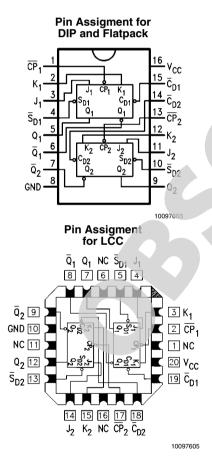


54ACT112

OBSOLETE July 20, 2009


Dual JK Negative Edge-Triggered Flip-Flop

General Description

The 'ACT112 contains two independent, high-speed JK flipflops with Direct Set and Clear inputs. Synchronous state changes are initiated by the falling edge of the clock. Triggering occurs at a voltage level of the clock and is not directly related to the transition time. The J and K inputs can change when the clock is in either state without affecting the flip-flop, provided that they are in the desired state during the recommended setup and hold times relative to the falling edge of the clock. A LOW signal on \overline{S}_D or \overline{C}_D prevents clocking and forces Q or \overline{Q} HIGH, respectively. Simultaneous LOW signals on \overline{S}_D and \overline{C}_D force both Q and \overline{Q} HIGH.

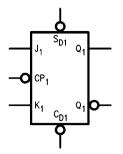
Asynchronous Inputs:

Connection Diagrams

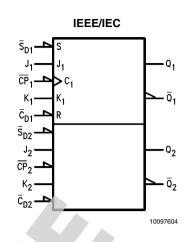
LOW input to \overline{S}_D sets Q to HIGH level LOW input to \overline{C}_D sets Q to LOW level Clear and Set are independent of clock Simultaneous LOW on \overline{C}_D and \overline{S}_D makes both Q and \overline{Q} HIGH

Features

- 'ACT112 has TTL-compatible inputs
- Outputs source/sink 24 mA
- Standard Microcircuit Drawing (SMD) 5962-8995001


Pin Descriptions

Pin Names	Description
J ₁ , J ₂ , K ₁ , K ₂	Data Inputs
$\overline{CP}_1, \overline{CP}_2$	Clock Pulse Inputs
	(Active Falling Edge)
$\overline{C}_{D1}, \overline{C}_{D2}$	Direct Clear Inputs (Active LOW)
$\overline{S}_{D1}, \overline{S}_{D2}$	Direct Set Inputs (Active LOW)
$Q_1, Q_2, \overline{Q}_1, \overline{Q}_2$	Outputs

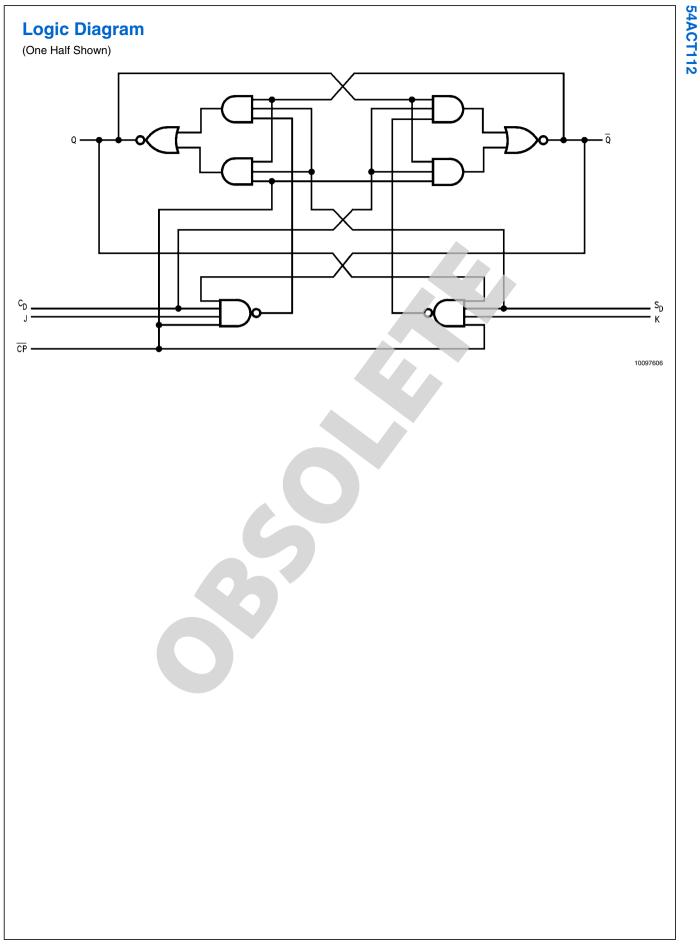

FACT™ is a trademark of Fairchild Semiconductor

54ACT112

Logic Symbols

10097601

S_{D2} Q_2 J₂ CP2 Q2 К2 C_{D2} 10097602


Truth Table

		Inputs			Out	puts
S _D	CD	CP	J	К	Q	Q
L	Н	Х	Х	Х	Н	L
Н	L	Х	Х	Х	L	Н
L	L	X	Х	Х	н	Н
H	Н	М	h	h	\overline{Q}_{0}	Q_0
Н	Η /	Μ	Ι	h	L	н
н	Н	М	h	Ι	н	L
Н	н	М	Ι	Ι	Q ₀	$\overline{\mathbf{Q}}_{0}$

H (h) = HIGH Voltage Level L (l) = LOW Voltage Level

X = Immaterial

 $\begin{array}{l} A = \text{HIGH} \\ M = \text{HIGH-to-LOW Clock Transition} \\ Q_0 \ (\overline{Q}_0) = \text{Before HIGH-to-LOW Transition of Clock} \\ \text{Lower case letters indicate the state of the referenced input or output one setup time prior to the HIGH-to-LOW clock transition. } \end{array}$

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (I _{IK})	
$V_{I} = -0.5V$	–20 mA
$V_{\rm I} = V_{\rm CC} + 0.5 V$	+20 mA
DC Input Voltage (VI)	-0.5V to V _{CC} + 0.5V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_{O} = V_{CC} + O.5$	+20 mA
DC Output Voltage (V _O)	–0.5V to V _{CC} +0.5V
DC Output Source	
or Sink Current (I _O)	±50 mA
DC V _{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	±50 mA
Storage Temperature (T _{STG})	–65°C to +150°C
Junction Temperature (T_J)	
CDIP	175°C

Recommended Operating Conditions

Supply Voltage (V _{CC})	4.5V to 5.5V
Input Voltage (V _I)	0V to V _{CC}
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	–55°C to +125°C
Minimum Input Edge Rate (ΔV/Δt)	125 mV/ns
V _{IN} from 0.8V to 2.0V	
V _{CC} @ 4.5V, 5.5V	

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACTTM circuits outside databook specifications.

DC Characteristics for 'ACT Family Devices

Symbol	Parameter V _{CC}		T _A = -55°C to +125°C	Units	Conditions
		(V)	Guaranteed Limits		
V _{IH}	Minimum High Level	4.5	2.0	V	V _{OUT} = 0.1V
	Input Voltage	5.5	2.0		or V _{CC} – 0.1V
V _{IL}	Maximum Low Level	4.5	0.8	V	$V_{OUT} = 0.1V$
	Input Voltage	5.5	0.8		or V _{CC} – 0.1V
V _{OH}	Minimum High Level	4.5	4.4	V	I _{OUT} = -50 μA
	Output Voltage	5.5	5.4		
					$V_{IN} = V_{IL}$ or V_{IH}
		4.5	3.70	V	I _{OH} = -24 mA
		5.5	4.70		I _{OH} = -24 mA
					(Note 2)
V _{OL}	Maximum Low Level	4.5	0.1	V	Ι _{ουτ} = 50 μΑ
	Output Voltage	5.5	0.1		
					$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5	0.5	V	I _{OL} = 24 MA
		5.5	0.5		I _{OL} = 24 mA
					(Note 2)
I _{IN}	Maximum Input Leakage Current	5.5	± 1.0	μA	$V_{I} = V_{CC}, GND$
I _{CCT}	Maximum I _{CC} /Input	5.5	1.6	mA	$V_{I} = V_{CC} - 2.1V$
I _{OLD}	Minimum Dynamic	5.5	50	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current(Note 3)	5.5	-50	mA	V _{OHD} = 3.85V Min
I _{cc}	Maximum Quiescent Supply Current	5.5	80.0	μA	$V_{IN} = V_{CC}$ or GND

Note 2: All outputs loaded; thresholds on input associated with output under test.

Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

AC Electrical Characteristics for 'ACT Family Devices

Symbol	Parameter	V _{cc} (V)	T _A = −55°C to +125°C C _L = 50 pF		Units	Fig. No.
		(Note 4)	Min	Max		
max	Maximum Clock	5.0	80		MHz	
	Frequency					
PLH	Propagation Delay	5.0	1.0	14.0	ns	
	CP_n to Q_n or \overline{Q}_n					
PHL	Propagation Delay	5.0	1.0	14.0	ns	
	CP_n to Q_n or \overline{Q}_n					
PLH	Propagation Delay	5.0	1.0	13.5	ns	
	\overline{C}_{Dn} or \overline{S}_{Dn} to Q_n or \overline{Q}_n					
PHL	Propagation Delay	5.0	1.0	13.5	ns	
	\overline{C}_{Dn} or \overline{S}_{Dn} to Q_n or \overline{Q}_n					

Note 4: Voltage Range 5.0 is 5.0V ±0.5V

AC Operating Requirements:

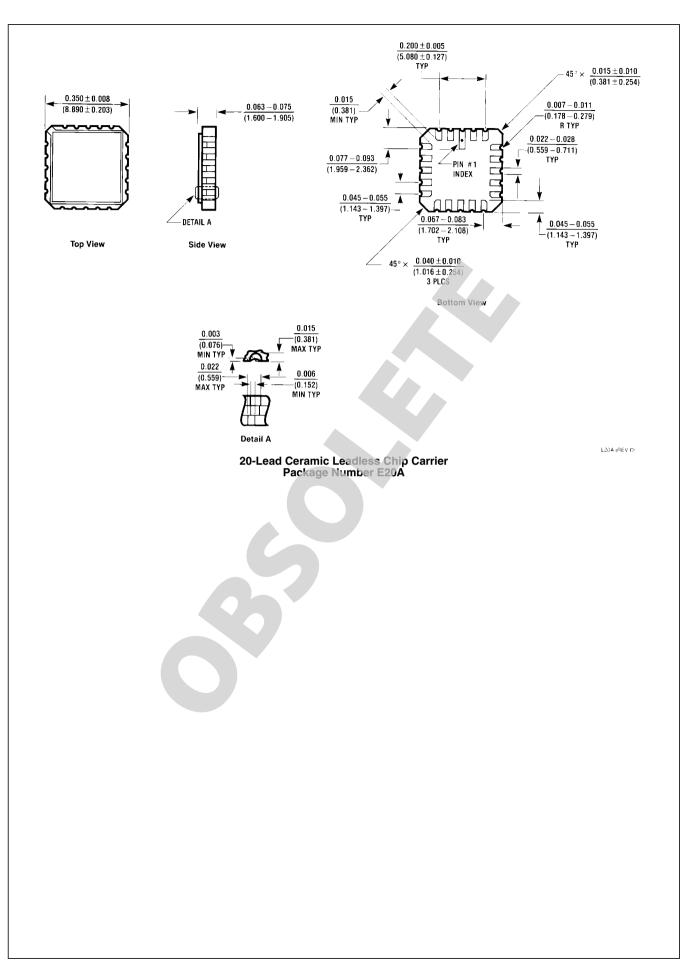
Symbol	Parameter	V _{cc} (V) (Note 5)	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $C_L = 50 \text{ pF}$ Guaranteed Minimum	Units	Fig. No.
t _S	Setup Time, HIGH or LOW J_n or \overline{K}_n to CP_n	5.0	8.0	ns	
t _H	Hold Time, HIGH or LOW J_n or \overline{K}_n to CP_n	5.0	1.5	ns	
t _W	Pulse Width CP_n or \overline{C}_{Dn} or \overline{S}_{Dn}	5.0	5.0	ns	
t _{rec}	Recovery Time \overline{C}_{Dn} or \overline{S}_{Dn} to CP_n	5.0	3.0	ns	

Note 5: Voltage Range 5.0 is $5.0V \pm 0.5V$

Capacitance

Symbol	Parameter	Мах	Units	Conditions
C _{IN}	Input Capacitance	10.0	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	60	pF	$V_{CC} = 5.0V$

54ACT112


Physical Dimensions inches (millimeters) unless otherwise noted

54ACT112

www.national.com

54ACT112

Notes

Flip-Fl	
red	For more National Sen
ge	
ig	Amplifiers
	Audio
4	Clock and Timing
ð	Data Converters
БП	Interface
6	LVDS
<u> </u>	Power Management
at	Switching Regula
0	LDOs
Ne	LED Lighting
X	Voltage Referen
	PowerWise® Solution
a	Serial Digital Interface
	Temperature Sensors
2	Wireless (PLL/VCO)
-	THE CONTENTS OF T
4ACT	("NATIONAL") PRODU
Ă	OR COMPLETENESS SPECIFICATIONS AN
4	IMPLIED, ARISING B

Ω.

miconductor product information and proven design tools, visit the following Web sites at:

Pr	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage Reference	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Solutions	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic	
Wireless (PLL/VCO)	www.national.com/wireless	PowerWise® Design University	www.national.com/training	

THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ICTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO ID PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS, PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS. NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2009 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com ww.national.com Tel: 1-800-272-9959

National Semiconductor Europe **Technical Support Center** Email: europe.support@nsc.com

National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan **Technical Support Center** Email: ipn.feedback@nsc.com