

Description

The μ PD4363B is a 16,384-word by 4-bit static RAM fabricated with advanced silicon-gate technology. A unique design using CMOS peripheral circuits and N-channel memory cells with polysilicon resistors makes the μ PD4363B a high-speed device that requires very low power and no clock or refreshing.

The μ PD4363B is packaged in a standard 300-mil, 24-pin plastic DIP and 24-pin plastic SOJ.

Features

- □ Single + 5-volt power supply
- Fully static operation—no clock or refreshing
- □ TTL-compatible inputs and outputs
- □ Common I/O capability
- □ OE eliminates the need for external bus buffers
- □ Three-state outputs
- Low power dissipation
 - 130 mA max (active)
 - -2 mA max (standby)
- Standard 300-mil, 24-pin plastic DIP and 24-pin plastic SOJ packaging

Ordering Information

Part Number	Access Time (max)	Package		
μPD4363BCR-12	12 ns	24-pin plastic DIP		
CR-15	15 ns	•		
CR-20	20 ns	-		
μPD4363BLA-12	12 ns	24-pin plastic SO		
LA-15	15 ns	_		
LA-20	20 ns	•		

Pin Configuration

24-Pin Plastic DIP or SOJ

Pin Identification

Address inputs
Data inputs and outputs
Chip select
Output enable
Write enable
Ground
+5-volt power supply
No connection

Absolute Maximum Ratings

Supply voltage, V _{CC}	- 0.5 to + 7.0 V
Input and output voltages, V _{IN} (Note 1)	-0.5 to V _{CC} + 0.5 V
Operating temperature, T _{OPR}	0 to +70°C
Storage temperature, T _{STG}	- 55 to + 125°C
Power dissipation, PD	1.0 W

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Notes:

(1) V_{IN} (min) = -3.0 V for 10 ns pulse.

Capacitance

 $T_A = 25^{\circ}C$; f = 1 MHz; V_{IN} and $V_{OUT} = 0$ V (Note 1)

Parameter	Symbol	Min	Тур	Max	Unit
Input capacitance	CIN			6	pF
Output capacitance	C _{DOUT}			8	pF

Notes:

(1) This parameter is sampled and not 100% tested.

Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit	
Supply voltage	Vcc	4.5	5.0	5.5	٧	
Input voltage, high	VIH	2.2		V _{CC} + 0.3	٧	
Input voltage, low	V _{IL}	- 0.5		0.8	٧	
Operating temperature	TA	0		70	°C	

Notes:

(2) $V_{IL} = -3.0 \text{ V}$ for 10 ns pulse.

Truth Table

Function	CS	WE	ŎĔ	Input/Output	lcc
Not selected	Н	Х	Х	High-Z	Standby
Read	L	Н	L	D _{OUT}	Active
D _{OUT} disabled	L	Н	Н	High-Z	Active
Write	L	L	X	D _{IN}	Active

Block Diagram

DC Characteristics

 $T_A = 0 \text{ to } +70^{\circ}\text{C}; V_{CC} = +5.0 \text{ V } \pm 10\%$

Symbol	Min	Тур	Max	Unit	Test Conditions
ILI	-2		2	μΑ	V _{IN} = 0 V to V _{CC} ; V _{CC} = max
lιο	-2		2	μΑ	V _{OUT} = 0 V to V _{CC} ; $\overline{\text{CS}}$ or $\overline{\text{OE}}$ = V _{IH} ; V _{CC} = max
Isa			20	mA	CS = VIH
l _{SB1}			2	mA	$\overline{\text{CS}} = V_{\text{CC}} - 0.2 \text{V}; V_{\text{IN}} \le 0.2 \text{V or} \ge V_{\text{CC}} - 0.2 \text{V}$
VoL			0.4	٧	l _{OL} = 8.0 mA
V _{он}	2.4			V	I _{OH} = -4.0 mA
	I _{LI} I _{LO} I _{SB} I _{SB1} V _{OL}	L1		I _{L1}	I _{L1} -2 2 μA I _{LO} -2 2 μA I _{SB} 20 mA I _{SB1} 2 mA V _{OL} 0.4 V

AC Characteristics

 $T_A = 0 \text{ to } +70^{\circ}\text{C}; V_{CC} = +5.0 \text{ V } \pm 10\%$

Parameter	Symbol	μPD4363B-12		μPD4363B-15		μPD4363B-20			
		Min	Max	Min	Max	Min	Max	Unit	Test Conditions
Read Operation									
Operating supply current	lcc		130		120		110	mΑ	CS = V _{IL} ; I _{DOUT} = 0 mA
Read cycle time	tRC	12		15		20		ns	(Note 2)
Address access time	t _{AA}		12		15	-	20	ns	
Chip select access time	tacs		12		15		20	ns	
Output hold from address change	tон	2		3		3		ns	
Chip select to output in low-Z	t _{LZ}	2		3		3		ns	(Note 3)
Chip deselect to output in high-Z	tHZ	0	7	0	7	0	8	ns	(Note 4)
Output enable access time	†0E		8		9		10	ns	
Output enable to output in low-Z	toLZ	0		0		0		ns	(Note 3)
Output disable to output in high-Z	tонz	0	7	0	7	0	8	ns	(Note 4)
Chip select to power-up time	t _{PU}	0		0		0		ns	
Chip deselect to power-down time	t _{PD}	0	7	0	10	0	12	ns	
Write Operation									
Write cycle time	twc	12	···	15		20		ns	(Note 2)
Chip select to end of write	tcw	11		13		15		ns	
Address valid to end of write	t _{AW}	11		13		15		ns	
Address setup time	tas	0		0		0		ns	
Write pulse width	t _{WP}	10		12		14		ns	
Write recovery time	twR	1		1		1		ns	
Data valid to end of write	t _{DW}	7		7		8		ns	
Data hold time	t _{DH}	0		0		0		ns	-
Write enable to output in high-Z	twz	0	7	0	7	0	8	ns	(Note 4)
Output active from end of write	tow	0		0		0		ns	(Note 3)

Notes:

- Input pulse levels = GND to 3.0 V; input pulse rise and fall times = 5 ns; timing reference levels = 1.5 V; see figures 1 and 2 for output load.
- (2) All read and write cycle timings are referenced from the last valid address to the first transitioning address.
- (3) Transition is measured at ±200 mV from steady-state voltage with the loading shown in figure 2.
- (4) Transition is measured at V_{OL} + 200 mV and V_{OH} 200 mV with the loading shown in figure 2.

Figure 1. Output Load

Figure 2. Output Load for t_{HZ} , t_{LZ} , t_{OHZ} , t_{OLZ} , t_{WZ} , and t_{OW}

Timing Waveforms (cont)

Address Access Cycle

Chip Select Access Cycle

Timing Waveforms (cont)

OE-Controlled Access Cycle

WE-Controlled Write Cycle

Timing Waveforms (cont)

CS-Controlled Write Cycle

