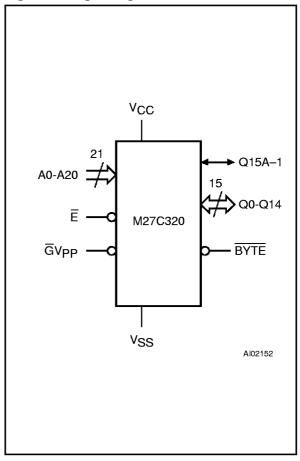


32 Mbit (4Mb x8 or 2Mb x16) OTP EPROM

PRELIMINARY DATA

- 5V ± 10% SUPPLY VOLTAGE in READ OPERATION
- FAST ACCESS TIME: 80ns
- BYTE-WIDE or WORD-WIDE CONFIGURABLE
- 32 Mbit MASK ROM REPLACEMENT
- LOW POWER CONSUMPTION
 - Active Current 70mA at 8MHz
 - Stand-by Current 100μA
- PROGRAMMING VOLTAGE: 12V ± 0.25V
- PROGRAMMING TIME: 100µs/byte (typical) (PRESTO III Algorithm)
- ELECTRONIC SIGNATURE:
 - Manufacturer Code 0020h
 - Device Code: 0032h

Figure 1. Logic Diagram


DESCRIPTION

The M27C320 is a 32 Mbit EPROM offered in the OTP range (one time programmable). It is ideally suited for microprocessor systems requiring large data or program storage. It is organised as either 4 MWords of 8 bit or 2 MWords of 16 bit. The pin-out is compatible with the 32 Mbit Mask ROM.

The M27C320 is offered in TSOP48 (12 x 20mm) and SO44 packages.

Table 1. Signal Names

A0-A20	Address Inputs
Q0-Q7	Data Outputs
Q8-Q14	Data Outputs
Q15A-1	Data Output / Address Input
Ē	Chip Enable
G V _{PP}	Output Enable / Program Supply
BYTE	Byte-Wide Select
V _{CC}	Supply Voltage
V _{SS}	Ground

September 1998 1/14

Figure 2A. SO Pin Connections

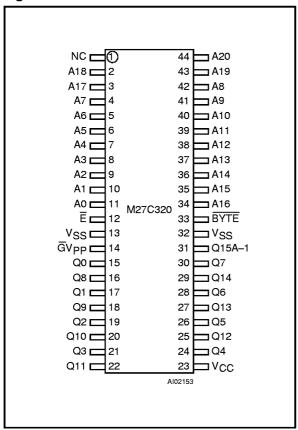
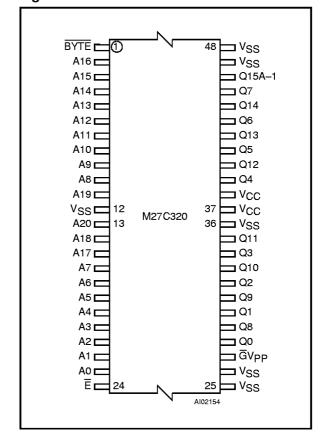



Figure 2B. TSOP Pin Connections

Warning: NC = Not Connected.

Table 2. Absolute Maximum Ratings (1)

Symbol	Parameter	Value	Unit
T _A	Ambient Operating Temperature (3)	-40 to 125	ပွ
T _{BIAS}	Temperature Under Bias	-50 to 125	°C
T _{STG}	Storage Temperature	-65 to 150	°C
V _{IO} (2)	Input or Output Voltages (except A9)	–2 to 7	٧
Vcc	Supply Voltage	–2 to 7	V
V _{A9} ⁽²⁾	A9 Voltage	–2 to 13.5	V
V _{PP}	Program Supply Voltage	–2 to 14	V

Notes: 1. Except for the rating "Operating Temperature Range", stresses above those listed in the Table "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

3. Depends on range.

^{2.} Minimum DC voltage on Input or Output is -0.5V with possible undershoot to -2.0V for a period less than 20ns. Maximum DC voltage on Output is V_{CC} +0.5V with possible overshoot to V_{CC} +2V for a period less than 20ns.

Table 3. Operating Modes

Mode	Ē	GV _{PP}	BYTE	A 9	Q0 - Q7	Q8 - Q14	Q15A-1
Read Word-wide	V_{IL}	VIL	V _{IH}	Х	Data Out	Data Out	Data Out
Read Byte-wide Upper	V_{IL}	V _{IL}	V_{IL}	Х	Data Out	Hi-Z	V _{IH}
Read Byte-wide Lower	V_{IL}	VIL	V _{IL}	×	Data Out	Hi-Z	V _{IL}
Output Disable	V_{IL}	V _{IH}	X	Х	Hi-Z	Hi-Z	Hi-Z
Program	V _{IL} Pulse	V _{PP}	V _{IH}	Х	Data In	Data In	Data In
Program Inhibit	V _{IH}	V_{PP}	V _{IH}	Х	Hi-Z	Hi-Z	Hi-Z
Standby	V _{IH}	X	Х	Х	Hi-Z	Hi-Z	Hi-Z
Electronic Signature	V_{IL}	V_{IL}	V _{IH}	V_{ID}	Codes	Codes	Code

Note: $X = V_{IH}$ or V_{IL} , $V_{ID} = 12V \pm 0.5V$

Table 4. Electronic Signature

Identifier	A0	Q7	Q6	Q5	Q4	Q3	Q2	Q1	Q0	Hex Data
Manufacturer's Code	V_{IL}	0	0	1	0	0	0	0	0	20h
Device Code	V _{IH}	0	0	1	1	0	0	1	0	32h

Note: Outputs Q8-Q15 are set to '0'.

DEVICE OPERATION

The operating modes of the M27C320 are listed in the Operating Modes Table. A single power supply is required in the read mode. All inputs are TTL compatible except for V_{PP} and 12V on A9 for the Electronic Signature.

Read Mode

The M27C320 has two organisations, Word-wide and Byte-wide. The organisation is selected by the signal level on the \overline{BYTE} pin. When \overline{BYTE} is at VIH the Word-wide organisation is selected and the Q15A–1 pin is used for Q15 Data Output. When the \overline{BYTE} pin is at VIL the Byte-wide organisation is selected and the Q15A–1 pin is used for the Address Input A–1. When the memory is logically regarded as 16 bit wide, but read in the Byte-wide organisation, then with A–1 at VIL the lower 8 bits of the 16 bit data are selected and with A–1 at VIH the upper 8 bits of the 16 bit data are selected.

The M27C320 has two control functions, both of which must be logically active in order to obtain data at the outputs. In addition the Word-wide or Byte-wide organisation must be selected.

Chip Enable (\overline{E}) is the power control and should be used for device selection. Output Enable (\overline{G}) is the output control and should be used to gate data to the output pins independent of device selection. Assuming that the addresses are stable, the address access time (t_{AVQV}) is equal to the delay from \overline{E} to output (t_{ELQV}). Data is available at the output after a delay of t_{GLQV} from the falling edge of \overline{G} , assuming that \overline{E} has been low and the addresses have been stable for at least t_{AVQV} - t_{GLQV} .

Standby Mode

The M27C320 has standby mode which reduces the supply current from 50mA to 100 μ A. The M27C320 is placed in the standby mode by applying a CMOS high signal to the \overline{E} input. When in the standby mode, the outputs are in a high impedance state, independent of the \overline{G} input.

Table 5. AC Measurement Conditions

	High Speed	Standard
Input Rise and Fall Times	≤ 10ns	≤ 20ns
Input Pulse Voltages	0 to 3V	0.4V to 2.4V
Input and Output Timing Ref. Voltages	1.5V	0.8V and 2V

Figure 3. AC Testing Input Output Waveform



Figure 4. AC Testing Load Circuit

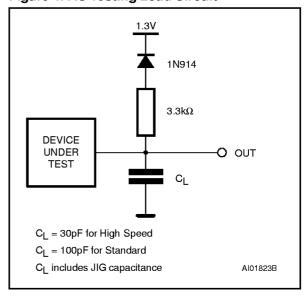


Table 6. Capacitance (1) $(T_A = 25 \, {}^{\circ}C, f = 1 \, MHz)$

Symbol	Parameter	Test Condition	Min	Max	Unit
C _{IN}	Input Capacitance	$V_{IN} = 0V$		10	pF
C _{OUT}	Output Capacitance	$V_{OUT} = 0V$		12	pF

Note: 1. Sampled only, not 100% tested.

Two Line Output Control

Because EPROMs are usually used in larger memory arrays, this product features a 2 line control function which accommodates the use of multiple memory connection. The two line control function allows:

- a. the lowest possible memory power dissipation,
- b. complete assurance that output bus contention will not occur.

For the most efficient use of these two control lines, \overline{E} should be decoded and used as the primary device selecting function, while \overline{G} should be made a common connection to all devices in the array and connected to the \overline{READ} line from the system control bus. This ensures that all deselected memory devices are in their low power standby mode and that the output pins are only active when data is required from a particular memory device.

A7/

Table 7. Read Mode DC Characteristics (1)

 $(T_A = 0 \text{ to } 70 \text{ °C}; V_{CC} = 5V \pm 10\%)$

Symbol	Parameter	Test Condition	Min	Max	Unit
I _{LI}	Input Leakage Current	OV VIN VCC		±1	μΑ
ILO	Output Leakage Current	OV VOUT VCC		±10	μΑ
Icc	Supply Current	$\overline{E} = V_{IL}, \overline{G} = V_{IL}, I_{OUT} = 0mA,$ f = 8MHz		70	mA
100	опру синен	$\overline{E} = V_{IL}, \overline{G} = V_{IL}, I_{OUT} = 0mA,$ f = 5MHz		50	mA
I _{CC1}	Supply Current (Standby) TTL	E = V _{IH}		1	mA
I _{CC2}	Supply Current (Standby) CMOS	$\overline{E} > V_{CC} - 0.2V$		100	μΑ
I _{PP}	Program Current	$V_{PP} = V_{CC}$		10	μΑ
V _{IL}	Input Low Voltage		-0.3	0.8	٧
V _{IH} ⁽²⁾	Input High Voltage		2	V _{CC} + 1	٧
V _{OL}	Output Low Voltage	I _{OL} = 2.1mA		0.4	٧
V _{OH}	Output High Voltage TTL	$I_{OH} = -400\mu A$	2.4		٧

Notes: 1. Vcc must be applied simultaneously with or before VPP and removed simultaneously or after VPP.

2. Maximum DC voltage on Output is V_{CC} +0.5V.

System Considerations

The power switching characteristics of Advanced CMOS EPROMs require carefull decoupling of the supplies to the devices. The supply current I_{CC} has three segments of importance to the system designer: the standby current, the active current and the transient peaks that are produced by the falling and rising edges of \overline{E} .

The magnitude of the transient current peaks is dependanton the capacititive and inductive loading of the device outputs. The associated transient voltage peaks can be supressed by complying with the two line output control and by properly selected decoupling capacitors. It is recommended that a 0.1µF ceramic capacitor is used on every device between Vcc and Vss. This should be a high frequency type of low inherent inductance and should be placed as close as possible to the device. In

addition, a $4.7\mu F$ electrolytic capacitor should be used between V_{CC} and V_{SS} for every eight devices. This capacitor should be mounted near the power supply connection point. The purpose of this capacitor is to overcome the voltage drop caused by the inductive effects of PCB traces.

Programming

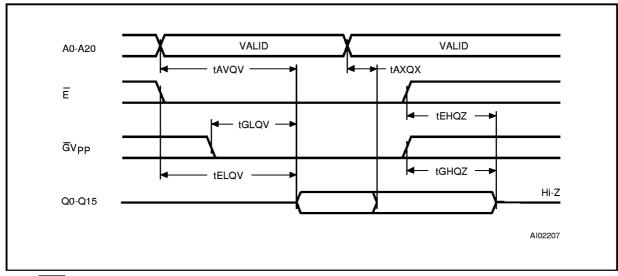

When delivered, all bits of the M27C320 are in the '1'state. Data is introduced by selectively programming '0's into the desired bit locations. Although only '0's will be programmed, both '1's and '0's can be present in the data word. The M27C320 is in the programming mode when V_{pp} input is at 12.5V, \overline{G} is at V_{IH} and \overline{E} is pulsed to $V_{IL}.$ The data to be programmed is applied to 16 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL. V_{CC} is specified to be $6.25V \pm 0.25V.$

Table 8. Read Mode AC Characteristics $^{(1)}$ (TA = 0 to 70 °C; VCC = 5V \pm 10%)

						M27	C320			
Symbol	Alt	Parameter	Test Condition -80		-80 -100		00	-120		Unit
				Min	Max	Min	Max	Min	Max	
tavqv	tacc	Address Valid to Output Valid	$\overline{E} = V_{IL}, \overline{G} = V_{IL}$		80		100		120	ns
t _{BHQV}	ts⊤	BYTE High to Output Valid	$\overline{E} = V_{IL}, \overline{G} = V_{IL}$		80		100		120	ns
tELQV	tce	Chip Enable Low to Output Valid	$\overline{G} = V_{IL}$		80		100		120	ns
t _{GLQV}	t _{OE}	Output Enable Low to Output Valid	$\overline{E} = V_{IL}$		40		50		60	ns
t _{BLQZ} (2)	t _{STD}	BYTE Low to Output Hi-Z	$\overline{E} = V_{IL}, \overline{G} = V_{IL}$		40		40		50	ns
t _{EHQZ} (2)	t _{DF}	Chip Enable High to Output Hi-Z	$\overline{G} = V_{IL}$	0	40	0	40	0	50	ns
t _{GHQZ} (2)	t _{DF}	Output Enable High to Output Hi-Z	E = V _{IL}	0	40	0	40	0	50	ns
taxqx	tон	Address Transition to Output Transition	$\overline{E} = V_{IL}, \overline{G} = V_{IL}$	5		5		5		ns
t _{BLQX}	t _{OH}	BYTE Low to Output Transition	$\overline{E} = V_{IL}, \overline{G} = V_{IL}$	5		5		5		ns

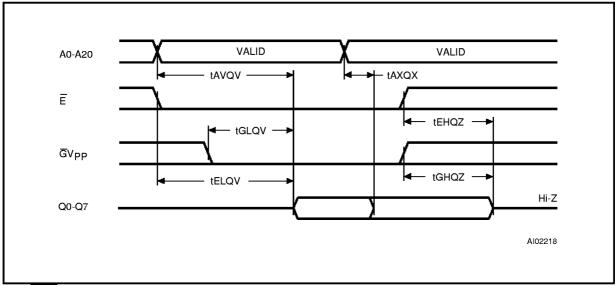

Notes: 1. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP}. 2. Sampled only, not 100% tested.

Figure 5. Word-Wide Read Mode AC Waveforms

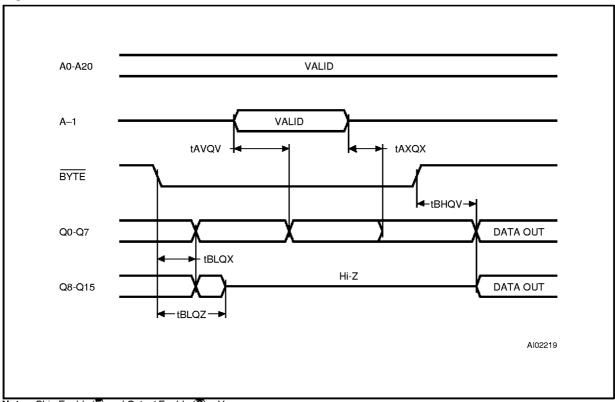

Note: $\overline{BYTE} = V_{IH}$

Figure 6. Byte-Wide Read Mode AC Waveforms

Note: BYTE = VIL.

Figure 7. BYTE Transition AC Waveforms

Note: Chip Enable (E) and Output Enable $(G) = V_{IL}$.

Table 9. Programming Mode DC Characteristics $^{(1)}$ (TA = 25 °C; VCC = $6.25V\pm0.25V$; VPP = $12V\pm0.25V$)

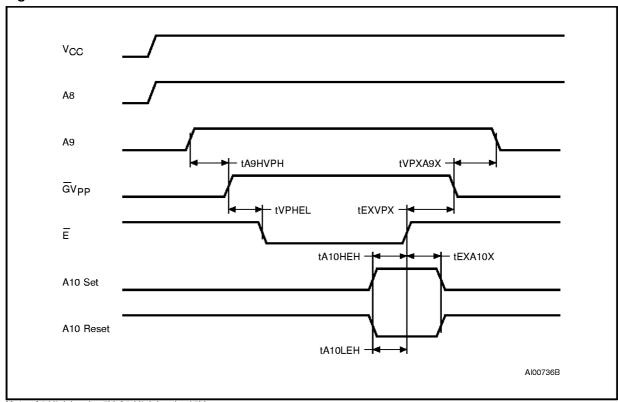
Symbol	Parameter	Test Condition	Min	Max	Unit
ILI	Input Leakage Current	$V_{IL} \leq V_{IN} \leq V_{IH}$		±10	μΑ
lcc	Supply Current			50	mA
I _{PP}	Program Current	$\overline{E} = V_{IL}$		50	mA
V _{IL}	Input Low Voltage		-0.3	0.8	V
V _{IH}	Input High Voltage		2.4	V _{CC} + 0.5	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1mA		0.4	V
V _{OH}	Output High Voltage TTL	I _{OH} = -2.5mA	3.5		V
V _{ID}	A9 Voltage		11.5	12.5	V

Note: 1. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP}.

Table 10. MARGIN MODE AC Characteristics $^{(1)}$ (TA = 25 °C; VCC = $6.25V\pm0.25V$; VPP = $12V\pm0.25V$)

Symbol	Alt	Parameter	Test Condition	Min	Max	Unit
t _{A9HVPH}	t _{AS9}	VA9 High to V _{PP} High		2		μs
t _{VPHEL}	t _{VPS}	V _{PP} High to Chip Enable Low		2		μs
t _{A10HEH}	t _{AS10}	VA10 High to Chip Enable High (Set)		1		μs
t _{A10LEH}	t _{AS10}	VA10 Low to Chip Enable High (Reset)		1		μs
t _{EXA10X}	t _{AH10}	Chip Enable Transition to VA10 Transition		1		μs
t _{EXVPX}	tv _{PH}	Chip Enable Transition to VPP Transition		2		μs
t _{VPXA9X}	t _{AH9}	V _{PP} Transition to VA9 Transition		2		μs

Note: 1. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP}.


Table 11. Programming Mode AC Characteristics $^{(1)}$ (TA = 25 °C; VCC = 6.25V \pm 0.25V; VPP = 12V \pm 0.25V)

Symbol	Alt	Parameter	Test Condition	Min	Max	Unit
t _{AVEL}	t _{AS}	Address Valid to Chip Enable Low		1		μs
t _{QVEL}	t _{DS}	Input Valid to Chip Enable Low		1		μs
t _{VCHEL}	t _{VCS}	V _{CC} High to Chip Enable Low		2		μs
t _{VPHEL}	toes	V _{PP} High to Chip Enable Low		1		μs
t _{VPLVPH}	t _{PRT}	V _{PP} Rise Time		50		ns
t _{ELEH}	t _{PW}	Chip Enable Program Pulse Width (Initial)		45	55	μs
t _{EHQX}	t _{DH}	Chip Enable High to Input Transition		2		μs
t _{EHVPX}	t _{OEH}	Chip Enable High to V_{PP} Transition		2		μs
tvPLEL	t _{VR}	V _{PP} Low to Chip Enable Low		1		μs
t _{ELQV}	t _{DV}	Chip Enable Low to Output Valid			1	μs
t _{EHQZ} (2)	t _{DFP}	Chip Enable High to Output Hi-Z		0	130	ns
t _{EHAX}	t _{AH}	Chip Enable High to Address Transition		0		ns

Notes: 1. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP}.

2. Sampled only, not 100% tested.

Figure 8. MARGIN MODE AC Waveforms

Note: A8 High level = 5V; A9 High level = 12V.

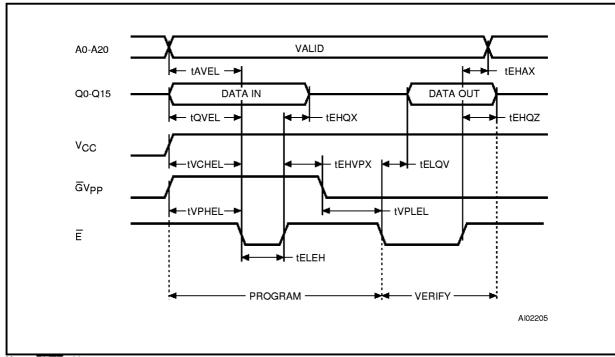
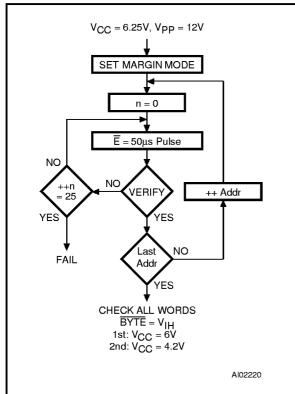



Figure 9. Programming and Verify Modes AC Waveforms

Note: BYTE = V_{IH}.

PRESTO III Programming Algorithm

The PRESTO III Programming Algorithm allows the whole array to be programed with a guaranteed margin in a typical time of 100 seconds. Programming with PRESTO III consists of applying a sequence of 50µs program pulses to each word until a correct verify occurs (see Figure 10). During programing and verify operation a MARGIN MODE circuit is automatically activated to guarantee that each cell is programed with enough margin. No overprogram pulse is applied since the verify in MARGIN MODE provides the neccessary margin to each programmed cell.

Program Inhibit

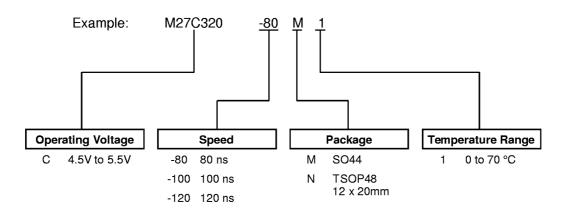
Programming of multiple M27C320s in parallel with different data is also easily accomplished. Except for \overline{E} , all like inputs including \overline{G} of the parallel M27C320 may be common. A TTL low level pulse applied to a M27C320's \overline{E} input and \overline{V}_{PP} at 12V, will program that M27C320. A high level \overline{E} input inhibits the other M27C320s from being programmed.

Program Verify

A verify (read) should be performed on the programmed bits to determine that they were correctly programmed. The verify is accomplished with \overline{G} at $V_{\rm IL}.$ Data should be verified with $t_{\rm ELQV}$ after the falling edge of $\overline{E}.$

On-Board Programming

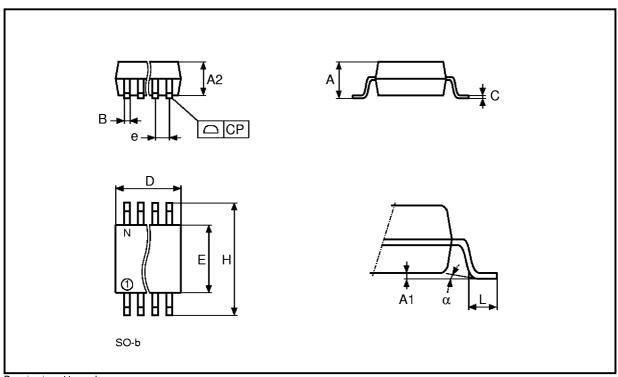
The M27C320 can be directly programmed in the application circuit. See the relevant Application Note AN620.


Electronic Signature

The Electronic Signature (ES) mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment to automatically match the device to be programmed with its corresponding programming algorithm. The ES mode is functional in the 25° C \pm 5° C ambient temperature range that is required when program-

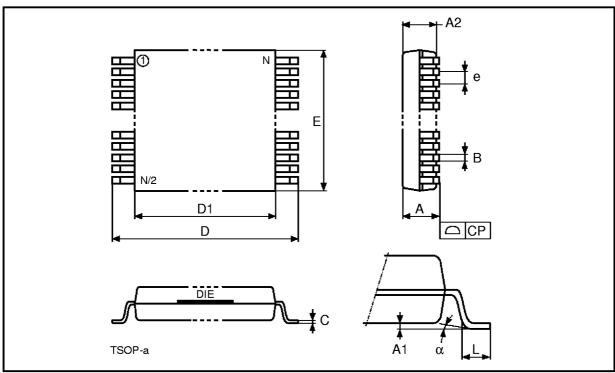
ming the M27C320. To activate the ES mode, the programming equipmentmust force 11.5V to 12.5V on address line A9 of the M27C320, with VPP=VCC=5V. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from VIL to VIH. All other address lines must be held at VIL during Electronic Signature mode.

Byte 0 ($A0=V_{IL}$) represents the manufacturer code and byte 1 ($A0=V_{IH}$) the device identifier code. For the STMicroelectronics M27C320, these two identifier bytes are given in Table 4 and can be read-out on outputs Q0 to Q7.


ORDERING INFORMATION SCHEME

For a list of available options (Speed, Package, etc...) or for further information on any aspect of this device, please contact the STMicroelectronics Sales Office nearest to you.

SO44 - 44 lead Plastic Small Outline, 525 mils body width


Symb		mm			inches	
- Symb	Тур	Min	Max	Тур	Min	Max
Α		2.42	2.62		0.095	0.103
A1		0.22	0.23		0.009	0.010
A2		2.25	2.35		0.089	0.093
В			0.50			0.020
С		0.10	0.25		0.004	0.010
D		28.10	28.30		1.106	1.114
E		13.20	13.40		0.520	0.528
е	1.27	_	_	0.050	_	_
Н		15.90	16.10		0.626	0.634
L	0.80	_	-	0.031	_	-
α	3°	_	-	3°	_	_
N		44			44	
СР			0.10			0.004

Drawing is not to scale.

TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm

Symb	mm			inches		
	Тур	Min	Max	Тур	Min	Max
Α			1.20			0.047
A 1		0.05	0.15		0.002	0.006
A2		0.95	1.05		0.037	0.041
В		0.17	0.27		0.007	0.011
С		0.10	0.21		0.004	0.008
D		19.80	20.20		0.780	0.795
D1		18.30	18.50		0.720	0.728
Е		11.90	12.10		0.469	0.476
е	0.50	-	-	0.020	-	-
L		0.50	0.70		0.020	0.028
α		0°	5°		0°	5°
N	48			48		
CP			0.10			0.004

Drawing is not to scale.