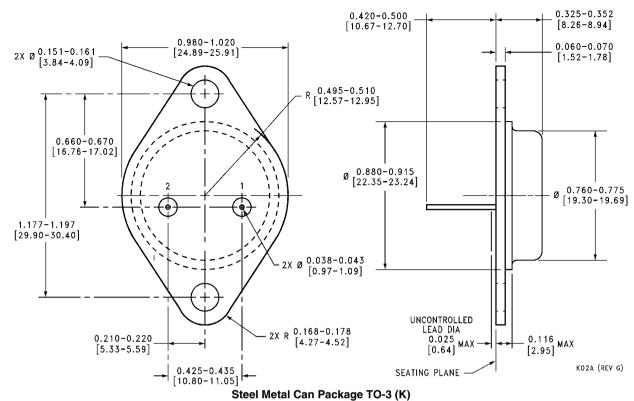


Front View
Power Package TO-220 (T)
Order Number LM320T-12 or LM320T-15
See NS Package Number T03B

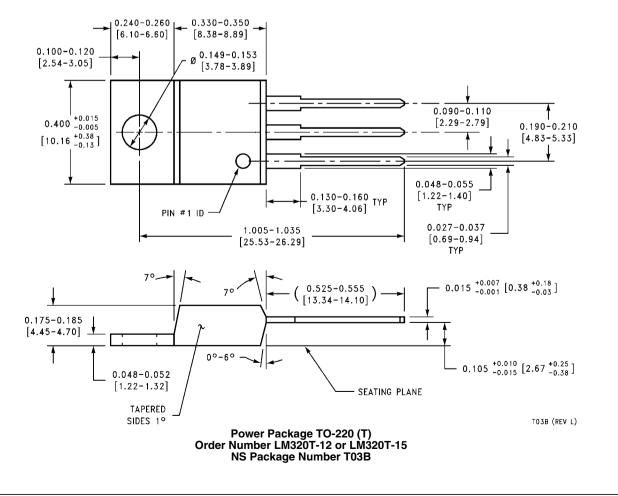
Schematic Diagrams




-12V and -15V


776719

Physical Dimensions inches (millimeters) unless otherwise noted



Metal Can Package (TO-39) (H)
Order Number LM120H-5.0, LM120H-12, LM120H-15
NS Package Number H03A

Steel Metal Can Package TO-3 (K)
Order Number LM120K-5.0, LM120K-12, LM120K-15, LM320K-5.0, LM320K-15
NS Package Number K02A

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Pro	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic	
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2010 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com