International Rectifier

20CJQ030

SCHOTTKY RECTIFIER

2 Amp

$$I_{F(AV)} = 2 \text{ Amp}$$

 $V_R = 30V$

Major Ratings and Characteristics

Characteristics	Values	Units
I _{F(AV)} Rectangular waveform	2.0	А
V _{RRM}	30	V
I _{FSM} @ tp = 5 µs sine	400	А
V _F @1 Apk, T _J = 125°0 (per leg)	C 0.42	V
T _J range	- 55 to 150	°C

Description/ Features

The 20CJQ030 surface mount Schottky rectifier series has been designed for applications requiring very low forward drop and very small foot prints. Typical applications are in portables, switching power supplies, converters, automotive system, free-wheeling diodes, battery charging, and reverse battery protection.

- Small footprint, surface mountable
- Low profile
- · Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Common cathode

Voltage Ratings

Part number	20CJQ030
V _R Max. DC Reverse Voltage (V)	20
V _{RWM} Max. Working Peak Reverse Voltage (V)	30

Absolute Maximum Ratings

	Parameters	Values	Units	Conditions
I _{F(AV)}	Max. Average Forward (Per Leg)	2	Α	50% duty cycle @ T _C = 132°C, rectangular wave form
	Current * See Fig. 5 (Per Device)	4		50% duty cycle @ T _C = 117°C, rectangular wave form
I _{FSM}	Max. Peak One Cycle Non-Repetitive	400	Α	5μs Sine or 3μs Rect. pulse Following any rated load condition and with
	Surge Current (Per Leg) * See Fig. 7	24		10ms Sine or 6ms Rect. pulse rated V _{RRM} applied
E _{AS}	Non-Repetitive Avalanche Energy	2	mJ	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 1 \text{Amps}, L = 4 \text{mH}$
	(Per Leg)			
I _{AR}	Repetitive Avalanche Current	1	Α	Current decaying linearly to zero in 1 µsec
	(Per Leg)			Frequency limited by $T_J max. V_A = 1.5 x V_R$ typical

Electrical Specifications

	Parameters	Values	Units	(Conditions
V _{FM}	Max. Forward Voltage Drop	0.50	V	@ 1A	T = 25 °C
	(Per Leg) * See Fig. 1 (1)	0.59	V	@ 2A	T _J = 25 °C
		0.42	V	@ 1A	T 407.00
		0.52	V	@ 2A	T _J = 125 °C
I _{RM}	Max. Reverse Leakage Current	0.1	mA	T _J = 25 °C	\/ - vote d \/
	(Per Leg) * See Fig. 2 (1)	15	mA	T _J = 125 °C	$V_R = \text{rated } V_R$
C _T	Typ. Junction Capacitance (Per Leg)	120	pF	$V_R = 5V_{DC}$ (test signal range 100Khz to 1Mhz) 25°C	
L _s	Typical Series Inductance (Per Leg)	6	nΗ	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	4600	V/ µs	(Rated V _R)	

⁽¹⁾ Pulse Width < 300 μ s, Duty Cycle <2%

Thermal-Mechanical Specifications

	Parameters	Values	Units	Conditions
T _J	Max. Junction Temperature Range (*)	-55 to 150	°C	
T _{stg}	Max. Storage Temperature Range	-55 to 150	°C	
R _{thJA}	Max. Thermal Resistance Junction to Ambient	65	°C/W	DC operation
R _{thJL}	Max. Thermal Resistance Junction to Lead	25	°C/W	DC operation
wt	Approximate Weight	0.13 (.0045)	g (oz.)	
	Case Style	SOT-2	23	
	Device Marking	2CJQ	E	

 $[\]frac{{\binom{*}}}{{\text{dT}} } < \frac{1}{{\text{Rth}}({\text{j-a}})}$ thermal runaway condition for a diode on its own heatsink

Document Number: 93271

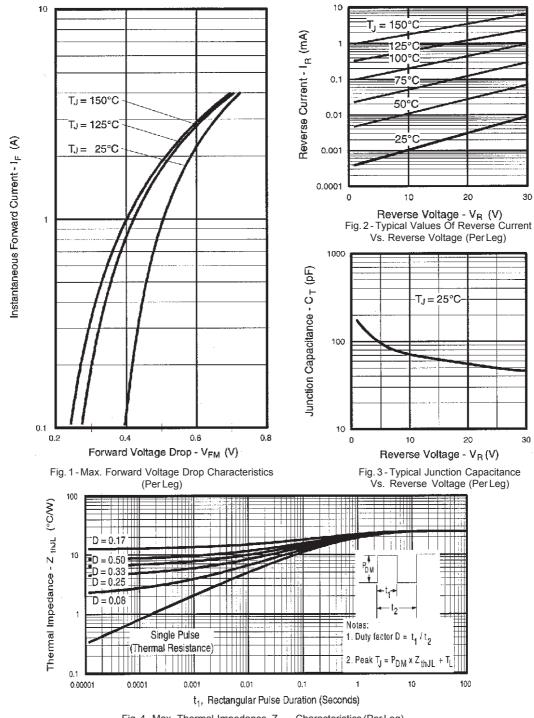


Fig. 4 - Max. Thermal Impedance Z_{thJC} Characteristics (Per Leg)

Document Number: 93271 www.vishay.com

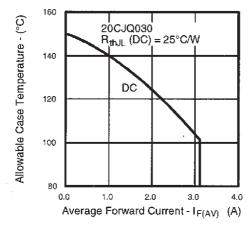


Fig. 5 - Max. Allowable Case Temperature Vs. Average Forward Current (Per Leg)

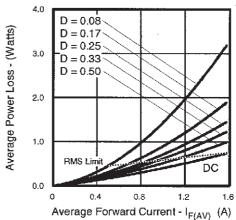


Fig. 6 - Forward Power Loss Characteristics (Per Leg)

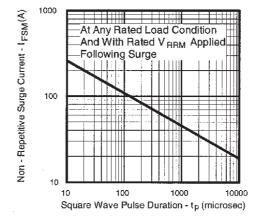
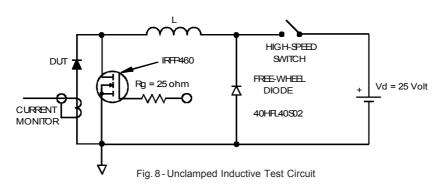
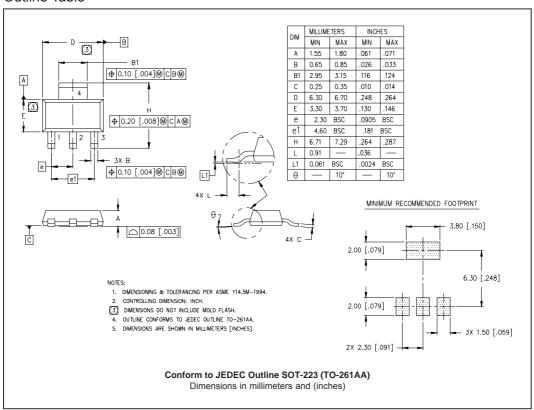
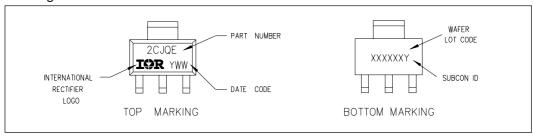
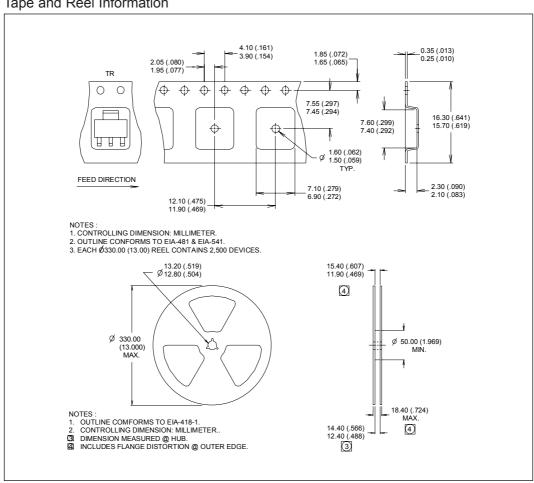




Fig. 7 - Max. Non-Repetitive Surge Current (Per Leg)

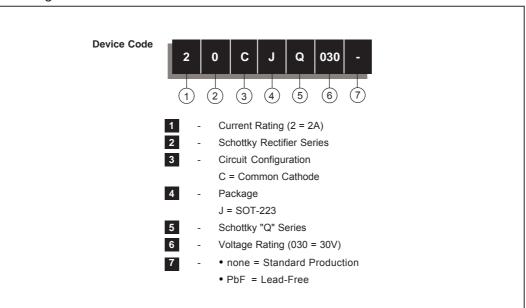


(2) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $\begin{aligned} & \text{Pd = Forward Power Loss = I}_{F(AV)} \text{x V}_{FM} @ (I_{F(AV)} / D) \text{ (see Fig. 6);} \\ & \text{Pd}_{REV} = & \text{Inverse Power Loss = V}_{R1} \text{x I}_{R} (1 - D); I_{R} @ V_{R1} = 80\% \text{ rated V}_{R} \end{aligned}$

Outline Table



Marking Information



Document Number: 93271 www.vishay.com

Tape and Reel Information

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309

07/06

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products. Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier®, IR®, the IR logo, HEXFET®, HEXSense®, HEXDIP®, DOL®, INTERO®, and POWIRTRAIN® are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.

Document Number: 99901 www.vishay.com Revision: 12-Mar-07