High-Voltage, Current-Mode PWM Controller ### **Features** - 9.0 to 80V input voltage range - Current-mode control - High efficiency - Up to 1.0MHz internal oscillator - Internal start-up circuit - Low internal noise - 50% maximum duty cycle ### **Applications** - ▶ DC/DC converters - Distributed power systems - ISDN equipment - PBX systems - Modems ### **General Description** The Supertex HV9112 is a BiCMOS/DMOS single-output, pulse width modulator IC intended for use in high-speed, high-efficiency switch mode power supplies. It provides all the functions necessary to implement a single-switch current mode PWM, in any topology, with a minimum of external parts. Because the HV9112 utilizes Supertex's proprietary BiCMOS/DMOS technology, it requires less than one tenth of the operating power of conventional bipolar PWM ICs, and can operate at more than twice their switching frequency. The dynamic range for regulation is also increased, to approximately 8 times that of similar bipolar parts. It starts directly from any DC input voltage between 9.0 and 80VDC, requiring no external power resistor. The output stage is push-pull CMOS and thus requires no clamping diodes for protection, even when significant lead length exists between the output and the external MOSFET. The clock frequency is set with a single external resistor. Accessory functions are included to permit fast remote shutdown (latching or nonlatching) and under voltage shutdown. For similar ICs intended to operate directly from up to 450VDC input, please consult the data sheets for the HV9120 and HV9123. For detailed circuit and application information, please refer to application notes AN-H13 and AN-H21 to AN-H24. ### **Functional Block Diagram** ### **Ordering Information** | Part Number | Package Options | Packing | |-----------------|----------------------------|-----------| | HV9112NG-G | 14-Lead SOIC (Narrow Body) | 53/Tube | | HV9112NG-G M905 | 14-Lead SOIC (Narrow Body) | 2500/Reel | ⁻G denotes a lead (Pb)-free / RoHS compliant package ### **Absolute Maximum Ratings** | Parameter | Value | |---|--------------------------------| | Input voltage, V _{IN} | 80V | | Logic voltage, V _{DD} | 15.5V | | Logic linear input,
FB and sense input voltage | -0.3V to V _{DD} +0.3V | | Operating temperature range | -55°C to +125°C | | Storage temperature range | -65°C to +150°C | | Power dissipation | 750mW | Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ### **Pin Configuration** 14-Lead SOIC (Narrow Body) ### **Product Marking** Package may or may not include the following marks: Si or 🌎 14-Lead SOIC (Narrow Body) ### **Typical Thermal Resistance** | Package | $oldsymbol{ heta}_{j_{oldsymbol{a}}}$ | |----------------------------|---------------------------------------| | 14-Lead SOIC (Narrow Body) | 75°C/W | ### **Electrical Characteristics** (Unless otherwise specified, V_{DD} = 10V, + V_{IN} = 48V, - V_{IN} = 0V, R_{BIAS} = 390k Ω , R_{OSC} = 330k Ω , T_A = 25°C.) | Sym | Parameter # | | # Min T | | Max | Units | Conditions | |--------------------|---|---|---------|------|------|-------|-------------------------------------| | Reference | | | | | | | | | V _{REF} | Output voltage | - | 3.88 | 4.00 | 4.12 | V | $R_L = 10M\Omega$ | | Z _{out} | Output impedence | # | 15 | 30 | 45 | kΩ | | | I _{SHORT} | Short circuit current | - | - | 125 | 250 | μA | V _{REF} = -V _{IN} | | ΔV_{REF} | Change in V _{REF} with temperature | # | - | 0.25 | - | mV/°C | T _A = -55°C to 125°C | ### Oscillator | f_{MAX} | Oscillator frequency | | Oscillator frequency | | 1.0 | 3.0 | - | MHz | $R_{OSC} = 0\Omega$ | |-----------|-------------------------------|---|----------------------|-----|-----|--------|---------------------------------|-----|---------------------| | f | Initial accuracy | - | 80 | 100 | 120 | kHz | $R_{\rm osc} = 330 k\Omega$ | | | | losc | Initial accuracy ¹ | - | 160 | 200 | 240 | KΠZ | R_{OSC} = 150k Ω | | | | - | Voltage stability | - | - | - | 15 | % | 9.5V< V _{DD} <13.5V | | | | - | Temperature coefficient | | - | 170 | - | ppm/°C | T _A = -55°C to 125°C | | | #### Notes: - # Guaranteed by design. - 1. Stray capacitance on OSC IN pin must be ≤5.0pF. **Electrical Characteristics (cont.)** (Unless otherwise specified, V_{DD} = 10V, + V_{IN} = 48V, - V_{IN} = 0V, R_{BIAS} = 390k Ω , R_{OSC} = 330k Ω , T_A = 25°C.) | Sym | Parameter | # | Min | Тур | Max | Units | Conditions | | | |-------------------|--|---|-------|-------------|------|-------|---|--|--| | PWM | • | | | • | | | • | | | | D _{MAX} | Maximum duty cycle | # | 49.0 | 49.4 | 49.6 | % | | | | | | Minimum duty cycle | - | - | - | 0 | % | | | | | D _{MIN} | Maximum pulse width before pulse drops out | # | - | 80 | 125 | ns | | | | | Current L | Limit | | | | | | | | | | | Maximum input signal | - | 1.0 | 1.2 | 1.4 | V | V _{FB} = 0V | | | | $t_{_{\rm D}}$ | Delay to output | # | - | 80 | 120 | ns | V _{SENSE} = 1.5V, V _{COMP} ≤ 2.0V | | | | Error Am | plifier | | | | | | | | | | V_{FB} | Feedback voltage | - | 3.92 | 4.00 | 4.08 | V | V _{FB} shorted to COMP | | | | I _{IN} | Input bias current | - | - | 25 | 500 | nA | V _{FB} = 4.0V | | | | V _{os} | Input offset voltage | - | nulle | d during tr | rim | - | | | | | A_{VOL} | Open loop voltage gain | # | 60 | 80 | - | dB | | | | | GB | Unity gain bandwidth | # | 1.0 | 1.3 | - | MHz | | | | | Z _{out} | Out impedance | # | S | ee Fig. 1 | | Ω | | | | | SOURCE | Output source current | - | -1.4 | -2.0 | - | mA | V _{FB} = 3.4V | | | | I _{SINK} | Output sink current | - | 0.12 | 0.15 | - | mA | V _{FB} = 4.5V | | | | PSRR | Power supply rejection | # | S | ee Fig. 2 | | dB | | | | | Pre-regu | lator/Startup | | | | | | | | | | +V _{IN} | Input voltage | - | 9.0 | _ | 80 | V | $I_{IN} < 10 \mu A; V_{CC} > 9.4 V$ | | | | + _{IN} | Input leakage current | - | - | - | 10 | μA | V _{DD} > 9.4V | | | | V_{TH} | V _{DD} pre-regulator turn-off threshold voltage | - | 8.0 | 8.7 | 9.4 | V | I _{PREREG} = 10μA | | | | V_{LOCK} | Undervoltage lockout | - | 7.0 | 8.1 | 8.9 | V | | | | | Supply | | | | | | | | | | | I _{DD} | Supply current | - | - | 0.75 | 1.0 | mA | C _L < 75pF | | | | I _Q | Quiescent supply current | - | - | 0.55 | - | mA | SHUTDOWN = -V _{IN} | | | | I _{BIAS} | Nominal bias current | - | - | 20 | - | μA | | | | | V _{DD} | Operating range | - | 9.0 | - | 13.5 | V | | | | #### Note: # Guaranteed by design. Electrical Characteristics (cont.) (Unless otherwise specified, V_{DD} = 10V, + V_{IN} = 48V, - V_{IN} = 0V, R_{BIAS} = 390k Ω , R_{OSC} = 330k Ω , T_A = 25°C.) | Sym | Parameter | | # | Min | Тур | Max | Units | Conditions | |------------------|-----------------------------------|----------------------------------|---|----------------------|-----|-----|-------|--| | Shutdow | n Logic | | | | | | | | | t _{sd} | SHUTDOWN delay | | # | - | 50 | 100 | ns | $C_L = 500 pF, V_{SENSE} = -V_{IN}$ | | t _{sw} | SHUTDOWN pulse | width | # | 50 | - | - | ns | | | t _{RW} | RESET pulse width | | | 50 | - | - | ns | | | t _{LW} | Latching pulse width | | | 25 | - | - | ns | SHUTDOWN and RESET low | | V _{IL} | Input low voltage | | | - | - | 2.0 | V | | | V _{IH} | Input high voltage | | | 7.0 | - | - | V | | | I _{IH} | Input current, input high voltage | | | - | 1.0 | 5.0 | μA | $V_{IN} = V_{DD}$ | | I _{IL} | Input current, input I | Input current, input low voltage | | | -25 | -35 | μA | V _{IN} = 0V | | Output | | | | | | | | | | V _{OH} | Output high voltage | | - | V _{DD} -0.3 | - | - | V | I _{OUT} = 10mA | | V _{OL} | Output low voltage | | - | ı | - | 0.2 | V | I _{OUT} = -10mA | | | | Pull up | - | ı | 15 | 25 | Ω | l - ±10mΛ | | D | Output resistance | Pull down | - | ı | 8.0 | 20 | 12 | I _{OUT} = ±10mA | | R _{out} | Output resistance | Pull up | - | - | 20 | 30 | Ω | I _{OUT} = ±10mA,
T _A = -55°C to 125°C | | | | Pull down | - | | 10 | 30 | 12 | T _A = -55°C to 125°C | | t _R | Rise time | | # | | 30 | 75 | ns | C _L = 500pF | | t _F | Fall time | | # | - | 20 | 75 | ns | C _L = 500pF | #### Note: ### **Truth Table** | SHUTDOWN | RESET | Output | |-------------------|--------|-----------------------------| | Н | Н | Normal operation | | Н | H o L | Normal operation, no change | | L | Н | Off, not latched | | L | L | Off, latched | | $L \rightarrow H$ | L | Off, latched, no change | [#] Guaranteed by design. ### **Test Circuits** # **Detailed Description Preregulator** The preregulator/startup circuit for the HV9112 consists of a high-voltage n-channel depletion-mode DMOS transistor driven by an error amplifier to form a variable current path between the VIN terminal and the VDD terminal. The maximum current (about 20 mA) occurs when $V_{\rm DD}$ = 0, with current reducing as $V_{\rm DD}$ rises. This path shuts off altogether when $V_{\rm DD}$ rises to somewhere between 7.8 and 9.4V, so that if $V_{\rm DD}$ is held at 10 or 12V by an external source(generally the supply the chip is controlling). No current other than leakage is drawn through the high voltage transistor. This minimizes dissipation. An external capacitor between VDD and VSS is generally required to store energy used by the chip in the time between shutoff of the high voltage path and the VDD supply's output rising enough to take over powering the chip. This capacitor should have a value of 100X or more the effective gate capacitance of the MOSFET being driven, i.e., $$C_{STORAGE} \ge 100 x$$ (gate charge of FET at 10V) as well as very good high frequency characteristics. Stacked polyester or ceramic caps work well. Electrolytic capacitors are generally not suitable. A common resistor divider string is used to monitor V_{DD} for both the under voltage lockout circuit and the shutoff circuit of the high voltage FET. Setting the under voltage sense point about 0.6V lower on the string than the FET shutoff point guarantees that the under voltage lockout always releases before the FET shuts off. #### **Bias Circuit** An external bias resistor, connected between the BIAS pin and VSS is required by the HV9112 to set currents in a series of current mirrors used by the analog sections of the chip. The nominal external bias current requirement is 15 to $20\mu\text{A}$, which can be set by a $390\text{k}\Omega$ to $510\text{k}\Omega$ resistor if a 10V_{DD} is used, or a $510\text{k}\Omega$ to $680\text{k}\Omega$ resistor if V_{DD} will be 12V. A precision resistor is not required; $\pm 5\%$ is fine. #### **Clock Oscillator** The clock oscillator of the HV9112 consists of a ring of CMOS inverters, timing capacitors, and, a frequency dividing flip-flop. A single external resistor between the OSC IN and OSC OUT is required to set the oscillator frequency (see graph). One major difference exists between the Supertex HV9112 and competitive 9112s. On the Supertex part, the oscillator is shut off when a shutoff command is received. This saves about 150µA of quiescent current, which aids in the construction of power supplies that meet CCITT specification I-430, and in other situations where an absolute minimum of quiescent power dissipation is required. #### Reference The Reference of the HV9112 consists of a stable bandgap reference followed by a buffer amplifier which scales the voltage up to approximately 4.0V. The scaling resistors of the reference buffer amplifier are trimmed during manufacture so that the output of the error amplifier, when connected in a gain of –1 configuration, is as close to 4.0V as possible. This nulls out any input offset of the error amplifier. As a consequence, even though the observed reference voltage of a specific part may not be exactly 4.0V, the feedback voltage required for proper regulation will be. A ≈ 50kΩ resistor is placed internally between the output of the reference buffer amplifier and the circuitry it feeds (reference output pin and non-inverting input to the error amplifier). This allows overriding the internal reference with a low impedance voltage source ≤6.0V. Using an external reference reinstates the input offset voltage of the error amplifier, and its effect of the exact value of feedback voltage required. Because the reference of the HV9112 is a high impedance node, and usually there will be significant electrical noise near it, a bypass capacitor between the reference pin and VSS is strongly recommended. The reference buffer amplifier is intentionally compensated to be stable with a capacitive load of 0.01 to 0.1μF. ### **Error Amplifier** The error amplifier in the HV9112 is a true low-power differential input operational amplifier intended for around the amplifier compensation. It is of mixed CMOS-bipolar construction: A PMOS input stage is used so the common mode range includes ground and the input impedance is very high. This is followed by bipolar gain stages which provide high gain without the electrical noise of all-MOS amplifiers. The amplifier is unity gain stable. ### **Current Sense Comparators** The HV9112 uses a true dual comparator system with independent comparators for modulation and current limiting. This allows the designer greater latitude in compensation design, as there are no clamps (except ESD protection) on the compensation pin. Like the error amplifier, the comparators are of low-noise BiCMOS construction. #### Remote Shutdown The SHUTDOWN and RESET pins of the 9112 can be used to perform either latching or non-latching shutdown of a converter as required. These pins have internal current source pull-ups so they can be driven from open drain logic. When not used they should be left open, or connected to VDD. ### **Output Buffer** The output buffer of the HV9112 is of standard CMOS construction (P-channel pull-up, N-channel pull-down). Thus the body-drain diodes of the output stage can be used for spike clipping if necessary, and external Schottky diode clamping of the output is not required. ### **Shutdown Timing Waveforms** ## **Typical Performance Curves** Fig. 1 Error Amplifier Output Impedance (Z_n) Fig. 2 Fig. 3 #### **Output Switching Frequency** Fig. 4 vs. Oscillator Resistance Fig. 5 ## 14-Lead SOIC (Narrow Body) Package Outline (NG) 8.65x3.90mm body, 1.75mm height (max), 1.27mm pitch #### Note: This chamfer feature is optional. If it is not present, then a Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator. | Symbo | ol | Α | A1 | A2 | b | D | Е | E1 | е | h | L | L1 | L2 | θ | θ1 | |----------------|-----|-------|-----------|-------|------|-------|-------|-------|-------------|------|------|-------------|-------------|------------|------------| | | MIN | 1.35* | 0.10 | 1.25 | 0.31 | 8.55* | 5.80* | 3.80* | | 0.25 | 0.40 | | | 0 º | 5 ° | | Dimension (mm) | NOM | - | - | - | - | 8.65 | 6.00 | 3.90 | 1.27
BSC | - | - | 1.04
REF | 0.25
BSC | - | - | | () | MAX | 1.75 | 0.25 | 1.65* | 0.51 | 8.75* | 6.20* | 4.00* | | 0.50 | 1.27 | | | 8 º | 15° | JEDEC Registration MS-012, Variation AB, Issue E, Sept. 2005. Drawings are not to scale. Supertex Doc. #: DSPD-14SOICNG, Version F041309. (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.) **Supertex inc.** does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the **Supertex inc.** (website: http://www.supertex.com) ©2014 Supertex inc. All rights reserved. Unauthorized use or reproduction is prohibited. ^{*} This dimension is not specified in the JEDEC drawing.