LT1074/LT1076 Step-Down Switching Regulator

feATURES

- 5A Onboard Switch (LT1074)
- Operates Up to 60V Input
- 100kHz Switching Frequency
- Greatly Improved Dynamic Behavior
- Available in Low Cost 5 and 7-Lead Packages
- Only 8.5 mA Quiescent Current
- Programmable Current Limit
- Micropower Shutdown Mode

APPLICATIONS

- Buck Converter with Output Voltage Range of 2.5 V to 50V
- Tapped-Inductor Buck Converter with 10A Output at 5 V
- Positive-to-Negative Converter
- Negative Boost Converter
- Multiple Output Buck Converter

DESCRIPTION

The $\mathrm{LT}^{\circledR} 1074$ is a $5 \mathrm{~A}(\mathrm{LT1076}$ is rated at 2 A) monolithic bipolar switching regulator which requires only a few external parts for normal operation. The power switch, all oscillator and control circuitry, and all current limit com-
ponents, are included on the chip. The topology is a classic positive "buck" configuration but several design innovations allow this device to be used as a positive-to-negative converter, a negative boost converter, and as a flyback converter. The switch output is specified to swing 40V below ground, allowing the LT1074 to drive a tappedinductor in the buck mode with output currents up to 10A.

The LT1074 uses a true analog multiplier in the feedback loop. This makes the device respond nearly instantaneously to input voltage fluctuations and makes loop gain independent of input voltage. As a result, dynamic behavior of the regulator is significantly improved over previous designs.

On-chip pulse by pulse current limiting makes the LT1074 nearly bust-proof for output overloads or shorts. The input voltage range as a buck converter is 8 V to 60 V , but a selfboot feature allows input voltages as low as 5 V in the inverting and boost configurations.
The LT1074 is available in low cost T0-220 or DD packages with frequency pre-set at 100 kHz and current limit at 6.5 A (LT1076 = 2.6A). A 7-pin T0-220 package is also available which allows current limit to be adjusted down to zero. In addition, full micropower shutdown can be programmed. See Application Note 44 for design details.

A fixed 5V output, 2 A version is also available. See LT1076-5.

[^0]TYPICAL APPLICATION

* USE MBR340 FOR LT1076
** COILTRONICS \#50-2-52 (LT1074)
\#100-1-52 (LT1076) PULSE ENGINEERING, INC.
\#PE-92114 (LT1074)
\#PE-92102 (LT1076
HURRICANE \#HL-AK147QQ (LT1074)
\#HL-AG210LL (LT1076)
† RIPPLE CURRENT RATING $\varpi \mathrm{l}_{\text {OUT }} / 2$

Buck Converter Efficiency

ABSOLUTE MAXIMUM RATINGS (Note 1)

Input VoltageLT1074/ LT107645VLT1074HV/LT1076HV 64V
Switch Voltage with Respect to Input Voltage LT1074/ LT1076 64V
LT1074HV/LT1076HV 75 V
Switch Voltage with Respect to Ground Pin (V $\mathrm{V}_{\text {SW }}$ Negative)LT1074/LT1076 (Note 7)35 V
LT1074HV/LT1076HV (Note 7) 45 V
Feedback Pin Voltage

\qquad
$-2 \mathrm{~V},+10 \mathrm{~V}$
Shutdown Pin Voltage (Not to Exceed V_{IN})

\qquad 40V
lıim Pin Voltage (Forced) 5.5 V
Maximum Operating Ambient Temperature Range Commercial $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Industrial $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Military (OBSOLETE) $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Maximum Operating Junction Temperature Range$.0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Industrial $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Military (OBSOLETE) $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Storage Temperature

\qquad
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

[^1]ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{V}_{I N}=25 \mathrm{~V}$, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Switch "On" Voltage (Note 2)	$\begin{array}{ll} \hline \text { LT1074 } & I_{S W}=1 A, T_{j} \sigma 0^{\circ} \mathrm{C} \\ & I_{S W}=1 A, T_{j}<0^{\circ} \mathrm{C} \\ & I_{S W}=5 A, T_{j} \sigma 0^{\circ} \mathrm{C} \\ & I_{S W}=5 A, T_{j}<0^{\circ} \mathrm{C} \end{array}$				$\begin{gathered} 1.85 \\ 2.1 \\ 2.3 \\ 2.5 \end{gathered}$	V V V V
	$\mathrm{LT1076}$ $\mathrm{I}_{\mathrm{SW}}=0.5 \mathrm{~A}$ $\mathrm{I}_{\mathrm{SW}}=2 \mathrm{~A}$	\bullet			1.2 1.7	V
Switch "Off" Leakage	$\begin{array}{ll} \text { LT1074 } & V_{\text {IN }} \phi 25 \mathrm{~V}, \mathrm{~V}_{\text {SW }}=0 \\ & V_{\text {IN }}=V_{\text {MAX }}, V_{S W}=0 \text { (Note 8) } \end{array}$			$\begin{gathered} 5 \\ 10 \end{gathered}$	$\begin{aligned} & 300 \\ & 500 \end{aligned}$	$\mu \mathrm{A}$
	$\begin{array}{ll} \hline \text { LT1076 } & V_{I N}=25 V, V_{S W}=0 \\ & V_{I N}=V_{M A X}, V_{S W}=0 \text { (Note 8) } \end{array}$				$\begin{aligned} & 150 \\ & 250 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Supply Current (Note 3)	$\begin{aligned} & V_{\text {FB }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }} \phi 40 \mathrm{~V} \\ & 40 \mathrm{~V}<\mathrm{V}_{\text {IN }}<60 \mathrm{~V} \\ & \mathrm{~V}_{\text {SHUT }}=0.1 \mathrm{~V} \text { (Device Shutdown) (Note 9) } \\ & \hline \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} \hline 8.5 \\ 9 \\ 140 \end{gathered}$	$\begin{aligned} & \hline 11 \\ & 12 \\ & 300 \end{aligned}$	mA $m A$ $\mu \mathrm{~A}$
Minimum Supply Voltage	Normal Mode Startup Mode (Note 4)	\bullet		$\begin{aligned} & 7.3 \\ & 3.5 \end{aligned}$	$\begin{gathered} \hline 8 \\ 4.8 \end{gathered}$	V
Switch Current Limit (Note 5)	$\begin{array}{ll} \hline \text { LT1074 } & \text { LIIM Open } \\ & \text { RLIM }=10 \mathrm{k}(\text { Note 6) } \\ & \text { RLIM }^{\text {LI }} \text { (Note 6) } \\ \hline \end{array}$	\bullet	5.5	$\begin{gathered} 6.5 \\ 4.5 \\ 3 \end{gathered}$	8.5	A
	$\begin{array}{ll} \hline \text { LT1076 } & \text { lLIM Open } \\ & \text { RLIM }^{\text {L }} \text { 10k (Note 6) } \\ & \text { R LIM }^{2}=7 \mathrm{k}(\text { Note 6) } \end{array}$	\bullet	2	$\begin{aligned} & \hline 2.6 \\ & 1.8 \\ & 1.2 \end{aligned}$	3.2	A A A
Maximum Duty Cycle		\bullet	85	90		\%
Switching Frequency	$\begin{aligned} & \mathrm{T}_{\mathrm{j}} \phi 125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}>125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V} \text { through } 2 \mathrm{k}<\text { (Note } 5 \text {) } \end{aligned}$	\bullet	$\begin{aligned} & 90 \\ & 85 \\ & 85 \end{aligned}$	$\begin{aligned} & 100 \\ & 20 \end{aligned}$	$\begin{aligned} & 110 \\ & 120 \\ & 125 \end{aligned}$	kHz kHz kHz kHz
Switching Frequency Line Regulation	$8 \mathrm{~V} \phi \mathrm{~V}_{\text {IN }} \phi \mathrm{V}_{\text {MAX }}$ (Note 8)	\bullet		0.03	0.1	\%/V
Error Amplifier Voltage Gain (Note 7)	$1 \mathrm{~V} \phi \mathrm{~V}_{\text {C }} \phi 4 \mathrm{~V}$			2000		V / V
Error Amplifier Transconductance			3700	5000	8000	$\mu \mathrm{mho}$
Error Amplifier Source and Sink Current	$\begin{aligned} & \text { Source }\left(V_{F B}=2 V\right) \\ & \text { Sink }\left(V_{F B}=2.5 V\right) \end{aligned}$		$\begin{gathered} 100 \\ 0.7 \end{gathered}$	$\begin{gathered} 140 \\ 1 \end{gathered}$	$\begin{array}{r} 225 \\ 1.6 \end{array}$	$\mu \mathrm{A}$ mA
Feedback Pin Bias Current	$V_{\text {FB }}=\mathrm{V}_{\text {REF }}$	\bullet		0.5	2	$\mu \mathrm{A}$
Reference Voltage	$\mathrm{V}_{\mathrm{C}}=2 \mathrm{~V}$	\bullet	2.155	2.21	2.265	V
Reference Voltage Tolerance	$V_{\text {REF }}($ Nominal) $=2.21 \mathrm{~V}$ All Conditions of Input Voltage, Output Voltage, Temperature and Load Current	\bullet		$\begin{gathered} \pm 0.5 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \pm 1.5 \\ & \pm 2.5 \end{aligned}$	\%
Reference Voltage Line Regulation	8V $\mathrm{V}^{\text {IIN }}$ ¢ $\mathrm{V}_{\text {MAX }}$ (Note 8)	\bullet		0.005	0.02	\%/V
V Voltage at 0\% Duty Cycle	Over Temperature	\bullet		$\begin{aligned} & 1.5 \\ & -4 \end{aligned}$		$\begin{array}{r} \mathrm{V} \\ \mathrm{mV} /{ }^{\circ} \mathrm{C} \end{array}$
Multiplier Reference Voltage				24		V
Shutdown Pin Current	$\begin{aligned} & V_{\text {SH }}=5 \mathrm{~V} \\ & V_{\text {SH }} \phi \mathrm{V}_{\text {THRESHOLD }}(\% 2.5 \mathrm{~V}) \end{aligned}$	\bullet	5	10	$\begin{array}{r} 20 \\ 50 \\ \hline \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Shutdown Thresholds	$\text { Switch Duty Cycle }=0$ Fully Shut Down	\bullet	$\begin{aligned} & 2.2 \\ & 0.1 \end{aligned}$	$\begin{gathered} 2.45 \\ 0.3 \end{gathered}$	$\begin{aligned} & \hline 2.7 \\ & 0.6 \end{aligned}$	V
Thermal Resistance Junction to Case	$\begin{aligned} & \text { LT1074 } \\ & \text { LT1076 } \end{aligned}$				$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$

ELECTRICAL CHARACTERISTICS

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: To calculate maximum switch "on" voltage at currents between low and high conditions, a linear interpolation may be used.
Note 3: A feedback pin voltage (V_{FB}) of 2.5 V forces the V_{C} pin to its low clamp level and the switch duty cycle to zero. This approximates the zero load condition where duty cycle approaches zero.
Note 4: Total voltage from $\mathrm{V}_{\text {IN }}$ pin to ground pin must be $\Phi 8 \mathrm{~V}$ after startup for proper regulation.

Note 5: Switch frequency is internally scaled down when the feedback pin voltage is less than 1.3 V to avoid extremely short switch on times. During testing, V_{FB} is adjusted to give a minimum switch on time of $1 \mu \mathrm{~s}$.
Note 6: $\mathrm{I}_{\text {LIM }} \sim \frac{\mathrm{R}_{\text {LIM }}-1 \mathrm{k}}{2 k}$ (LT1074), $\mathrm{I}_{\text {LIM }} \sim \frac{\mathrm{R}_{\text {LIM }}-1 \mathrm{k}}{5.5 \mathrm{k}}$ (LT1076).
Note 7: Switch to input voltage limitation must also be observed.
Note 8: $\mathrm{V}_{\mathrm{MAX}}=40 \mathrm{~V}$ for the LT1074/76 and 60V for the LT1074HV/76HV.
Note 9: Does not include switch leakage.

BLOCK DIAGRAM

BLOCK DIAGRAM DESCRIPTION

A switch cycle in the LT1074 is initiated by the oscillator setting the R/S latch. The pulse that sets the latch also locks out the switch via gate G1. The effective width of this pulse is approximately 700 ns , which sets the maximum switch duty cycle to approximately 93% at 100 kHz switching frequency. The switch is turned off by comparator C1, which resets the latch. C1 has a sawtooth waveform as one input and the output of an analog multiplier as the other input. The multiplier output is the product of an internal reference voltage, and the output of the error amplifier, A1, divided by the regulator input voltage. In standard buck regulators, this means that the output voltage of A1 required to keep a constant regulated output is independent of regulator input voltage. This greatly improves line transient response, and makes loop gain independent of input voltage. The error amplifier is a transconductance type with a G_{M} at null of approximately 5000μ mho. Slew current going positive is $140 \mu \mathrm{~A}$, while negative slew current is about 1.1 mA . This asymmetry helps prevent overshoot on start-up. Overall loop frequency compensation is accomplished with a series $R C$ network from V_{C} to ground.

Switch current is continuously monitored by C 2 , which resets the R/S latch to turn the switch off if an overcurrent condition occurs. The time required for detection and switch turn off is approximately 600 ns . So minimum switch "on" time in current limit is 600ns. Under dead shorted output conditions, switch duty cycle may have to be as low as 2% to maintain control of output current. This would require switch on time of 200 ns at 100 kHz switching frequency, so frequency is reduced at very low output
voltages by feeding the FB signal into the oscillator and creating a linear frequency downshift when the FB signal drops below 1.3 V . Current trip level is set by the voltage on the $I_{\text {LIM }}$ pin which is driven by an internal $320 \mu \mathrm{~A}$ current source. When this pin is left open, it self-clamps at about 4.5 V and sets current limit at 6.5 A for the LT1074 and 2.6A for the LT1076. In the 7-pin package an external resistor can be connected from the I LIM pin to ground to set a lower current limit. A capacitor in parallel with this resistor will soft-start the current limit. A slight offset in C2 guarantees that when the $\mathrm{I}_{\text {LIM }}$ pin is pulled to within 200 mV of ground, C2 output will stay high and force switch duty cycle to zero.
The "Shutdown" pin is used to force switch duty cycle to zero by pulling the $\mathrm{I}_{\text {LIM }}$ pin low, or to completely shut down the regulator. Threshold for the former is approximately 2.35 V , and for complete shutdown, approximately 0.3 V . Total supply current in shutdown is about $150 \mu \mathrm{~A}$. A $10 \mu \mathrm{~A}$ pull-up current forces the shutdown pin high when left open. A capacitor can be used to generate delayed startup. A resistor divider will program "undervoltage lockout" if the divider voltage is set at 2.35 V when the input is at the desired trip point.

The switch used in the LT1074 is a Darlington NPN (single NPN for LT1076) driven by a saturated PNP. Special patented circuitry is used to drive the PNP on and off very quickly even from the saturation state. This particular switch arrangement has no "isolation tubs" connected to the switch output, which can therefore swing to 40 V below ground.

LT1074/LT1076

TYPICAL PERFORMANCG CHARACTERISTICS

Shutdown Pin Characteristics

Shutdown Pin Characteristics

Supply Current

ILIM Pin Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS

PIn DESCRIPTIONS

$V_{I N}$ PIN

The $\mathrm{V}_{\text {IN }}$ pin is both the supply voltage for internal control circuitry and one end of the high current switch. It is important, especially at low input voltages, that this pin be bypassed with a low ESR, and low inductance capacitor to prevent transient steps or spikes from causing erratic operation. At full switch current of 5 A , the switching transients at the regulator input can get very large as shown in Figure 1. Place the input capacitor very close to the regulator and connect it with wide traces to avoid extra inductance. Use radial lead capacitors.

Figure 1. Input Capacitor Ripple
$L_{p}=$ Total inductance in input bypass connections and capacitor.
"Spike" height (dI/dt • Lp) is approximately 2 V per inch of lead length for LT1074 and 0.8V per inch for LT1076.
"Step" for ESR $=0.05<$ and $\mathrm{I}_{S W}=5 \mathrm{~A}$ is 0.25 V .
"Ramp" for $\mathrm{C}=200 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{ON}}=5 \mu \mathrm{~S}$, and $\mathrm{I}_{\mathrm{SW}}=5 \mathrm{~A}$, is 0.12 V .

Input current on the $\mathrm{V}_{\text {IN }}$ Pin in shutdown mode is the sum of actual supply current $(\sim 140 \mu \mathrm{~A}$, with a maximum of $300 \mu \mathrm{~A}$), and switch leakage current. Consult factory for special testing if shutdown mode input current is critical.

GROUND PIN

It might seem unusual to describe a ground pin, but in the case of regulators, the ground pin must be connected properly to ensure good load regulation. The internal reference voltage is referenced to the ground pin; so any error in ground pin voltage will be multiplied at the output;

$$
\text {) } V_{\text {OUT }}=\frac{\left.() V_{G N D}\right)\left(V_{\text {OUT }}\right)}{2.21}
$$

To ensure good load regulation, the ground pin must be connected directly to the proper output node, so that no high currents flow in this path. The output divider resistor should also be connected to this low current connection line as shown in Figure 2.

Figure 2. Proper Ground Pin Connection

FEEDBACK PIN

The feedback pin is the inverting input of an error amplifier which controls the regulator output by adjusting duty cycle. The noninverting input is internally connected to a trimmed 2.21 V reference. Input bias current is typically $0.5 \mu \mathrm{~A}$ when the error amplifier is balanced ($\mathrm{I}_{\text {OUT }}=0$). The error amplifier has asymmetrical G_{M} for large input signals to reduce startup overshoot. This makes the amplifier more sensitive to large ripple voltages at the feedback pin. 100 mV -p ripple at the feedback pin will create a 14 mV offset in the amplifier, equivalent to a 0.7% output voltage shift. To avoid output errors, output ripple (P-P) should be less than 4\% of DC output voltage at the point where the output divider is connected.
See the "Error Amplifier" section for more details.

Frequency Shifting at the Feedback Pin

The error amplifier feedback pin (FB) is used to downshift the oscillator frequency when the regulator output voltage is low. This is done to guarantee that output short-circuit

PIn DESCRIPTIONS

current is well controlled even when switch duty cycle must be extremely low. Theoretical switch "on" time for a buck converter in continuous mode is:

$$
t_{O N}=\frac{V_{O U T}+V_{D}}{V_{I N} \bullet f}
$$

$V_{D}=$ Catch diode forward voltage ($\sim 0.5 \mathrm{~V}$)
$f=$ Switching frequency
At $f=100 \mathrm{kHz}$, ton must drop to $0.2 \mu \mathrm{~s}$ when $\mathrm{V}_{\text {IN }}=25 \mathrm{~V}$ and the output is shorted $\left(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\right)$. In current limit, the LT1074 can reduce $t_{0 N}$ to a minimum value of $\sim 0.6 \mu \mathrm{~s}$, much too long to control current correctly for $V_{\text {OUT }}=0$. To correct this problem, switching frequency is lowered from 100 kHz to 20 kHz as the FB pin drops from 1.3 V to 0.5 V . This is accomplished by the circuitry

Figure 3. Frequency Shifting
shown in Figure 3.
Q1 is off when the output is regulating $\left(\mathrm{V}_{\mathrm{FB}}=2.21 \mathrm{~V}\right)$. As the output is pulled down by an overload, V_{FB} will eventually reach 1.3 V , turning on Q1. As the output continues to drop, Q1 current increases proportionately and lowers the frequency of the oscillator. Frequency shifting starts when the output is $\sim 60 \%$ of normal value, and is down to its minimum value of $\% 20 \mathrm{kHz}$ when the output is $\% 20 \%$ of normal value. The rate at which frequency is shifted is determined by both the internal 3 k resistor R3 and the external divider resistors. For this reason, R2 should not be increased to more than $4 k<$, if the LT1074 will be subjected to the simultaneous conditions of high input voltage and output short-circuit.

SHUTDOWN PIN

The shutdown pin is used for undervoltage lockout, micropower shutdown, soft-start, delayed start, or as a general purpose on/off control of the regulator output. It controls switching action by pulling the lim pin low, which forces the switch to a continuous "off" state. Full micropower shutdown is initiated when the shutdown pin drops below 0.3 V .

The V / I characteristics of the shutdown pin are shown in Figure 4. For voltages between 2.5 V and $\sim \mathrm{V}_{\operatorname{IN}}$, a current of $10 \mu \mathrm{~A}$ flows out of the shutdown pin. This current increases to $\sim 25 \mu A$ as the shutdown pin moves through the 2.35 V threshold. The current increases further to $\sim 30 \mu \mathrm{~A}$ at the 0.3 V threshold, then drops to $\sim 15 \mu \mathrm{~A}$ as the shutdown voltage fall below 0.3 V . The $10 \mu \mathrm{~A}$ current source is included to pull the shutdown pin to its high or default state when left open. It also provides a convenient pull-up for delayed start applications with a capacitor on the shutdown pin.

When activated, the typical collector current of Q1 in Figure 5, is $\sim 2 \mathrm{~mA}$. A soft-start capacitor on the $\mathrm{I}_{\text {LIM }}$ pin will delay regulator shutdown in response to C1, by $\sim(5 \mathrm{~V})\left(\mathrm{C}_{\text {LII }}\right) / 2 \mathrm{~mA}$. Soft-start after full micropower shutdown is ensured by coupling C2 to Q1.

Figure 4. Shutdown Pin Characteristics

PIn DESCRIPTIONS

Figure 5. Shutdown Circuitry

Undervoltage Lockout

Undervoltage lockout point is set by R1 and R2 in Figure 6. To avoid errors due to the $10 \mu \mathrm{~A}$ shutdown pin current, R2 is usually set at $5 k$, and $R 1$ is found from:

$$
R 1=R 2 \frac{\left(V_{T P} \quad V_{S H}\right)}{V_{S H}}
$$

$\mathrm{V}_{\mathrm{TP}}=$ Desired undervoltage lockout voltage
$V_{S H}=$ Threshold for lockout on the shutdown pin $=2.45 \mathrm{~V}$

If quiescent supply current is critical, R2 may be increased up to $15 \mathrm{k}<$, but the denominator in the formula for R2 should replace $V_{S H}$ with $V_{S H}-(10 \mu A)(R 2)$.

Figure 6. Undervoltage Lockout

Hysteresis in undervoltage lockout may be accomplished by connecting a resistor (R3) from the ILIM pin to the shutdown pin as shown in Figure 7. D1 prevents the shutdown divider from altering current limit.

Figure 7. Adding Hysteresis

$$
\text { Trip Point }=\mathrm{V}_{\mathrm{TP}}=2.35 \mathrm{~V} \underset{\leftrightarrow}{\bullet} 1+\frac{\mathrm{R} 1 \neq}{\mathrm{R} 2} \equiv
$$

If R 3 is added, the lower trip point ($\mathrm{V}_{\text {IN }}$ descending) will be the same. The upper trip point ($V_{U T P}$) will be:

If R1 and R2 are chosen, R3 is given by:

Example: An undervoltage lockout is required such that the output will not start until $\mathrm{V}_{\mathrm{IN}}=20 \mathrm{~V}$, but will continue to operate until $\mathrm{V}_{\text {IN }}$ drops to 15 V . Let $\mathrm{R} 2=2.32 \mathrm{k}$.

$$
\begin{aligned}
& R 1=(2.34 \mathrm{k}) \frac{(15 \mathrm{~V} 2.35 \mathrm{~V})}{2.35 \mathrm{~V}}=12.5 \mathrm{k}
\end{aligned}
$$

PIn DESCRIPTIONS

ILIM PIN

The $\mathrm{l}_{\text {LIm }}$ pin is used to reduce current limit below the preset value of 6.5 A . The equivalent circuit for this pin is shown in Figure 8.

Figure 8. ILIM Pin Circuit
When $I_{\text {LIm }}$ is left open, the voltage at $Q 1$ base clamps at 5 V through D2. Internal current limit is determined by the current through Q1. If an external resistor is connected between I LIM and ground, the voltage at Q1 base can be reduced for lower current limit. The resistor will have a voltage across it equal to $(320 \mu \mathrm{~A})(\mathrm{R})$, limited to $\sim 5 \mathrm{~V}$ when clamped by D2. Resistance required for a given current limit is:

$$
\begin{aligned}
& R_{\text {LIM }}=I_{\text {LIM }}(2 k<)+1 \mathrm{k}<(\text { LT1074 }) \\
& R_{\text {LIM }}=I_{\text {LIM }}(5.5 k<)+1 \mathrm{k}<(\text { LT1076 })
\end{aligned}
$$

As an example, a 3A current limit would require $3 A(2 k)+1 k=7 k<$ for the LT1074. The accuracy of these formulas is $\pm 25 \%$ for $2 \mathrm{~A} \phi$ ILIM $\phi 5 \mathrm{~A}$ (LT1074) and $7 \mathrm{~A} \phi \mathrm{I}_{\text {LIM }} \phi 1.8 \mathrm{~A}$ (LT1076), so LIIM should be set at least 25% above the peak switch current required.
Foldback current limiting can be easily implemented by adding a resistor from the output to the $\mathrm{I}_{\text {LIM }}$ pin as shown in Figure 9. This allows full desired current limit (with or without $\mathrm{R}_{\text {LII }}$) when the output is regulating, but reduces current limit under short-circuit conditions. A typical value for $R_{F B}$ is $5 k<$, but this may be adjusted up or down to set the amount of foldback. D2 prevents the output voltage
from forcing current back into the $\mathrm{I}_{\text {LIM }}$ pin. To calculate a value for $R_{F B}$, first calculate $R_{L I M}$, the $R_{F B}$:

$$
R_{F B}=\frac{\left(\begin{array}{ll}
\mathrm{ISC} & 0.44 *
\end{array}\right)\left(R_{L}\right)}{0.5^{*}\left(\begin{array}{ll}
R_{L} & 1 \mathrm{k}<
\end{array}\right) \mathrm{I}_{\mathrm{SC}}}\left(\mathrm{R}_{\mathrm{L}} \text { in } \mathrm{k}<\right)
$$

*Change 0.44 to 0.16 , and 0.5 to 0.18 for LT1076.
Example: $\mathrm{I}_{\mathrm{LIM}}=4 \mathrm{~A}, \mathrm{ISC}=1.5 \mathrm{~A}, \mathrm{R}_{\mathrm{LIM}}=(4)(2 \mathrm{k})+1 \mathrm{k}=9 \mathrm{k}$

$$
\mathrm{R}_{\mathrm{FB}}=\frac{\left(\begin{array}{ll}
1.5 & 0.44)(9 \mathrm{k}<)
\end{array}\right.}{0.5\left(\begin{array}{ll}
9 \mathrm{k} & 1 \mathrm{k})
\end{array} 1.5\right.}(3.8 \mathrm{k}<)
$$

Figure 9. Foldback Current Limit

Error Amplifier

The error amplifier in Figure 10 is a single stage design with added inverters to allow the output to swing above and below the common mode input voltage. One side of the amplifier is tied to a trimmed internal reference voltage of 2.21 V . The other input is brought out as the FB (feedback) pin. This amplifier has a G_{M} (voltage "in" to current "out") transfer function of $\sim 5000 \mu \mathrm{mho}$. Voltage gain is determined by multiplying G_{M} times the total equivalent output loading, consisting of the output resistance of Q4 and Q6 in parallel with the series RC external frequency compensation network. At DC, the external RC is ignored, and with a parallel output impedance for Q4 and Q6 of $400 \mathrm{k}<$, voltage gain is ~ 2000. At frequencies above a few hertz, voltage gain is determined by the external compensation, R_{C} and C_{C}.

LT1074/LT1076

PIn DESCRIPTIONS

Figure 10. Error Amplifier

$$
\begin{aligned}
& A_{V}=\frac{G_{m}}{2 Y \bullet f \bullet C_{C}} \text { at mid frequencies } \\
& A_{V}=G_{m} \bullet R_{C} \text { at high frequencies }
\end{aligned}
$$

Phase shift from the FB pin to the V_{C} pin is 90° at mid frequencies where the external C_{C} is controlling gain, then drops back to 0° (actually 180° since FB is an inverting input) when the reactance of C_{C} is small compared to R_{C}. The low frequency "pole" where the reactance of C_{C} is equal to the output impedance of Q4 and Q6 (r_{0}), is:

$$
f_{\text {POLE }}=\frac{1}{2 \mathrm{Y} \bullet r_{0} \bullet C} r_{0} \sim 400 \mathrm{k}<
$$

Although fPOLE varies as much as $3: 1$ due to r_{0} variations, mid-frequency gain is dependent only on G_{m}, which is specified much tighter on the data sheet. The higher frequency "zero" is determined solely by R_{C} and C_{C}.

$$
\mathrm{f}_{\mathrm{ZERO}}=\frac{1}{2 \mathrm{Y} \bullet \mathrm{R}_{\mathrm{C}} \bullet \mathrm{C}_{\mathrm{C}}}
$$

The error amplifier has asymmetrical peak output current. Q3 and Q4 current mirrors are unity-gain, but the Q6 mirror has a gain of 1.8 at output null and a gain of 8 when the FB pin is high (Q1 current $=0$). This results in a maximum positive output current of $140 \mu \mathrm{~A}$ and a maximum negative (sink) output current of $\% .1 \mathrm{~mA}$. The asymmetry is deliberate-it results in much less regulator output overshoot during rapid start-up or following the release of an output overload. Amplifier offset is kept low by area scaling Q1 and Q2 at 1.8:1.

Amplifier swing is limited by the internal 5.8 V supply for positive outputs and by D1 and D2 when the output goes low. Low clamp voltage is approximately one diode drop $\left(\sim 0.7 \mathrm{~V}-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}\right)$.
Note that both the FB pin and the V_{C} pin have other internal connections. Refer to the frequency shifting and synchronizing discussions.

TYPICAL APPLICATIONS

Tapped-Inductor Buck Converter

\dagger IF INPUT VOLTAGE IS BELOW 20V, MAXIMUM OUTPUT CURRENT WILL BE REDUCED. SEE AN44 LT1074-TA02

Positive-to-Negative Converter with 5V Output

* $=1 \%$ FILM RESISTORS D1 = MOTOROLA-MBR745 C1 = NICHICON-UPL1C221MRH6 C2 $=$ NICHICON-UPL1A102MRH6 L1 = COILTRONICS-CTX25-5-52
${ }^{\dagger}$ LOWER REVERSE VOLTAGE RATING MAY BE USED FOR LOWER INPUT VOLTAGES. LOWER CURRENT RATING IS ALLOWED FOR LOWER OUTPUT CURRENT. SEE AN44.
${ }^{\dagger \dagger}$ LOWER CURRENT RATING MAY BE USED FOR LOWER OUTPUT CURRENT. SEE AN44.
** R1, R2, AND C4 ARE USED FOR LOOP FREQUENCY COMPENSATION WITH LOW INPUT VOLTAGE, BUT R1 AND R2 MUST BE INCLUDED IN THE CALCULATION FOR OUTPUT VOLTAGE DIVIDER VALUES. FOR HIGHER OUTPUT VOLTAGES, INCREASE R1, R2, AND R3 PROPORTIONATELY.
FOR INPUT VOLTAGE > 10V, R1, R2, AND C4 CAN BE ELIMINATED, AND COMPENSATION IS DONE TOTALLY ON THE VC PIN.
R3 $=\mathrm{V}_{\text {OUT }}-2.37(\mathrm{~K}<)$
$\mathrm{R} 1=(\mathrm{R} 3)(1.86)$
$R 2=(\mathrm{R} 3)(3.65)$
** MAXIMUM OUTPUT CURRENT OF 1A IS DETERMINED BY MINIMUM INPUT VOLTAGE OF 4.5V. HIGHER MINIMUM INPUT VOLTAGE WILL ALLOW MUCH HIGHER OUTPUT CURRENTS. SEE AN44.

PACKAGE DESCRIPTION

K Package

4-Lead TO-3 Metal Can
(Reference LTC DWG \# 05-08-1311)

OBSOLETE PACKAGE

Q Package
5-Lead Plastic DD Pak
(Reference LTC DWG \# 05-08-1461)

BOTTOM VIEW OF DD PAK
HATCHED AREA IS SOLDER PLATED
COPPER HEAT SINK

PACKAGE DESCRIPTION

R Package
 7-Lead Plastic DD Pak

(Reference LTC DWG \# 05-08-1462)

BOTTOM VIEW OF DD PAK HATCHED AREA IS SOLDER PLATED

COPPER HEAT SINK

T Package
5-Lead Plastic TO-220 (Standard)
(Reference LTC DWG \# 05-08-1421)

LT1074/LT1076

TYPICAL APPLICATION

PACKAGE DESCRIPTION

T7 Package
7-Lead Plastic T0-220 (Standard)
(Reference LTC DWG \# 05-08-1422)

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1375/LT1376	1.5A, 500kHz Step-Down Switching Regulators	$\mathrm{V}_{\text {IN }}$ Up to 25V, $\mathrm{I}_{\text {OUT }}$ Up to 1.25A, S0-8
LT1374/LT1374HV	4.5A, 500kHz Step-Down Switching Regulators	VIN Up to 25V (32V for HV), IOUT Up to 4.25A, S0-8/DD
LT1370	6A, 500kHz High Efficiency Switching Regulator	6A/42V Internal Switch, 7-Lead DD/T0-220
LT1676	Wide Input Range, High Efficiency Step-Down Regulator	$\mathrm{V}_{\text {IN }}$ from 7.4 V to 60V, IOUT Up to 0.5A, S0-8
LT1339	High Power Synchronous DC/DC Controller	$\mathrm{V}_{\text {IN }}$ Up to 60V, I Iout Up to 50A, Current Mode
LT1765	3A, 1.25MHz, Step-Down Regulator	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$ to 25V, $\mathrm{V}_{\mu \mathrm{F}}=1.2 \mathrm{~V}$, TSSOP-16E, S08 Package
Linear Technology Corporation 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 • FAX: (408) 434-0507 • www.linear.com		LT/CPI 0202 1.5K REV D• PRINTED IN USA LINEAR TECHNOLOGY CORPORATION 1994

LT1074HV - Step-Down Switching Regulator

FEATURES

DESCRIPTION

- PACKAGING
- ORDERINFO

SIMULATE

- Erint Friendly

Features

- 5A Onboard Switch (LT1074)
- Operates Up to 60V Input
- 100 kHz Switching Frequency
- Greatly Improved Dynamic Behavior
- Available in Low Cost 5 and 7-Lead Packages
- Only 8.5 mA Quiescent Current
- Programmable Current Limit
- Micropower Shutdown Mode

Typical Application

Buck Converter Efficiency

Back to Top

Description

The LT1074 is a 5A (LT1076 is rated at 2A) monolithic bipolar switching regulator which requires only a few external parts for normal operation. The power switch, all oscillator and control circuitry, and all current limit components, are included on the chip. The topology is a classic positive "buck" configuration but several design innovations allow this device to be used as a positive-to-negative converter, a negative boost converter, and as a flyback converter. The switch output is specified to swing 40 V below ground, allowing the LT1074 to drive a tapped-inductor in the buck mode with output currents up to 10A.

The LT1074 uses a true analog multiplier in the feedback loop. This makes the device respond nearly instantaneously to input voltage fluctuations and makes loop gain independent of input voltage. As a result, dynamic behavior of the regulator is significantly improved over previous designs.

On-chip pulse by pulse current limiting makes the LT1074 nearly bust-proof for output overloads or shorts. The input voltage range as a buck converter is 8 V to 60 V , but a self-boot feature allows input voltages as low as 5 V in the inverting and boost configurations.

The LT1074 is available in lowcost TO-220 or DD packages with frequency pre-set at 100 kHz and current limit at 6.5 A (LT1076 $=2.6 \mathrm{~A}$). A 7-pin TO-220 package is also available which allows current limit to be adjusted down to zero. In addition, full micropower shutdown can be programmed. See Application Note 44 for design details.

A fixed 5V output, 2A version is also available. See LT1076-5.

Packaging

DD-5, DD-7, T5, T7

Back to Top

Order Info

- Part numbers ending in PBF are lead free. Please contact LTC marketing for information on lead based finish parts.
- Part numbers containing TR or TRM are shipped in tape and reel or 500 unit mini tape and reel, respectively
- Please refer to our general ordering information or the product datasheet for more details

Package Variations and Pricing

Part Number	Package	Pins	Temp	Price (1-99)	Price (1k)*	RoHS Data
LT1074CT	TO-220	5	C	\$6.17	\$5.05	View
LT1074CT\#PBF	TO-220	5	C	\$6.17	\$5.05	View
LT1074CT7	TO-220	7	C	\$7.17	\$5.90	View
LT1074CT7\#PBF	TO-220	7	C	\$7.17	\$5.90	View
LT1074HVCT	TO-220	5	C	\$9.25	\$7.60	View
LT1074HVCT\#06PBF	TO-220	5	C	\$9.25	\$7.60	View
LT1074HVCT\#PBF	TO-220	5	C	\$9.25	\$7.60	View
LT1074HVCT7	TO-220	7	C	\$10.25	\$8.40	View
LT1074HVCT7\#PBF	TO-220	7	C	\$10.25	\$8.40	View
LT1074HVIT	TO-220	5	I	\$12.50	\$10.25	View
LT1074HVIT\#PBF	TO-220	5	I	\$12.50	\$10.25	View
LT1074HVIT7	TO-220	7	1	\$13.50	\$10.80	View
LT1074HVIT7\#PBF	TO-220	7	I	\$13.50	\$10.80	View
LT1074IT	TO-220	5	I	\$8.33	\$6.85	View
LT1074IT\#06PBF	TO-220	5	I	\$8.33	\$6.85	View
LT1074IT\#PBF	TO-220	5	I	\$8.33	\$6.85	View
LT1074IT7	TO-220	7	I	\$9.15	\$7.35	View
LT1074IT7\#PBF	TO-220	7	I	\$9.15	\$7.35	View
Buy Now						
Request Samples						

* The USA list pricing shown is for BUDGETARY USE ONLY, shown in United States dollars (FOB USA per unit for the stated volume), and is subject to change. International prices may differ due to local duties, taxes, fees and exchange rates. For volume-specific price or delivery quotes, please contact your local Linear Technology sales office or authorized distributor.
Back to Top

Applications

- Buck Converter with Output Voltage Range of 2.5 V to 50 V
- Tapped-Inductor Buck Converter with 10A Output at 5V
- Positive-to-Negative Converter
- Negative Boost Converter
- Multiple Output Buck Converter

Back to Top

Simulate

To simulate selected Linear Technology products, please download LTSpice / SwitcherCAD III. This powerful schematic capture and simulation tool includes macro models for 80% of Linear Technology's switching regulators, over 200 op amp models, as well as resistors, transistors and MOSFET models.

For other simulation tools, visit our Design Simulation and Device Models page.

Back to Top

Order Now

Buy

\rightarrow

Request Samples

Documentation

Datasheet

- LT1074/LT1076- Step-Down Switching Regulator

Reliability Data

- R117 Reliability Data
- Site Help
- Site Map
- Site Index
- Send Us Feedback
- -

© 2007 Linear Technology \| Terms of Use \| Privacy Policy

[^0]: $\mathbf{\boxed { Y }}$, LTC and LT are registered trademarks of Linear Technology Corporation.

[^1]: *Assumes package is soldered to $0.5 \mathrm{IN}^{2}$ of 1 oz. copper over internal ground plane or over back side plane.
 Consult LTC Marketing for parts specified with wider operating temperature ranges.

