- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These octal buffers and line drivers are designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. Taken together with the 'F240 and 'F241, these devices provide the choice of selected combinations of inverting and noninverting outputs, symmetrical $\overline{\mathrm{OE}}$ (active-low output-enable) inputs, and complementary OE and $\overline{\mathrm{OE}}$ inputs.
The 'F244 is organized as two 4-bit buffers/line drivers with separate output enable ($\overline{\mathrm{OE}}$) inputs. When $\overline{O E}$ is low, the device passes data from the A inputs to the Y outputs. When $\overline{O E}$ is high, the outputs are in the high-impedance state.
The SN74F244 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54F244 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74F244 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SN54F244 . . . J PACKAGE
SN74F244 . . . DB, DW, OR N PACKAGE
(TOP VIEW)

1)	1	20	V_{CC}
1A1	2	19	2OE
$2 Y 4$	3	18	1 Y 1
1A2	4	17	2A4
2 Y 3	5	16] Y 2
1A3	6	15] 2A3
$2 Y 2$ [7	14] 1 Y 3
1A4	8	13	- 2 A 2
$2 Y 1$	9	12] 1 Y 4
GND	10	11	2A1

SN54F244 ... FK PACKAGE (TOP VIEW)

FUNCTION TABLE (each buffer)		
INPUTS		OUTPUT
$\overline{\mathrm{OE}}$	A	Y
L	H	H
L	L	L
H	X	Z

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

Supply voltage range, V_{CC}		-0.5 V to 7 V
Input voltage range, $\mathrm{V}_{\text {I }}$ (see Note 1)		-1.2 V to 7 V
Input current range		-30 mA to 5 mA
Voltage range applied to any output in	he disabled	-0.5 V to 5.5 V
Voltage range applied to any output in	he high state	-0.5 V to V_{CC}
Current into any output in the low state:	SN54F244	96 mA
	SN74F244	128 mA
Operating free-air temperature range:	SN54F244	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
	SN74F244	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range		$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

[^0]recommended operating conditions

		SN54F244			SN74F244			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
V_{IH}	High-level input voltage	2			2			V
V_{IL}	Low-level input voltage			0.8			0.8	V
IIK	Input clamp current			-18			-18	mA
${ }^{\text {IOH}}$	High-level output current			-12			-15	mA
$\mathrm{IOL}^{\text {I }}$	Low-level output current			48			64	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			N54F244			N74F24		UNIT		
		MIN	TYP†	MAX	MIN	TYP†	MAX					
$\mathrm{V}_{\text {IK }}$				$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$			-1.2			-1.2	V
VOH		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOH}=-3 \mathrm{~mA}$	2.4	3.3		2.4	3.3		V		
		$\mathrm{I}^{\mathrm{OH}}=-12 \mathrm{~mA}$	2	3.2								
		$\mathrm{IOH}=-15 \mathrm{~mA}$				2	3.1					
		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{I} \mathrm{OH}=-3 \mathrm{~mA}$				2.7					
VOL			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}=48 \mathrm{~mA}$		0.38	0.55				V	
		$\mathrm{IOL}=64 \mathrm{~mA}$						0.42	0.55			
IOZH			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			50			50	$\mu \mathrm{A}$	
IOZL		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-50			-50	$\mu \mathrm{A}$		
1		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1			0.1	mA		
${ }_{1 / \mathrm{H}}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
IIL	$\overline{\mathrm{OE}}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V}$	-1			-1			mA		
	Any A					-1.6			-1.6			
los ${ }^{\ddagger}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0$	-100		-225	-100		-225	mA		
ICC		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V},$ Outputs open	Outputs high		40	60		40	60	mA		
		Outputs low		60	90		60	90				
		Outputs disabled		60	90		60	90				

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

SDFS063A - D2932, MARCH 1987 - REVISED OCTOBER 1993

switching characteristics (see Note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to MAXt } \end{aligned}$				UNIT
			'F244			SN54F244		SN74F244		
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y	1.7	3.6	5.2	2	6.5	1.7	6.2	ns
tPHL			1.7	3.6	5.2	2	7	1.7	6.5	
tPZH	$\overline{\mathrm{OE}}$	Y	1.2	3.9	5.7	2	7	1.2	6.7	ns
tPZL			1.2	5	7	2	8.5	1.2	8	
tPHZ	$\overline{\mathrm{OE}}$	Y	1.2	4.1	6	2	7	1.2	7	ns
tpLZ			1.2	4.1	6	2	7.5	1.2	7	

[^1]
IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.
*it Texas
INSTRUMENTS

Logic Selection Guide

First Half 2001

A Tradition of Design Solutions

LOGIC OVERVIEW

FOCUS ON THE HISTORY OF LOGIC
2

FUNCTIONAL INDEX
3

FUNCTIONAL CROSS-REFERENCE
4

DEVICE SELECTION GUIDE

PACKAGING AND SYMBOLIZATION INFORMATION

LOGIC SELECTION GUIDE

FIRST HALF 2001

Instruments

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.
In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, license, warranty or endorsement thereof.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2001, Texas Instruments Incorporated

CONTACTS/INFORMATION

TI HOME PAGE
 http://www.ti.com

TI LOGIC HOME PAGE
http://www.ti.com/sc/logic

TI MILITARY SEMICONDUCTOR HOME PAGE
http://www.ti.com/sc/docs/military

PRODUCT INFORMATION

 CENTERhttp://www.ti.com/ cgi-bin/sc/support.cgi

DATA SHEETS

http://www.ti.com/sc/logic

Texas Instruments offers a full spectrum of logic functions and technologies from the mature to the advanced, including bipolar, BiCMOS, and CMOS. Tl's process technologies offer the logic performance and features required for modern logic designs, while maintaining support for more traditional logic products. Tl's offerings include products in the following process technologies or device families:

- AC, ACT, AHC, AHCT, ALVC, AVC, FCT, HC, HCT, LV, LVC, TVC
- ABT, ABTE, ALB, ALVT, BCT, HSTL, LVT, SSTL, SSTV
- BTA, CBT, CBTLV, FB, FIFO, GTL, GTLP, JTAG, PCA
- ALS, AS, F, LS, S, TTL

TI offers specialized, advanced logic products that improve overall system performance and address design issues, including testability, low skew requirements, bus termination, memory drivers, and low-impedance drivers.

TI offers a wide variety of packaging options, including advanced surface-mount packaging in fine-pitch small-outline and ball-grid-array (BGA) packages. The newest package for logic is the MicroStar Junior ${ }^{\text {TM }}$ very-thin, fine-pitch BGA. MicroStar Junior complements the MicroStar BGA ${ }^{\text {™ }}$ package to deliver high performance and allows the designer to double input/output density in the same circuit-board area or reduce board area by one-half, compared to standard packaging technology.

For further information on TI logic families, refer to the list of current TI logic technical documentation provided in this preface. For an overview of Tl logic, see Section 1. Section 2, Focus on the History of Logic, commemorates the 10th anniversary of the Logic Selection Guide. Sections 3, 4, and 5 contain a functional index, functional cross-reference, and device selection guide, respectively. These sections list the functions offered, package availability, and applicable literature numbers of data sheets. Appendix A includes additional information about packaging and symbolization. Appendix B provides a cross-reference to match other manufacturers' products to those of TI. Data sheets can be downloaded from the internet at http://www.ti.com or ordered through your local sales office or TI authorized distributor. Please see the back cover of this selection guide for additional information.

CURRENT TI LOGIC TECHNICAL DOCUMENTATION

Listed below is the current collection of TI logic technical documentation. These documents can be ordered through a TI representative or authorized distributor by referencing the appropriate literature number.

Document

Literature Number
ABT Logic Advanced BiCMOS Technology Data Book (1997) SCBD002C
AC/ACT CMOS Logic Data Book (1997) SCAD001D
AHC/AHCT Logic Advanced High-Speed CMOS Data Book (April 2000) SCLD003B
AHC/AHCT Designer's Guide (February 2000) SCLA013D
ALS/AS Logic Data Book (1995) SDAD001C
ALVC Advanced Low-Voltage CMOS Data Book (June 1999) SCED006A
AVC Advanced Very-Low-Voltage CMOS Data Book (March 2000) SCED008B
BCT BiCMOS Bus-Interface Logic Data Book (1994) SCBD001B
Boundary-Scan Logic IEEE Std 1149.1 (JTAG) Data Book (1997) SCTD002A
IEEE Std 1149.1 (JTAG) Testability Primer (1997) SSYA002C
CBT (5-V) and CBTLV (3.3-V) Bus Switches Data Book (December 1998) SCDD001B
Design Considerations for Logic Products Application Book (1997) SDYA002
Design Considerations for Logic Products Application Book, Volume 2 (September 1999) SDYA018
Design Considerations for Logic Products Application Book, Volume 3 (December 2000) SDYA019
F Logic Data Book (1994) SDFD001B
GTL, BTL, and ETL Logic Data Book (1997) SCED004
GTL/GTLP Product Information (January 2000) SCED009
HC/HCT Logic High-Speed CMOS Data Book (1997) SCLD001D
LVC and LV Low-Voltage CMOS Logic Data Book (1998) SCBD152A
LVT Logic Low-Voltage Technology Data Book (1998) SCBD154
Mobile Computing Logic Solutions Data Book (July 1999) SCPD002
PC, Workstation, Server, and High-Speed Memory Interface Logic Solutions Data Book (July 1999) SCPD003
Semiconductor Group Package Outlines Reference Guide (1999) SSYU001E
See www.ti.com/sc/logic for the most current data sheets.
SECTION 1 - LOGIC OVERVIEW 1-1
Welcome to the World of TI Logic 1-5
Selecting a Logic Family 1-6
Product Life Cycle 1-7
Family Performance Positioning 1-8
Logic Vendor Partnerships 1-9
Complete Low-Voltage Market Coverage and Standardization 1-10
$3-\mathrm{V}$ and 5-V TTL and CMOS Specifications 1-11
Interfacing Mixed Voltages 1-12
Special "Dual-Supply" Level Shifters 1-13
Bus-Hold Input Characteristics 1-14
Partial-Power-Down Applications 1-15
Power-Up 3-State/Hot Insertion 1-16
Live Insertion 1-17
Precharge Function Avoids Data Corruption 1-18
Damping Resistors 1-19
DOC™ Circuitry Provides the Best-Possible Signal Integrity Without Compromising Speed 1-20
DOC ${ }^{\text {тм }}$ Circuitry Available With AVC 1-21
Advanced-Logic Feature List 1-22
Little Logic (Single Gate and Dual Gates) 1-23
Little-Logic Features 1-24
High-Performance Bus Solutions for System Connections 1-25
Every Bus Solution Is a Translator 1-26
Data Rate vs Transmission Length 1-27
GTLP Is a High-Performance Backplane Translator 1-28
AVC - Advanced Very-Low-Voltage CMOS 1-29
CBT vs CBTLV 1-30
CBT/CBTLV Product Family 1-31
Packaging Options 1-32
Device Names and Package Designators 1-33
TI DSP-Related FIFO Products 1-34
TI FIFO Product and Technology Roadmap 1-35
Typical FIFO Applications and End Equipment 1-36
TI FIFOs Optimize System Performance 1-37
TI FIFO Web Resources 1-38
SECTION 2 - FOCUS ON THE HISTORY OF LOGIC 2-1
The Transistor 2-5
The Integrated Circuit 2-5
The Logic Business Begins 2-6
Types of Logic 2-6
The Logic Time Line 2-7
TI Logic Today 2-9
What About Tomorrow? 2-9
Bibliography 2-10
SECTION 3 - FUNCTIONAL INDEX 3-1
Backplane Logic (GTL, GTLP, FB+/BTL, and ABTE/ETL) 3-5
Drivers and Transceivers 3-5
Boundary-Scan IEEE Std 1149.1 (JTAG) Logic 3-6
Boundary-Scan (JTAG) Bus Devices 3-6
Boundary-Scan (JTAG) Support Devices 3-6
Buffers and Drivers 3-7
Inverting Buffers and Drivers 3-7
Noninverting Buffers and Drivers 3-8
Bus Switches 3-11
Bus Exchange/Multiplexing Switches 3-11
Standard Bus Switches 3-11
Counters 3-13
Binary Counters 3-13
Decade Counters 3-14
Decoders, Encoders, and Multiplexers 3-15
Decoders 3-15
Multiplexers 3-16
Priority Encoders 3-17
FIFOs (First-In, First-Out Memories) 3-18
Asynchronous FIFO Memories 3-18
Synchronous FIFO Memories 3-19
Flip-Flops 3-20
D-Type Flip-Flops (3-state) 3-20
D-Type Flip-Flops (non 3-state) 3-21
Other Flip-Flops 3-21
Gates and Inverters 3-22
AND Gates 3-22
NAND Gates 3-23
AND-OR-Invert Gates 3-24
OR Gates 3-24
NOR Gates 3-25
Exclusive-OR Gates 3-25
Exclusive-NOR Gates 3-25
Gate and Delay Elements 3-26
Inverters 3-26
Latches 3-27
D-Type Latches (3-state) 3-27
Other Latches 3-28

SECTION 3 (continued)

Little Logic 3-28
AND Gates 3-28
NAND Gates 3-28
OR Gates 3-29
NOR Gates 3-29
Exclusive-OR Gates 3-29
D-Type Flip-Flops 3-29
Inverters 3-29
Inverting Buffers and Drivers 3-29
Noninverting Buffers and Drivers 3-30
Standard Bus Switches 3-30
Memory Drivers and Transceivers (HSTL, SSTL, and SSTV) 3-30
Buffers, Drivers, and Latches 3-30
Registers 3-31
Registers 3-31
Specialty Logic 3-32
Adders 3-32
Arithmetic Logic Units 3-32
Bus-Termination Arrays and Networks 3-33
Comparators (identity) 3-33
Comparators (magnitude) 3-33
Digital Phase-Locked Loops (PLLs) 3-34
Drivers/Multipliers 3-34
ECL/TTL Functions 3-34
Frequency Dividers/Timers 3-34
Monostable Multivibrators 3-35
Oscillators 3-35
Parity Generators and Checkers 3-35
Translation Voltage Clamps 3-36
Voltage-Level Shifters 3-36
Transceivers 3-36
Parity Transceivers 3-36
Registered Transceivers 3-37
Standard Transceivers 3-38
Universal Bus Functions 3-40
Universal Bus Transceivers 3-40
Universal Bus Drivers 3-41
Universal Bus Exchangers 3-41
SECTION 4 - FUNCTIONAL CROSS-REFERENCE 4-1
SECTION 5 - DEVICE SELECTION GUIDE 5-1
ABT - Advanced BiCMOS Technology Logic 5-5
ABTE/ETL - Advanced BiCMOS Technology/Enhanced Transceiver Logic 5-11
AC/ACT - Advanced CMOS Logic 5-13
AHC/AHCT - Advanced High-Speed CMOS Logic 5-21
ALB - Advanced Low-Voltage BiCMOS Logic 5-27
ALS - Advanced Low-Power Schottky Logic 5-29
ALVC - Advanced Low-Voltage CMOS Technology Logic 5-35
ALVT - Advanced Low-Voltage BiCMOS Technology Logic 5-39
AS - Advanced Schottky Logic 5-41
AVC - Advanced Very-Low-Voltage CMOS Logic 5-45
BCT - BiCMOS Technology Logic 5-47
64BCT - 64-Series BiCMOS Technology Logic 5-47
BTA - Bus-Termination Arrays 5-51
CBT - Crossbar Technology Logic 5-53
CBTLV - Low-Voltage Crossbar Technology Logic 5-57
CD4000 - CMOS B-Series Integrated Circuits 5-59
74F - Fast Logic 5-63
FB+/BTL - FutureBus+/Backplane Transceiver Logic 5-67
FCT - Fast CMOS TTL Logic 5-69
FIFO - First-In, First-Out Memories 5-77
GTL - Gunning Transceiver Logic 5-81
GTLP - Gunning Transceiver Logic Plus 5-83
HC/HCT - High-Speed CMOS Logic 5-87
IEEE Std 1149.1 (JTAG) Boundary-Scan Logic 5-97
Little Logic 5-101
LS - Low-Power Schottky Logic 5-105
LV - Low-Voltage CMOS Technology Logic 5-111
LVC - Low-Voltage CMOS Technology Logic 5-115
LVT - Low-Voltage BiCMOS Technology Logic 5-119
PCA - I²C Inter-Integrated Circuit Applications 5-123
S - Schottky Logic 5-125
SSTL/SSTV - Stub Series-Terminated Logic 5-129
HSTL - High-Speed Transceiver Logic 5-129
TTL - Transistor-Transistor Logic 5-131
TVC - Translation Voltage Clamp Logic 5-135
APPENDIX A - PACKAGING AND SYMBOLIZATION INFORMATION A-1
Device Names and Package Designators for TI Logic Products A-5
Device Names and Package Designators
for Logic Products Formerly Offered by Cypress Semiconductor A-6
Device Names and Package Designators for Logic Products Formerly Offered by Harris Semiconductor A-7
Logic Symbolization Guidelines A-9
Moisture Sensitivity by Package A-15
Packaging Cross-Reference A-17
APPENDIX B - LOGIC PURCHASING TOOL/ALTERNATE SOURCES B-1

LOGIC OVERVIEW

MヨIヘ甘ヨヘ0 פIDO7

CONTENTS

Welcome to the World of TI Logic 1-5
Selecting a Logic Family 1-6
Product Life Cycle 1-7
Family Performance Positioning 1-8
Logic Vendor Partnerships 1-9
Complete Low-Voltage Market Coverage and Standardization 1-10
3-V and 5-V TTL and CMOS Specifications 1-11
Interfacing Mixed Voltages 1-12
Special "Dual-Supply" Level Shifters 1-13
Bus-Hold Input Characteristics 1-14
Partial-Power-Down Applications 1-15
Power-Up 3-State/Hot Insertion 1-16
Live Insertion 1-17
Precharge Function Avoids Data Corruption 1-18
Damping Resistors 1-19
DOC ${ }^{\text {тм }}$ Circuitry Provides the Best-Possible Signal Integrity Without Compromising Speed 1-20
DOC ${ }^{\text {T }}$ Circuitry Available With AVC 1-21
Advanced-Logic Feature List 1-22
Little Logic (Single Gate and Dual Gates) 1-23
Little-Logic Features 1-24
High-Performance Bus Solutions for System Connections 1-25
Every Bus Solution Is a Translator 1-26
Data Rate vs Transmission Length 1-27
GTLP Is a High-Performance Backplane Translator 1-28
AVC - Advanced Very-Low-Voltage CMOS 1-29
CBT vs CBTLV 1-30
CBT/CBTLV Product Family 1-31
Packaging Options 1-32
Device Names and Package Designators 1-33
TI DSP-Related FIFO Products 1-34
TI FIFO Product and Technology Roadmap 1-35
Typical FIFO Applications and End Equipment 1-36
TI FIFOs Optimize System Performance 1-37
TI FIFO Web Resources 1-38

Welcome to the World of TI Logic

Specialty

Selecting a Logic Family...

Designer Careabouts...

High Speed

CBT, CBTLV, AVC, ALB, ALVT, ALVC, ABT, LVT, AHC

- Critical Requirements: Slew Rate and Propagation Delay

High Drive \quad ALVT, LVT, ABT, ALB, ALVC, LVC, AVC ${ }^{\dagger} \ldots$
highest interest first

- Incident Wave Switching

Low Power

- Migrate to Lower-Voltage Families

CBT, CBTLV, LVC, AHC, ALVC, LV, AVC, ALVT, LVT...

Ease of Use

LVC, ALVT, LVT, AHC, AVC, LV, ABT, CBT, CBTLV...

- Bus Hold, 5-V Tolerance, IOFF, Hot Insertion
${ }^{\dagger}$ AVC products with DOC ${ }^{\text {TM }}$ increase dynamic drive during switching

Product Life Cycle

Investment levels for new products are at an all-time high.
End-equipment requirements are accelerating new product introduction.
TI remains committed to be the last supplier in the older families.

Family Performance Positioning

Logic Vendor Partnerships

Performance Range	TI	Philips	Hitachi	IDT	Toshiba	FSC	On
5-V high performance	ABT	ABT	ABT		ABT	ABT-C	
$\begin{aligned} & \text { 5-V low } \\ & \text { performance } \end{aligned}$	AHC	AHC			VHC	VHC	VHC
3-V high performance	$\begin{array}{\|l} \hline \text { ALVT } \\ \text { LVT } \\ \text { ALVC } \end{array}$	$\begin{aligned} & \text { ALVT } \\ & \text { LVT } \\ & \text { ALVC } \end{aligned}$	LVT ALVC	ALVe	VCX	$\begin{aligned} & \text { LVT } \\ & \text { VCX } \end{aligned}$	VCX
3-V medium performance	LVC	LVC	LVC	LVC	LCX	LCX	LCX
3-V low performance	LV		LV		LVQ	$\frac{\text { LVQ }}{L V X}$	$\frac{\text { LVQ }}{\text { LVX }}$
2.5-V high performance	AVC	AVC					

Complete Low-Voltage Market Coverage and Standardization

3-V and 5-V TTL and CMOS Specifications

TTL Levels

Interfacing Mixed Voltages

Special "Dual-Supply" Level Shifters 'LVC4245, 'LVCC3245, 'LVCC4245, and 'ALVC164245

The 'ALVC164245 and 'LVC4245 have $5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ pins and $3.3-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ pins.

The 'LVCC3245 and 'LVCC4245 have adjustable output voltages.

The 'LVCC3245 can have one side from 3 V to 5.5 V , while the other side is between 2.3 V and 3.6 V .

The 'LVCC4245 is fixed at 5 V , while the other side can be connected between 3.3 V and 5 V .

In this way, a full mixed-mode system can be designed.

This solution is compatible with 3.3-V-only systems.
Devices can be replaced later with 3.3-V parts without PCB redesign.

$\stackrel{\stackrel{\rightharpoonup}{\rightharpoonup}}{\omega}$

Bus－Hold Input Characteristics

＊Holds the last known state of the inputs
＊Provides $\pm 74 \mu \mathrm{~A}$ of holding current at 0.8 V and 2.0 V
＊Bus hold current does not load the driving output at a valid logic level
＊Negligible input／output capacitance impact（ 0.5 pF ）
＊Eliminates the need for external resistor on unused or floating I／O pins
＊Reduces the number of passive components per board
＊Bus－hold nomenclature ：SN74xxxHxxx；e．g．，SN74LVCH245

Partial-Power-Down Applications

Logic Family $\mathrm{I}_{\text {OFF }}$ Specification

```
GTL, ABT, LVT, ALVT
: }\pm100\mu\textrm{A
GTLP
    : }\pm30\mu\textrm{A
LVC,AVC : : 10 \muA
LV : }\pm5\mu\textrm{A
```


* Unexpected device behavior during partial powering may cause system failure.
* Input signals may source current via input clamping diodes of powered-down circuits.

Power-Up 3-State/Hot Insertion

Tie external resistor from OE line to $V_{c c}$

* OE follows V_{CC}, ensuring device remains in 3-state (Z) during power up/power down - See $I_{\text {OFF }}$ and $I_{\text {OZ(PU/PD) }}$ on data sheet
* Devices tested at ramp rates of $200 \mu \mathrm{~s} / \mathrm{V}-20 \mu \mathrm{~s} / \mathrm{V}$

Live Insertion

$$
\begin{aligned}
& \text { Supporting Device Specifications } \\
& \text { I OFF } \\
& \text { Iozpu }^{\mathrm{I}_{\mathrm{OZPP}}} \\
& \mathrm{~V}_{\mathrm{O}}, \mathrm{~V}_{\mathrm{CC}}=0 \text {, BIAS } \mathrm{V}_{\mathrm{CC}}=\text { Min to } \mathrm{Max} \\
& \hline
\end{aligned}
$$

Circuit Implementation/ Modification
Precharge Circuit

Precharge Function Avoids Data Corruption (BIAS V_{cc})

Live-Insertion Situation

Card Insertion During Operation.

... Equals an Insertion of an Additional Capacitance

Possible Scenarios

- $\mathrm{V}_{\text {BIAS }}$ charges I/O capacitance up to threshold voltage

Damping Resistors

- Limits the current to reduce noise from undershoot or overshoot
* Aids in line termination (reducing ringing/line reflection to improve signal quality)
- Series resistor at output stage
- Short propagation delays and low power consumption
* Supports highest system performance and/or use of slower memories
- Reduces component count, board space, and mounting costs

Examples: 'ALVCH2245 'ALVCH162245

Extra "2" in device name indicates damping resistor on outputs only; " R " indicates both A and B ports.

DOC ${ }^{\text {TM }}$ Circuitry Provides the Best-Possible Signal Integrity Without Compromising Speed

DOC uses high drive only when needed (during transition)

Region 1

- Low drive during steady state signal
Region 2
- Output impedance is dynamically lowered during signal
transition to drive the line

Region 3:

- Output impedance is dynamically raised to reduce noisy signal overshoots and undershoots

DOC ${ }^{\text {TM }}$ Circuitry Available With AVC

DOC uses high drive only when needed (during transition)

The DOC Circuit

Delivers high drive current to achieve maximum speed
Reduces overshoot and undershoot normally associated with fast edges

Output waveforms are taken driving
a PC100 network load. $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$

$$
\mathrm{T}_{\mathrm{J}}=40^{\circ} \mathrm{C}
$$

Single bit switching

Eliminates the need for damping resistors

Advanced-Logic Feature List

* Mixed-voltage-tolerant I/Os and level shifting - LV, LVC, ALVC, LVT, ALVT, AVC, GTL, GTLP
- Systems use mixed supply voltages and TLL or CMOS levels in many designs. Most advanced-logic families allow mixed-signal interfacing and provide level-shifting functions for certain mixed-voltage applications.
* Bus hold - CBT ${ }^{\dagger}$, ABT ${ }^{\dagger}$, LVC \dagger, ALVC \dagger, LVT ${ }^{\dagger}$, ALVT, AVC \dagger, GTL, GTLP
- Bus-hold circuitry in selected logic families helps solve the problem of floating inputs and eliminates the need for pullup or pulldown resistors by holding the last known state of the input. See $\mathrm{I}_{(\mathrm{HOLD})}$ on data sheet.
* Partial power down - I
- $I_{\text {OFF }}$ circuitry prevents the device from being damaged during hot insertion. See $I_{\text {OZPU }}, I_{\text {OZPD }}, I_{\text {OFF }}$ specifications on data sheet.
* Power-up 3-state - ABT, LVT, ALVT, LVC, GTLP
- Power-up 3-state ensures valid output levels during power up and valid Z on the outputs during power down.
* BIAS $V_{C C}$ - GTLP, ABTE, FB, CBT, CBTLV, GTL (1655 only)
- $V_{\text {BIAS }}$ precharges I/O capacitance up to threshold voltage, preventing glitching of active data.
- Series damping resistors - ABT ${ }^{\dagger}$, LVC ${ }^{\dagger}$, ALVC ${ }^{\dagger}$, LVT ${ }^{\dagger}$, ALVT ${ }^{\dagger}$
- Series damping resistors limit signal overshoot and undershoot by providing better impedance matching and line termination without the need for external resistors.
- DOC ${ }^{\text {TM }}$ circuit - AVC
- The revolutionary DOC ${ }^{\text {TM }}$ circuitry automatically lowers circuit output impedance during signal transition and later raises it after signal transition to reduce noise.
* JTAG - ACT, BCT, ABT, LVT

Little Logic (Single Gate and Dual Gates)
 Example
 Application

Principle

* Small SOP-5 package

Less board space needed

* Optimized PCB layout
* Reduced EMI noise
* Enhances ASIC functionality .

Simplified routing
Better routing possibilities
\qquad

Benefits

Cuick fixes for ASCs

Little-Logic Features

Family	Operating V_{cc}	$\mathrm{I}_{\text {OFF }}$	$\begin{aligned} & V_{\text {in }} \\ & \text { Tol. } \end{aligned}$	$\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$				$\mathrm{t}_{\mathrm{pd}}\left(\mathrm{ns}, \mathrm{C}_{1}=50 \mathrm{pF}\right)$				
				1.8 V	2.5 V	3.3 V	5 V	1.5 V	1.8 V	2.5 V	3.3 V	5 V
$\begin{aligned} & \text { AHC1G } \\ & \text { AHCT1G } \end{aligned}$	2.0-5.5	No	Yes			4	8				11	7.5
LVC1G LVC2G	1.8-5.5	Yes	Yes	4	12	24	32		+8.5	†5.5	4	3.3
ALVC1G ALVC2G	1.5-3.6	Yes	Yes	6	18	24		†7.5	†6	†3.5	†2.5	
Competition												
$\begin{aligned} & \text { TC7SH } \\ & \text { (VHC) } \end{aligned}$	1.5-3.6	No	Yes			4	8				11	4.5
$\begin{aligned} & \text { TC7SZ } \\ & \text { (LCX) } \end{aligned}$	1.8-5.5	Yes	Yes		12	24	32		+9.5	†6.5	5	4.3
$\begin{aligned} & \text { TC7SA } \\ & \text { (VCX) } \end{aligned}$	1.8-3.6	Yes	Yes	6	18	24			†7	+4	†3	

† Symbol or red indicates $\mathrm{C}_{\mathrm{i}}=30 \mathrm{pF}$

High-Performance Bus Solutions for System Connections

Card-Card Connection Point to point, using LVDS, SERDES (example: TLK2501 etc.)

Rack-Rack Connection Point to point, using LVDS or PECL

Cabinet-Cabinet Connection

- Backplane to backplane with SERDES (example: TLK2500, etc.)
- Card to card with SERDES (example: TLK2501, etc.)

Every Bus Solution Is a Translator

A Port and Control Pins

Data Rate vs Transmission Length

GTLP Is a High-Performance Backplane Translator

AVC - Advanced Very-Low-Voltage CMOS Fastest Logic Family Available - Sub 2 ns Max t_{pd}

Features

- V_{CC} Specified at 3.3 V , 2.5 V , and 1.8 V
-3.3-V I/O Tolerance
- Bus Hold
- I OFF for Partial Power Down
- $\pm 10 \mu \mathrm{~A}$
- Dynamic Drive Through DOC ${ }^{\text {TM }}$ Circuit

Device	V_{CC}	Drive	$\mathrm{T}_{\mathrm{PD} \text { (MAX) }}$
SN74AVC16244	3.3 V	$-12 / 12 \mathrm{~mA}$ (Static)	1.7 ns
SN74AVC16244	2.5 V	$-8 / 8 \mathrm{~mA}$ (Static)	1.9 ns
SN74AVC16244	1.8 V	$-4 / 4 \mathrm{~mA}$ (Static)	3.2 ns

CBT vs CBTLV

CBT $V_{\text {IN }} / V_{\text {OUT }}$ Graph

CBT Features

- Level shifting - SN74CBTDxxx
- Precharged outputs - SN74CBT6800

CBTLV $\mathrm{V}_{\text {IN }} / \mathrm{V}_{\text {OUT }}$ Graph

CBTLV Features

- No level shifting
- Precharged outputs
- SN74CBTLV16800

CBT/CBTLV Product Family

Extremely low propagation delays make crossbar switches an effective replacement for drivers and receivers in high-speed systems in which signal buffering is not required.

What Are Bus Switches (CBT/CBTLV)?

CBT/CBTLV3384 Bus Switch

$\underset{-}{\stackrel{\rightharpoonup}{\omega}} \quad$ *Widebus and Shrink Widebus are trademarks of Texas Instruments.

* Simple FET switches specified at 5 V (CBT) and $3.3 \mathrm{~V}, 2.5 \mathrm{~V}$ (CBTLV) support easy bus communication between devices, i.e., memory and ASIC
* Near-zero propagation delay enables highest system speed
$-\mathrm{t}_{\text {pd(MAX) }}=0.25 \mathrm{~ns}$ for both CBT and CBTLV
* Very low power consumption makes them ideal for portable systems
$-\mathrm{I}_{\mathrm{CC}(\text { MAX })}=50 \mu \mathrm{~A}$ for CBT and $\mathrm{I}_{\mathrm{CC}(\text { MAX })}=20 \mu \mathrm{~A}$ for CBTLV

Where Are CBT Switches Used?

* Wide application: PCs, workstations, hard disk drives, bus boards, 5-V to 3-V translators, hot-card insertion, telecommunication equipment
* CBTxxxx - Functionally equivalent to QSxxxx
* CBTLVxxxx - Functionally equivalent to PI3Bxxxx

Which Package to Choose

* Industry standard pinouts ('244, '245)
* Fine-pitch packaging (SOIC, SSOP,TSSOP,TVSOP, Widebus ${ }^{\text {TM }}$, Shrink Widebus ${ }^{\text {TM }}$
* Single bus switch SN74CBT/CBTLV1G125... NOW AVAILABLE!!!
* CBT6800 and CBTLV16800 bus switch with precharged outputs available

Literature

* New CBT/CBTLV Selection Guide (literature number SCDB002)
* New CBT/CBTLV Data book (literature number SCDD001C)

Packaging Options

TI DSP-Related FIFO Products

- New TI FIFOs Offer a DSP Glueless Interface to Leading Edge TI DSPs

TI Technology Leadership Creates World-Class FIFO Performance

- TI Manufacturing Excellence Ensures the Lowest Total Cost of Ownership

TI FIFO Product and Technology Roadmap

Configuration:

(Availability)

Typical FIFO Applications and End Equipment

Typical Applications:

Bus-to-Bus Speed Matching
Clock Synchronization
Data Acquisition

DSP Interface
Elastic Stores
I/O Buffering

Microprocessor Interface
Slip Buffers
Transmit Buffer

Typical End Equipment:

Accelerator Cards
ATM/SONET
Digital Signal Processing
Digital TV
Disk Drivers
Workstations
FDDI (Fiber Distr. Data)
Graphics Systems
High-End Computers

High-End Copiers
High-End Printers
Industrial Controls
LAN/WAN
Medical Imaging
Modems
Networking Systems
Parallel Processors
PBX (Private Branch Exch.)

PCMCIA Cards
Routers
Scanners
SCSI Boards
Servers
Switches
Telecom Base Stations
Video Telecom
VME Boards

TI FIFOs Optimize System Performance

TI FIFO Web Resources

- TI FIFO Website
- http://www.ti.com/sc/fifo
- Order FIFO Sample Kit
- Comprehensive FIFO Product Listing
- TI FIFO Product Selection Guide
- TI FIFO Cross-Reference Guide
- TI DSP and FIFO-Related Application Reports
- General FIFO Application Reports
- TI FIFO website also accessible from product menu on TI home page http://www.ti.com

LOGIC OVERVIEW

FOCUS ON THE HISTORY OF LOGIC

FUNCTIONAL INDEX

FUNCTIONAL CROSS-REFERENCE

DEVICE SELECTION GUIDE
2

SECTION 2

CONTENTS

The Transistor 2-5
The Integrated Circuit 2-5
The Logic Business Begins 2-6
Types of Logic 2-6
The Logic Time Line 2-7
TI Logic Today 2-9
What About Tomorrow? 2-9
Bibliography 2-10

The Transistor

It is December 1947, and two researchers at Bell Telephone Laboratories, John Bardeen and Walter Brattain, have just demonstrated their invention to their team leader, William Shockley. Their invention is the first working transistor.
Fast-forward 11 years.

The Integrated Circuit

In a deserted laboratory at the brand-new Semiconductor Building owned by Texas Instruments, Jack Kilby first hits on the idea of the integrated circuit. In July 1958 most employees had left for mass vacation. Because Kilby was new to the company and didn't have much vacation, he stayed to man the lab.

What caused Kilby to think along the lines that eventually resulted in the integrated circuit? Like many inventors, he set out to solve a problem. In this case, the problem was called "the tyranny of numbers," where the interconnection of individual components offered too many potential points of failure.

For nearly all of the first 50 years of the 20th century, the electronics industry had been dominated by vacuum-tube technology. But vacuum tubes were unreliable, bulky, power-hungry, and hot. The invention of the transistor solved the problems of the vacuum tube. By comparison, transistors were tiny, more reliable, and longer lasting. They also produced less heat and used less power. The transistor inspired engineers to design increasingly complex electronic circuits and equipment containing hundreds or thousands of discrete components. But these components still had to be connected together to form complete circuits; hand wiring and soldering of thousands of components was expensive and time consuming. It also was unreliable; every soldered joint was a potential trouble source. The challenge was to find cost-effective, reliable ways to produce and interconnect these components.

One attempt at a solution was the Micro-Module program sponsored by the U.S. Army Signal Corps. The idea was to make all the components a uniform size and shape, with the wiring built in. The modules then could be snapped together to make circuits, eliminating the need for wiring the connections.

TI was working on the Micro-Module program when Kilby joined the company in 1958. Previous jobs had familiarized him with the "tyranny of numbers" problem facing the industry, but he doubted that the Micro-Module was the answer, as it did not address the basic problem of high component count in elaborate circuits.

Kilby began searching for an alternative, and during that search decided the only thing a semiconductor house could make cost effectively was a semiconductor. "Further thought led me to the conclusion that semiconductors were all that were really required, that resistors and capacitors, in particular, could be made from the same material as the active devices. I also realized that, since all of the components could be made of a single material, they could also be made in situ interconnected to form a complete circuit," Kilby wrote in a 1976 article titled Invention of the IC.

Kilby began to write and sketch his ideas in July 1958. By September, he was ready to demonstrate a working integrated circuit built on a piece of semiconductor material. Several executives, including former TI chairman Mark Shepherd, gathered on September 12, 1958. What they saw was a sliver of germanium, with protruding wires, glued to a glass slide. It was a rough device, but when Kilby pressed the switch, a sine wave appeared on the attached oscilloscope. His invention worked!

FOCUS ON THE HISTORY OF LOGIC

Kilby had made a big breakthrough. But while the U.S. Air Force showed some interest in Tl's integrated circuit, industry reacted more skeptically. Indeed, the IC and its relative merits "provided much of the entertainment at major technical meetings over the next few years," Kilby wrote. Kilby received co-credit for the invention of the integrated circuit with Robert Noyce, who had been working separately at the time on a similar project at Fairchild. Noyce died in 1990. Kilby was later awarded a Nobel Prize in physics (October 2000) in part for this work.

The integrated circuit won acceptance in the military market through programs such as the first computer using silicon chips for the Air Force in 1961 and the Minuteman Missile in 1962. Recognizing the need for a "demonstration product" to speed widespread commercial adoption of the IC, former TI chairman Patrick E. Haggerty challenged Kilby to design a calculator as powerful as the large, electromechanical desktop models of the day, but small enough to fit in a coat pocket. The resulting electronic handheld calculator, of which Kilby is a co-inventor, successfully commercialized the integrated circuit.

The Logic Business Begins

Once the idea of the integrated circuit was developed, it was obvious that many standard and often-used circuits could be built into a single package, and several of these prepackaged modules or semiconductor networks could be connected to form useful and much more complicated circuits. Early standard circuits included logic functions; OR gates, AND gates, and flip-flops.

Types of Logic

The first commercially available IC made by TI (1959/1960) was the SN502 microelectronic binary flip-flop, a simple gate with mesa construction and wire interconnections at a sample quantity price of $\$ 500$ each. The first true catalog ICs were resistor-transistor logic (RTL) and series-51 resistor-capacitor-transistor logic (RCTL) devices, first available in 1960/1961, at a price of $\$ 200$ per unit. At hundreds of dollars per unit, the cost of these early integrated circuits was astronomical in today's terms.

Diode-transistor logic (DTL) was an evolutionary step in improving speed, power, and semiconductor yields. Transistor-transistor logic (TTL) was a direct result of this evolution. Many TTL "flavors" were developed to offer the right mix of speed and power demanded in the marketplace. High-speed (H) and low-power (L) series were variations on transistor gain and resistor values. Schottky (S or STTL) added Schottky diodes to increase speed by preventing transistor saturation. Further market-driven requirements for lower power; better reliability, smaller packages, and/or higher speeds, resulted in low-power Schottky (LS or LPS), advanced low-power Schottky (ALS), and advanced Schottky (AS). With the exception of the DTL, RTL, and L and H TTL families, these products are still available.

The development of complementary metal-oxide semiconductor (CMOS) technology began a new branch of logic families. As with the earlier bipolar logic, different families with different speeds and capabilities developed. High-speed CMOS (HC) led to advanced CMOS logic (ACL). This development, again market driven, gave improved speeds with low CMOS power requirements and greatly improved output noise. A mixture of CMOS and bipolar processes resulted in the BiCMOS technology using internal CMOS components and high-power bipolar outputs. Several different families evolved from the original BiCMOS processes. Development and evolution of logic continues today. TI offers a complete line of logic products in bipolar, BiCMOS, and CMOS technologies.

Logic products changed to meet the needs of the equipment in which they were used. First were the simple gates, then 4 -bit-wide functions. The first 8 -bit buses drove development of the various octal functions. Higher bandwidth and throughput drove the development of wider and wider bit widths; Widebus ${ }^{T M}$ for 16 -bit buses, Widebus $+^{\text {TM }}$ for 32-bit buses. Even wider bit widths are now available or in development. Similarly, one- and two-bit products in very small packages have reappeared for simple fixes or where only a single or a pair of functions are needed.

Similar changes are being made in the operating voltages and package types and sizes. At first, most logic operated at 5 volts. Now, much of the logic used is 3.3 volts, which, in combination with CMOS technologies, has dramatically improved transition times, noise margins, and total overall power needs. As power requirements are reduced and higher bit widths are used, packages change as well. The pin counts are higher, but the package sizes become smaller, allowing a far greater overall circuit density than ever before.

The Logic Time Line

1958 - Jack Kilby invents the integrated circuit
1960 - Resistor-Transistor Logic (RTL) introduced.
1961 - Diode-Transistor Logic (DTL) introduced.
1964 - Transistor-Transistor Logic (TTL) announced by TI.
1965 - TI Sherman (Texas) plant opens to manufacture custom ICs for IBM.
1972 - Low-power Schottky and Schottky (LS, S) announced by TI. ABACUS II (Alloy, Bond, Assembly Concept, Universal System) bonding equipment brought to production.

1975 - Series 4000 CMOS technology introduced.
1980 - High-Speed CMOS logic (HC/HCT) introduced.
1981 - Advanced Low-Power Schottky and Advanced Schottky (ALS, AS) introduced by TI.
1983 - HC/HCT product announced by TI.
1984 - TI begins manufacture of $\mathbf{7 4 F}$ product (TI nomenclature for FAST $^{\text {TM }}$ technology).
1985 - Fast CMOS Technology (FCT) logic introduced.
1986 - Advanced CMOS Logic (AC/ACT) with center-pin Vcc and grounds introduced by TI and Signetics.
1987 - BiCMOS Technology (BCT) announced by TI.
1989 - ACL Widebus, Shrink-Small Outline Package (SSOP), and palladium lead finish introduced by TI (Pd replaces solder-dipped lead frames for fine-pitch packages and ultimately all logic packages).

1990 - Advanced BiCMOS Technology (ABT) introduced by TI and Philips.
1992 - ABT Widebus introduced by TI (Philips announces MultiByte version), Low-Voltage Technology (LVT) announced by TI, Thin Shrink Small-Outline Package (TSSOP) introduced by TI.

FOCUS ON THE HISTORY OF LOGIC

1993 - Low-Voltage CMOS Technology (LVC) logic, Low-Voltage CMOS Technology (LV) logic, and LVT Widebus introduced by TI.

1994 - Advanced Low Voltage CMOS Technology Widebus (ALVC) and Crossbar Technology (CBT) logic announced by TI.

1996 - Advanced High-Speed CMOS (AHC/AHCT) Advanced Low-Voltage Technology (ALVT) logic, and Thin Very-Small-Outline Package (TVSOP) introduced by TI.

1997 - Low-Voltage Crossbar Technology (CBTLV) and MicroStar BGA™ Low-Profile, Fine-Pitch BGA (LFBGA) package introduced by TI, Harris Semiconductor AC/ACT, CD4000, HC/HCT, and FCT products acquired by TI.

1998 - Gunning Transceiver Logic and Gunning Transceiver Logic Plus (GTL/GTLP) announced by TI.
1999 - Advanced Very-Low-Voltage CMOS (AVC) logic introduced by TI, Cypress FCT products acquired by TI. 2000 - MicroStar Junior™ BGA Very Fine-Pitch BGA (VFBGA) package introduced by TI.

This time line shows the growth and addition of different logic technology families. At the same time the families were evolving, the facilities to build them were changing. Initially, manufacture of logic products was spread across the TI worldwide wafer fabrication and assembly test sites, and the business was managed from Dallas. As the bipolar logic families grew, the wafer fab in Sherman began to source most of it. As wafer fab technology evolved, the Sherman fab became the oldest from a technology point of view, but used the stable processes to streamline the manufacturing flow. S-FAB became one of the most efficient and cost-effective wafer fabs in the world. Most of the logic business management and manufacturing support slowly migrated to Sherman, and today the TI Standard Linear \& Logic (SLL) operation calls Sherman home.

Assembly and testing (AT) of TI logic products is in Malaysia and Mexico, with additional units built at other TI and selected subcontractor sites. The trend is to centralize the AT operations at a few very high-volume locations to ensure that per-unit costs are as low as possible.

[^2]
TI Logic Today

TI is the world leader in logic products. The company offers thousands of different devices in 31 different bipolar, BiCMOS, and CMOS technology families and tens of different functions. TI continues to develop products to operate at lower and lower voltages, while maintaining support for 5 V and above. Tl offers logic products designed to operate as low as 1.8 V and as high as 18 V .

The logic-packaging group continues the development of new large and small packages. Recent developments include the 96 - and 114-pin thin very-fine-pitch ball grid array packages for 32 -bit functions and the 5 -pin small-outline transistor package for single gates. Additional capacity and package types will be added to assembly-test sites as market demand and developments warrant. Development of lead-free and reduced-lead packaging processes is continuing.

The Sherman wafer fabrication facility is adding established BiCMOS and CMOS processes, while maintaining needed bipolar and 5 -volt capacity. These additions are allowing the introduction of products with lower operating voltages and power requirements to support the growing portable and mobile requirements from the personal computer/personal digital assistant (PC/PDA) and cellular products markets.

SLL has developed an Applications Support group to back up the TI Product Information Center. This group provides in-depth support for customers' logic issues and develops application reports and other support materials. In addition, TI continues to evaluate its competition and negotiate alternate source agreements to ensure a continuous source of supply for customers.

What About Tomorrow?

Logic is migrating from the bipolar and 5 -volt products that have long been the standard. Operating voltages are moving lower and lower. Today, 3.3 volt is the norm; tomorrow it will be 2.5 volt or 1.8 volt or lower. SLL is creating products to fill that need. Packages will get smaller and smaller, while pin counts increase, allowing for higher component density and smaller end products. SLL is working with manufacturers to ensure that the newest packages remain assembly friendly.

TI has a long-standing reputation for quality, reliability, and service, and SLL intends to build on that reputation. SLL is your long-term logic supplier. Logic products are are obsoleted on a device-by-device basis when the marketplace shows that the need no longer exists, and customers are offered an opportunity to make needed end-of-life buys.

Please accept this special Ten-Year Anniversary Collector's Edition of the TI Logic Selection Guide. Our first edition was published in 1991, and the document has been published continuously since then. We look forward to another exciting ten years of logic and a Twenty-Year Anniversary Collector's Edition of the Logic Selection Guide.

Thank you for choosing TI Logic Products!

FOCUS ON THE HISTORY OF LOGIC

Bibliography

Information on the invention of the transistor was extracted from EE Times issue 978, October 30, 1997, 25th Anniversary, Electronics on the Threshold of the New Millennium.

Information on Jack Kilby was taken from the recent announcement of his selection for the Nobel Prize in physics and http://www.ti.com/corp/docs/kilbyctr/jackbuilt.shtml.

Other resources extensively used include the Texas Instruments Electronics Series published by McGraw-Hill Book Company, ©Texas Instruments, 1971, 1974.

FOCUS ON THE HISTORY OF LOGIC

3

CONTENTS

Backplane Logic (GTL, GTLP, FB+/BTL, and ABTE/ETL) 3-5
Drivers and Transceivers 3-5
Boundary-Scan IEEE Std 1149.1 (JTAG) Logic 3-6
Boundary-Scan (JTAG) Bus Devices 3-6
Boundary-Scan (JTAG) Support Devices 3-6
Buffers and Drivers 3-7
Inverting Buffers and Drivers 3-7
Noninverting Buffers and Drivers 3-8
Bus Switches 3-11
Bus Exchange/Multiplexing Switches 3-11
Standard Bus Switches 3-11
Counters 3-13
Binary Counters 3-13
Decade Counters 3-14
Decoders, Encoders, and Multiplexers 3-15
Decoders 3-15
Multiplexers 3-16
Priority Encoders 3-17
FIFOs (First-In, First-Out Memories) 3-18
Asynchronous FIFO Memories 3-18
Synchronous FIFO Memories 3-19
Flip-Flops 3-20
D-Type Flip-Flops (3-state) 3-20
D-Type Flip-Flops (non 3-state) 3-21
Other Flip-Flops 3-21
Gates and Inverters 3-22
AND Gates 3-22
NAND Gates 3-23
AND-OR-Invert Gates 3-24
OR Gates 3-24
NOR Gates 3-25
Exclusive-OR Gates 3-25
Exclusive-NOR Gates 3-25
Gate and Delay Elements 3-26
Inverters 3-26

CONTENTS (continued)

Latches 3-27
D-Type Latches (3-state) 3-27
Other Latches 3-28
Little Logic 3-28
AND Gates 3-28
NAND Gates 3-28
OR Gates 3-29
NOR Gates 3-29
Exclusive-OR Gates 3-29
D-Type Flip-Flops 3-29
Inverters 3-29
Inverting Buffers and Drivers 3-29
Noninverting Buffers and Drivers 3-30
Standard Bus Switches 3-30
Memory Drivers and Transceivers (HSTL, SSTL, and SSTV) 3-30
Buffers, Drivers, and Latches 3-30
Registers 3-31
Registers 3-31
Specialty Logic 3-32
Adders 3-32
Arithmetic Logic Units 3-32
Bus-Termination Arrays and Networks 3-33
Comparators (identity) 3-33
Comparators (magnitude) 3-33
Digital Phase-Locked Loops (PLLs) 3-34
Drivers/Multipliers 3-34
ECL/TTL Functions 3-34
Frequency Dividers/Timers 3-34
Monostable Multivibrators 3-35
Oscillators 3-35
Parity Generators and Checkers 3-35
Translation Voltage Clamps 3-36
Voltage-Level Shifters 3-36
Transceivers 3-36
Parity Transceivers 3-36
Registered Transceivers 3-37
Standard Transceivers 3-38
Universal Bus Functions 3-40
Universal Bus Transceivers 3-40
Universal Bus Drivers 3-41
Universal Bus Exchangers 3-41

```
\(\checkmark\) Product available in technology indicated • Product available in reduced-noise advanced CMOS (11000 series) + New product planned in technology indicated
```

$C P=$ center pin $\quad O C=$ open collector $\quad O D=$ open drain $\quad 3 S=3$-state
BACKPLANE LOGIC (GTL, GTLP, FB+/BTL, AND ABTE/ETL)

Drivers and Transceivers

DESCRIPIION	TYPE	TECHNOLOGY			
		ABTE	FB	GTL	GTLP
1:6/1:2 GTLP-to-LVTTL Fanout Drivers	817				$+$
2-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Bus Transceivers with Selectable Parity	1394				$+$
7-Bit TTL/BTL Transceivers (IEEE Std 1194.1)	2041		\checkmark		
8-Bit LVTTL-to-GTLP Bus Transceivers	306				$+$
8-Bit TTL/BTL Registered Transceivers (IEEE Std 1194.1)	2033		\checkmark		
8-Bit TTL/BTL Transceivers (IEEE Std 1194.1)	2040		\checkmark		
9-Bit TTL/BTL Address/Data Transceivers (IEEE Std 1194.1)	2031		\checkmark		
11-Bit Incident Wave Switching Bus Transceivers with 3-State and Open-Collector Outputs	16246	\checkmark			
16-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Bus Transceivers	1645				$+$
16 Bit LVTTL-to-GTL/GTL+ Universal Bus Transceivers with Live Insertion	1655			\checkmark	
16 Bit LVTTL-to-GTLP Adjustable-Edge-Rate Universal Bus Transceivers	1655				$+$
16-Bit Incident Wave Switching Bus Transceivers with 3-State Outputs	16245	\checkmark			
16-Bit LVTTL-to-GTLP Bus Transceivers	16945				$+$
17-Bit LVTTL-to-GTL/GTL+ Universal Bus Transceivers with Buffered Clock Outputs	16616			\checkmark	
17-Bit LVTTL-to-GTLP Universal Bus Transceivers with Buffered Clock	16916				$+$
17-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Universal Bus Transceivers with Buffered Clock	1616				$+$
17-Bit TTL/BTL Universal Storage Transceivers with Buffered Clock Lines (IEEE Std 1194.1)	1651		\checkmark		
17-Bit LVTTL/BTL Universal Storage Transceivers with Buffered Clock Lines (IEEE Std 1194.1)	1653		\checkmark		
18-Bit TTL/BTL Universal Storage Transceivers (IEEE Std 1194.1)	1650		\checkmark		
18-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Universal Bus Transceivers	1612				$+$
18-Bit LVTTL-to-GTL/GTL+ Universal Bus Transceivers	16612			\checkmark	
18-Bit LVTTL-to-GTLP Universal Bus Transceivers	16612				\checkmark
18-Bit LVTTL-to-GTL/GTL+ Bus Transceivers	16622			\checkmark	
	16923			\checkmark	
18-Bit LVTTL-to-GTLP Universal Bus Transceivers	16912				$+$
32-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Bus Transceivers	3245				$+$
32-Bit LVTTL-to-GTLP Bus Transceivers	32945				$+$

Boundary-Scan (JTAG) Bus Devices

DESCRIPIION	OUTPUT	TYPE	TECHNOLOGY			
			ABT	ACT	BCT	LVT
Scan-Test Devices with Octal Transceivers	35	8245	\checkmark		\checkmark	
Scan-Test Devices with 18-Bit Bus Transceivers		18245	\checkmark			
Scan-Test Devices with 18-Bit Inverting Bus Transceivers		18640	\checkmark			
Scan-Test Devices with 18-Bit Transceivers and Registers	3 S	18646	\checkmark			\checkmark
		182646	\checkmark			\checkmark
		18652	\checkmark			\checkmark
		182652	\checkmark			\checkmark
Scan-Test Devices with 18-Bit Universal Bus Transceivers	3 S	18502	\checkmark			\checkmark
		182502	\checkmark			\checkmark
		18512				\checkmark
		182512				\checkmark
Scan-Test Devices with 20-Bit Universal Bus Transceivers	$3 S$	18504	\checkmark			\checkmark
		182504	\checkmark			\checkmark
		18514				\checkmark
Scan-Test Devices with Octal Buffers	3 S	8240			\checkmark	
		8244			\checkmark	
Scan-Test Devices with Octal Bus Transceivers and Registers	3 S	8646	\checkmark			
		8652	\checkmark			
Scan-Test Devices with Octal D-Type Latches	35	8373			\checkmark	
Scan-Test Devices with Octal D-Type Edge-Triggered Flip-Flops	3 S	8374			\checkmark	
Scan-Test Devices with Octal Registered Bus Transceivers		8543	\checkmark			
		8952	\checkmark			

Boundary-Scan (JTAG) Support Devices

DESCRIPIION	OUTPUT	TYPE	TECHNOLOGY			
			ABT	ACT	BCT	LVT
Embedded Test-Bus Controllers with 8-Bit Generic Host Interfaces	3S	8980				\checkmark
Test-Bus Controllers IEEE Std 1149.1 (JTAG) TAP Masters with 16-Bit Generic Host Interfaces	3S	8990		\checkmark		
10-Bit Addressable Scan Ports Multidrop-Addressable IEEE Std 1149.1 (JTAG) TAP Transceivers		8996	\checkmark			\checkmark
Scan-Path Linkers with 4-Bit Identification Buses Scan-Controlled IEEE Std 1149.1 (JTAG) TAP Concatenators	3 S	8997		\checkmark		

BUFFERS AND DRIVERS
Inverting Buffers and Drivers

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY																						
			ABT	AC	ACT	AHC	AHCT	ALS	alvc	alvt	As	вст	64BCT	cDak	F	FCT	GTLP	нс	нст	เs	Lv	Lvc	Lvt	s	mi
Single	OD	1G06																				\checkmark			
	35	1G240																				+			
Hex	OC	06																		\checkmark	$+$				\checkmark
	OD	06																				\checkmark			
	OC	16																							\checkmark
	35	366																\checkmark							
		368																\checkmark	\checkmark	\checkmark					\checkmark
	OC	1005						\checkmark																	
Hex Buffers/Converters		4009												\checkmark											
		4049												\checkmark				\checkmark							
Hex Drivers		1004									\checkmark														
Hex Schmitt Triggers		40106												\checkmark											
Strobed Hex Inverters/Buffers	35	4502												\checkmark											
Octal	35	230									\checkmark														
		240	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark			\checkmark	\checkmark		\checkmark							
		11240		\checkmark	\checkmark																				
		1244						\checkmark																	
		540	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark				\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
	OC	756									\checkmark	\checkmark													
Octal with Input Pullup Resistors	35	746						\checkmark																	
Octal Buffers and Line/MOS Drivers with Series Damping Resistors	35	2240	\checkmark					\checkmark				\checkmark				\checkmark									
10 Bit	35	828																				\checkmark			
		29828						\checkmark																	
11-Bit Line/Memory Drivers	35	5401	\checkmark																						
12-Bit Line/Memory Drivers	35	5403	\checkmark																						

Inverting Buffers and Drivers (continued)

DESCRIPTION	OUTPU	TYPE	TECHNOLOGY																						
			ABt	AC	ACT	AHC	AHCT	ALS	Alvc	Alvt	As	вСт	64BCT	CDAK	F	FCT	GTLP	HC	нст	Ls	Lv	Lvc	LvT	s	Tin
16 Bit	35	16240	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark						$+$						\checkmark	\checkmark		
		16540	\checkmark			\checkmark	\checkmark															\checkmark			
16 Bit with Series Damping Resistors	35	162240														$+$						\checkmark	\checkmark		
GTLP-to-LVTTL 1-to-6 Fanout Drivers	35	817															$+$								

Noninverting Buffers and Drivers

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY																							
			ABT	AC	ACT	AHC	АНСт	ALB	ALS	Alvc	ALVt	AS	AvC	BCT	64BCT	CD4K	F	FCT	HC	HCT	LS	Lv	Lvc	LVT	s	TTL
Single Bus Buffers	OD	1G07																					\checkmark			
	3S	1G125				\checkmark	\checkmark																$+$			
		1G126				\checkmark	\checkmark																$+$			
Quad Bus Buffers	3 S	125	\checkmark			\checkmark	\checkmark			\checkmark				\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
		126	\checkmark			\checkmark	\checkmark			\checkmark				\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	$+$	\checkmark	\checkmark		
Hex Buffers	OC	1035							\checkmark																	
	3S	4503														\checkmark										
Hex Buffers/Converters		4010														\checkmark										
		4050														\checkmark			\checkmark							
Hex Buffers/ Line Drivers	3S	365																	\checkmark	\checkmark	\checkmark					
		367				\checkmark	\checkmark												\checkmark	\checkmark	\checkmark	\checkmark				\checkmark
	OC	07																			\checkmark	\checkmark				\checkmark
	OD	07																					\checkmark			
	OC	17																								\checkmark
		35							\checkmark																	
Hex Drivers		1034							\checkmark			\checkmark														
Hex OR Gate Line Drivers		128																								\checkmark

Noninverting Buffers and Drivers (continued)

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY																							
			ABt	AC	ACt	AHC	АНСт	ALB	ALS	Alvc	alvt	As	avc	вст	64BCT	CD4K	F	FCT	нс	нст	Ls	Lv	Lvc	Lvt	s	Tm
Octal	35	241	\checkmark	\checkmark	\checkmark				\checkmark			\checkmark		\checkmark			\checkmark		\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	
		244	\checkmark	$\checkmark \cdot$	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	\checkmark		\checkmark									
		1244							\checkmark																	
	CP/3S	11244		\checkmark	\checkmark																					
	35	541	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark					\checkmark			\checkmark									
	OC	757										\checkmark		\checkmark	\checkmark											
		760							\checkmark			\checkmark		\checkmark												
Octal with Series Damping Resistors	35	2244	\checkmark											\checkmark			\checkmark	\checkmark					\checkmark			
		25244												\checkmark	\checkmark								\checkmark			
Octal Buffers	35	465																			\checkmark					
Octal Buffers and Line/MOS Drivers with Series Damping Resistors	35	2241	\checkmark											\checkmark												
Octal Line Drivers/ MOS Drivers	35	2541							\checkmark									\checkmark								
10 Bit	35	827	\checkmark															\checkmark					\checkmark			
		29827							\checkmark					\checkmark												
$10 \text { Bit }$ with Series Damping Resistors	35	2827	\checkmark											\checkmark				\checkmark								
11-Bit Line/Memory Drivers	35	5400	\checkmark																							
12-Bit Line/Memory Drivers	35	5402	\checkmark																							
16 Bit	35	16241	\checkmark																					\checkmark		
		16244	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark					+					\checkmark	\checkmark		
		16541	\checkmark		\checkmark	\checkmark	\checkmark																\checkmark	\checkmark		
16 Bit with Series Damping Resistors	35	162244	\checkmark							\checkmark	\checkmark							$+$					\checkmark	\checkmark		
16 Bit with Balanced Drive and Series Damping Resistors	35	163244																$+$								
18 Bit	35	16825	\checkmark		\checkmark					\checkmark																

Noninverting Buffers and Drivers (continued)

DESCRIPIION	OUTPUT	TYPE	TECHNOLOGY																							
			ABT	AC	ACT	AHC	АНСт	ALB	ALS	Alvc	ALVT	AS	AVC	BCT	64BCT	CD4K	F	FCT	HC	нст	Ls	Lv	Lvc	LVT	s	TIL
18 Bit with Series Damping Resistors	3S	162825	\checkmark																							
20 Bit	35	16827	\checkmark		\checkmark					\checkmark	\checkmark		\checkmark					+								
$20 \text { Bit }$ with Series Damping Resistors	$3 S$	162827	\checkmark							\checkmark	\checkmark															
20 Bit with Balanced Drive		162827																$+$								
and Series Damping Resistors		163827																$+$								
1-Bit to 2-Bit Address Drivers	3S	162830								\checkmark																
1-Bit to 4-Bit	3 S	16344								\checkmark																
Address Drivers	35	162344								\checkmark																
1-to-4 Address		16831								\checkmark																
Registers/Drivers	3	16832								\checkmark																
32 Bit	3S	32244								\checkmark	\checkmark		\checkmark										\checkmark	\checkmark		
4-Segment Liquid Crystal Display Drivers		4054														\checkmark										

BUS SWITCHES
Bus Exchange/Multiplexing Switches

descripmon	TYPE	TECHNOLOGY	
		CBT	CBTLV
1-0f-8 FET Multiplexers/Demultiplexers	3251	\checkmark	\checkmark
Dual 1-of-4 FET Multiplexers/Demultiplexers	3253	\checkmark	\checkmark
4-Bit 1-of-2 FET Multiplexers/Demultiplexers	3257	\checkmark	\checkmark
10-Bit FET Bus-Exchange Switches	3383	\checkmark	\checkmark
12-Bit 1-of-2 FET Multiplexers/Demultiplexers with Internal Pulldown Resistors	16292	\checkmark	\checkmark
	162292	\checkmark	
12-Bit 1-of-3 FET Multiplexers/Demultiplexers	16214	\checkmark	
Synchronous 16-Bit 1-of-2 FET Multiplexers/Demultiplexers	16232	\checkmark	
16-Bit 1-of-2 FET Multiplexers/Demultiplexers	16233	\checkmark	
16-Bit to 32-Bit FET Multiplexer/Demultiplexer Bus Switches	16390	\checkmark	
18-Bit FET Bus-Exchange Switches	16209	\checkmark	
24-Bit FET Bus-Exchange Switches	16212	\checkmark	\checkmark
	16213	\checkmark	
24-Bit FET Bus-Exchange Switches with Schottky Diode Clamping	16212	\checkmark	
	16213	\checkmark	

Standard Bus Switches

DESCRIPIION	TYPE	TECHNOLOGY					
		CBT	CBTLV	CD4K	HC	HCT	LV
Single FET Bus Switches	1G66	$+$					
	1G125	\checkmark					
	1 G384	\checkmark					
Single FET Bus Switches with Level Shifting	1G125	\checkmark					
Dual FET Bus Switches	3306	\checkmark					
Dual FET Bus Switches with Level Shifting	3306	\checkmark					
Dual FET Bus Switches with Schottky Diode Clamping	3306	\checkmark					
Quad Bilateral Switches	4016			\checkmark	\checkmark		
	4066			\checkmark	\checkmark	\checkmark	\checkmark
Quad FET Bus Switches	3125	\checkmark	\checkmark				
	3126	\checkmark	\checkmark				

Standard Bus Switches (continued)

DESCRIPTION	TYPE	TECHNOLOGY					
		CBT	CBTLV	CD4K	HC	HCT	Lv
4-Bit Analog Switches with Level Translation	4316				\checkmark	\checkmark	
Octal FET Bus Switches	3244	\checkmark					
	3245	\checkmark	\checkmark				
	3345	\checkmark					
10-Bit FET Bus Switches	3384	\checkmark	\checkmark				
	3861	\checkmark	\checkmark				
10-Bit FET Bus Switches with Internal Pulldown Resistors	3857		\checkmark				
10-Bit FET Bus Switches with Level Shifting	3861	\checkmark					
10-Bit FET Bus Switches with Precharged Outputs and Diode Clamping	6800	\checkmark					
10-Bit FET Bus Switches with Precharged Outputs and Active Clamp Undershoot Protection	6800	\checkmark					
10-Bit FET Bus Switches with Precharged Outputs for Live Insertion	6800	\checkmark					
10-Bit FET Bus Switches with Schottky Diode Clamping	3384	\checkmark					
16-Bit FET Bus Switches	16244	\checkmark					
	16245	$+$					
16-Bit FET Bus Switches with Active Clamp Undershoot Protection	16245	$+$					
20-Bit FET Bus Switches	16210	\checkmark	\checkmark				
	16861	\checkmark					
20-Bit FET Bus Switches with Active Clamp Undershoot Protection	16861	+					
20-Bit FET Bus Switches with Level Shifting	16210	\checkmark					
	16861	+					
20-Bit FET Bus Switches with Precharged Outputs	16800		\checkmark				
20-Bit FET Bus Switches with Series Damping Resistors	19861	+					
24-Bit FET Bus Switches	16211	\checkmark	\checkmark				
24-Bit FET Bus Switches with Bus Hold	16211	\checkmark					
24-Bit FET Bus Switches with Level Shifting	16211	\checkmark					
24-Bit FET Bus Switches with Schottky Diode Clamping	16211	\checkmark					
32-Bit FET Bus Switches with Active Clamp Undershoot Protection	32245	\checkmark					

Binary Counters

DESCRIPTION	TYPE	TECHNOLOGY												
		AC	ACT	ALS	AS	CD4K	F	FCT	Hс	нСт	Ls	LV	s	TIL
Divide by 12	92										\checkmark			
4 Bit Ripple	93								\checkmark	\checkmark	\checkmark			
	293										\checkmark			
Dual 4 Bit	393								\checkmark	\checkmark	\checkmark			\checkmark
Dual 4 Bit Up	4520					\checkmark			\checkmark	\checkmark				
Presettable 4 Bit Up/Down	4516					\checkmark								
Presettable 4 Bit BCD Up/Down with Dual Clock and Reset	40193					\checkmark								
Presettable Synchronous 4 Bit Up/Down	191			\checkmark				\checkmark	\checkmark	\checkmark	\checkmark			
	193			\checkmark					\checkmark	\checkmark	\checkmark			\checkmark
Programmable 4 Bit with Asynchronous Clear	40161					\checkmark								
Synchronous 4 Bit	569			\checkmark										
Synchronous 4 Bit Up/Down	169			\checkmark	\checkmark		\checkmark				\checkmark			
	669										\checkmark			
	697										\checkmark			
Synchronous 4 Bit with Preset and Asynchronous Clear	161	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark			
Synchronous 4 Bit with Preset and Synchronous Clear	163	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
8-Bit Counters/Dividers with 1-of-8 Decoded Outputs	4022					\checkmark								
8 Bit with 3-State Output Registers	590								\checkmark		\checkmark			
8 Bit with Input Registers	592										\checkmark			
8 Bit with Input Registers and Parallel Counter Outputs	593										\checkmark			
8 Bit Synchronous Up/Down	867			\checkmark	\checkmark									
	869			\checkmark	\checkmark									
8 Bit Presettable Synchronous Down	40103					\checkmark			\checkmark	\checkmark				
7-Stage Ripple-Carry Counters/Dividers	4024					\checkmark			\checkmark	\checkmark				
12-Stage Ripple-Carry Counters/Dividers	4040					\checkmark			\checkmark	\checkmark		\checkmark		
14-Stage Ripple-Carry Counters/Dividers with Oscillators	4020					\checkmark			\checkmark	\checkmark				
	4060					\checkmark			\checkmark	\checkmark				
21 Stage	4045					\checkmark								
Divide by N	4018					\checkmark								
Programmable Divide by N	4059					\checkmark			\checkmark					
Presettable Up/Down or BCD Decade	4029					\checkmark								

Synchronous 4 Bit with Preset and Asynchronous Clear
Synchronous 4 Bit with Preset and Synchronous Clea

8 Bit with Input Registers
8 Bit with Input Registers and Parallel Counter Outputs

8 Bit Presettable Synchronous Down
7-Stage Ripple-Carry Counters/Dividers

14-Stage Ripple-Carry Counters/Dividers with Oscillators

Divide by N

Presettable Up/Down or BCD Decade

Decade Counters

DESCRIPTION	TYPE	TECHNOLOGY				
		ALS	CD4K	HC	HCT	LS
Divide by 2, Divide by 5	90					\checkmark
Dual Divide by 2, Divide by 5	390			\checkmark	\checkmark	\checkmark
Synchronous Presettable BCD Up/Down	190			\checkmark		
	192			\checkmark		
Counters/Dividers with 1-of-10 Decoded Outputs	4017		\checkmark	\checkmark		
Counters/Drivers with Decoded 7-Segment Display Outputs	4026		\checkmark			
	4033		\checkmark			
BCD-to-Decimal Decoders	4028		\checkmark			
Presettable BCD Up/Down	4510		\checkmark			
Dual BCD Up	4518		\checkmark	\checkmark		
Programmable BCD Divide by N	4522		\checkmark			
2 Decade Synchronous Presettable BCD Down	40102		\checkmark			
Up-Down Counters/Latches/7-Segment Display Drivers	40110		\checkmark			
Presettable BCD-Type Up/Down with Dual Clock and Reset	40192		\checkmark			

Multiplexers

DESCRIPIION	OUTPUT	TYPE	TECHNOLOGY																	
			ABT	AC	ACT	AHC	AHCT	ALS	AS	CD4K	F	FCT	HC	HCT	LS	LV	LVC	PCA	S	TTL
1-of-8 Analog Multiplexers/Demultiplexers		4051														\checkmark				
1-of-8 Analog Multiplexers/Demultiplexers with Logic Level Conversion		4051								\checkmark			\checkmark	\checkmark						
1-of-8 Analog Multiplexers/Demultiplexers with Latches		4351											\checkmark	\checkmark						
1-of-8 Data Selectors	35	4512								\checkmark										
1-of-8 Data Selectors/Multiplexers		151		\checkmark	\checkmark			\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark				\checkmark	
	3S	251		\checkmark				\checkmark			\checkmark		\checkmark	\checkmark	\checkmark					
1-of-8 Data Selectors/Multiplexers/Registers	3S	354											\checkmark	\checkmark						
		356												\checkmark						
1-of-8 Differential Analog Multiplexers/Demultiplexers		4097								\checkmark										
1-of-16 Analog Multiplexers/Demultiplexers		4067								\checkmark			\checkmark	\checkmark						
1-of-16 Data Selectors/Multiplexers		150																		\checkmark
1-of-16 Data Generators/Multiplexers	35	250							\checkmark											
Dual 1-of-4 Data Selectors/Multiplexers		153		\checkmark	\checkmark			\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark				\checkmark	
	3S	253		\checkmark	\checkmark			\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark					
Dual 1-of-4 Analog Multiplexers/Demultiplexers		4052														\checkmark				
Dual 1-of-4 Analog Multiplexers/Demultiplexers with Logic Level Conversion		4052								\checkmark			\checkmark	\checkmark						
Dual 1-of-4 Analog Multiplexers/Demultiplexers with Latches		4352											\checkmark							
Triple 1-of-2 Analog Multiplexers/Demultiplexers		4053														\checkmark				
Triple 1-of-2 Analog Multiplexers/Demultiplexers with Logic Level Conversion		4053								\checkmark			\checkmark	\checkmark						
Quad 1-of-2 Data Selectors/Multiplexers	3S	257		\checkmark	\checkmark			\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	
		258			\checkmark			\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark				\checkmark	
	CP/3S	11257		\checkmark	\checkmark															
Quad 1-of-2 Data Selectors/Multiplexers with Series Damping Resistors	3S	2257										\checkmark								
Quad 2-to-1 Data Selectors/Multiplexers		157		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark							
	3S	40257								\checkmark										

Multiplexers (continued)

Priority Encoders

FIFOS (FIRST-IN, FIRST-OUT MEMORIES)

Asynchronous FIFO Memories

DESCRIPTION	OUTPU	TYPE	TECHNOLOGY							
			ABT	ACT	ALS	ALVC	CD4K	HC	нст	s
16×4	35	232			\checkmark					
		40105					\checkmark	\checkmark	\checkmark	
16×5	35	225								\checkmark
		229			\checkmark					
		233			\checkmark					
64×4	35	236			\checkmark					
64×18	35	7814		\checkmark						
$64 \times 183.3 \mathrm{~V}$	35	7814				\checkmark				
256×18	35	7806		\checkmark						
$256 \times 183.3 \mathrm{~V}$	35	7806				\checkmark				
512×18	35	7804		\checkmark						
$512 \times 183.3 \mathrm{~V}$	35	7804				\checkmark				
$512 \times 18 \times 2$ Bidirectional	35	7820	\checkmark							
$1024 \times 9 \times 2$ Bidirectional	35	2235		\checkmark						
1024×18	35	7802		\checkmark						
2048×9	35	7808		\checkmark						

D-Type Flip-Flops (3-state)

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY																			
			ABt	AC	ACT	AHC	AHCT	ALS	Alvc	ALVT	as	Avc	вст	F	FCT	нс	нст	Ls	Lv	Lvc	LvT	s
Dual 4 Bit Edge Triggered	35	874						\checkmark			\checkmark											
		876						\checkmark			\checkmark											
Quad	35	173														\checkmark	\checkmark	\checkmark				
Octal Bus Interface	35	825									\checkmark				\checkmark							
		29825											\checkmark									
Octal Edge Triggered	35	374	\checkmark		\checkmark		\checkmark															
	3S/CP	11374			\checkmark																	
	35	574	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
		575						\checkmark			\checkmark											
		576						\checkmark			\checkmark											
		577						\checkmark														
Octal Edge Triggered Dual Rank	35	4374									\checkmark											
Octal Edge Triggered with Series Damping Resistors	35	2374													\checkmark							
		2574													\checkmark							
Octal Inverting	35	534	\checkmark	\checkmark	\checkmark			\checkmark			\checkmark					\checkmark	\checkmark					
		564		\checkmark	\checkmark			\checkmark							\checkmark	\checkmark	\checkmark					
9 Bit Bus Interface	35	822													\checkmark							
		823	\checkmark								\checkmark				\checkmark					\checkmark		
		824													\checkmark							
		29823						\checkmark														
10 Bit Bus Interface	35	821	\checkmark								\checkmark				\checkmark					\checkmark		
		29821						\checkmark					\checkmark									
10 Bit with Dual Outputs	35	16820							\checkmark													
		162820							\checkmark													
16 Bit Edge Triggered	35	16374	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark			+					\checkmark	\checkmark	
		162374							\checkmark						$+$						\checkmark	
		163374													+						\checkmark	
18 Bit	35	16823	\checkmark		\checkmark				\checkmark						+							
		162823	\checkmark												$+$							

DESCRIPTION	OUTPU	TYPE	TECHNOLOGY																			
			ABt	AC	ACT	AHC	АНСт	ALS	Alvc	ALVt	As	Avc	вст	F	FCT	нс	нст	Ls	Lv	Lvc	Lvt	s
20 Bit	35	16721							\checkmark													
		162721							\checkmark													
		16722										\checkmark										
		16821	\checkmark						\checkmark	\checkmark		$+$										
32 Bit Edge Triggered	35	32374							\checkmark	\checkmark		\checkmark								\checkmark	\checkmark	

D-Type Flip-Flops (non 3-state)

DESCRIPTION	OUTPU	TYPE	TECHNOLOGY																					
			ABt	AC	ACT	AHC	AHCT	ALS	Alvc	alvt	As	AvC	вCT	CDAK	F	FCT	Hс	HCT	Ls	Lv	Lvc	LvT	s	Ti.
Single Edge Triggered		1G79																			$+$			
		1G80																			$+$			
Dual		4013												\checkmark										
		74		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark				\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
	CP	11074		\checkmark	\checkmark																			
Quad		175		\checkmark	\checkmark			\checkmark			\checkmark				\checkmark		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark
	CP	11175		\checkmark																				
		40175												\checkmark										
Hex		174		\checkmark	\checkmark			\checkmark			\checkmark				\checkmark		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
		40174												\checkmark										
Hex with Enable		378																	\checkmark					
Octal		273	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark
Octal with Enable		377	\checkmark												\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					

Other Flip-Flops

DESCRIPTION	TYPE	TECHNOLOGY											
		AC	ACT	ALS	AS	CD4K	F	HC	HCT	LS	Lvc	s	TIL
Dual Edge-Triggered J-K Master-Slave	4027					\checkmark							
Dual Edge-Triggered J-K with Reset	73							\checkmark	\checkmark	\checkmark			
	107							\checkmark	\checkmark	\checkmark			\checkmark
Dual Edge-Triggered J-K with Set and Reset	112	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Dual Positive-Edge-Triggered J-K with Set and Reset	109	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark			
Quad Edge-Triggered J-K	276												\checkmark

AND Gates

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY														
			AC	ACT	AHC	АНСт	ALS	Alvc	AS	CD4K	F	HC	HCT	Ls	LV	Lvc	s
Single 2 Input		1G08			\checkmark	\checkmark										+	
Quad 2 Input		08	$\checkmark \cdot$	$\checkmark \cdot$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark						
	CP	11008	\checkmark	\checkmark													
	OC	09					\checkmark							\checkmark			\checkmark
		4081								\checkmark							
Quad 2-Input Buffers/Drivers		1008							\checkmark								
Quad 2 Input with Schmitt-Trigger Inputs		7001										\checkmark					
Dual 4 Input		21					\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark			
		4082								\checkmark							
Triple 3 Input		11	$\checkmark \cdot$	\checkmark			\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark			
		4073								\checkmark							

NAND Gates

AND-OR-Invert Gates

DESCRIPTION	TYPE	TECHNOLOGY		
		CD4K	LS	s
Dual 2 Wide 2 Input	51			\checkmark
	4085	\checkmark		
Dual 2 Wide 2 Input, 2 Wide 3 Input	51		\checkmark	
Expandable 4 Wide 2 Input	4086	\checkmark		
Expandable 8 Input	4048	\checkmark		

OR Gates

DESCRIPTION	OUTPU	TYPE	TECHNOLOGY															
			AC	ACT	AHC	AHCT	ALS	ALVC	AS	CD4K	F	HC	HCT	LS	LV	Lvc	s	TIL
Single 2 Input		1G32			\checkmark	\checkmark										+		
Quad 2 Input		32	\checkmark		\checkmark													
	CP	11032	\checkmark	\checkmark														
		4071								\checkmark								
Quad 2-Input Buffers/Drivers		1032							\checkmark									
Quad 2 Input with Schmitt-Trigger Inputs		7032										\checkmark						
Hex 2-Input Drivers		832					\checkmark		\checkmark									
Dual 4 Input		4072								\checkmark								
Triple 3 Input		4075								\checkmark		\checkmark	\checkmark					

NOR Gates

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY														
			AC	ACT	AHC	АНСт	ALS	AS	CD4K	F	HC	HCT	LS	Lv	Lvc	s	TIL
Single 2 Input		1G02			\checkmark	\checkmark									+		
Quad 2 Input		4001							\checkmark								
		02	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark							
	OC	33					\checkmark						\checkmark				
Quad 2 Input with Schmitt-Trigger Inputs		7002									\checkmark						
Quad 2 Input Unbuffered		4001							\checkmark								
Hex 2-Input Drivers		805					\checkmark	\checkmark									
		808						\checkmark									
Triple 3 Input		4025							\checkmark								
		27					\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark				
Dual 4 Input		4002							\checkmark		\checkmark						
Dual 4 Input with Strobe		25															\checkmark
Dual 5 Input		260								\checkmark							
8 Input NOR/OR		4078							\checkmark								

Exclusive-OR Gates

DESCRIPTION	OUTPU	TYPE	TECHNOLOGY													
			AC	ACT	AHC	АНСт	ALS	AS	CD4K	F	HC	нст	Ls	Lv	Lvc	s
Single 2 Input		1G86			\checkmark	\checkmark									+	
Quad 2 Input		4030							\checkmark							
		4070							\checkmark							
		86	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark						
	CP	11086	\checkmark													
	OC	136											\checkmark			

Exclusive-NOR Gates

DESCRIPIION	OUIPUT	TYPE	TECHNOLOGY		
			CD4K	HC	LS
Quad 2 Input	OC	266			\checkmark
	OD	266		\checkmark	
		4077	\checkmark		
		7266		\checkmark	

Gate and Delay Elements

DESCRIPIION	TYPE	TECHNOLOGY		
		CD4K	LS	TIL
Dual Unbuffered Complementary Pairs Plus Inverters	4007	\checkmark		
Quad AND/OR Select Gates	4019	\checkmark		
Quad True/Complement Buffers	4041	\checkmark		
Quad Complementary-Output Elements	265			\checkmark
Hex Delay Elements for Generating Delay Lines	31		\checkmark	
Hex Gates (4 Inverters, 2-Input NOR, 2-Input NAND)	4572	\checkmark		

Inverters

DESCRIPIION	OUTPUT	TYPE	TECHNOLOGY															
			AC	ACT	AHC	AHCT	ALS	ALVC	AS	CD4K	F	HC	HCT	LS	LV	LVC	S	TIL
Single		1G04			\checkmark	\checkmark										$+$		
Unbuffered Single		1GU04			\checkmark											\checkmark		
Single Schmitt Trigger		1G14			\checkmark	\checkmark										$+$		
Hex		04	\checkmark		\checkmark													
	CP	11004	\checkmark	\checkmark														
	OC	05					\checkmark							\checkmark			\checkmark	\checkmark
	OD	05	\checkmark	\checkmark	\checkmark							\checkmark			\checkmark			
		4069								\checkmark								
Unbuffered Hex		U04			\checkmark							\checkmark			\checkmark	\checkmark		
Hex Schmitt Trigger		14	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
		19												\checkmark				

Other Latches

DESCRIPTION	OUIPUT	TYPE	TECHNOLOGY				
			ALS	CD4K	HC	HCT	LS
Dual 2 Bit Bistable Transparent		75			\checkmark	\checkmark	
Dual 4 Bit with Strobe	3S	4508		\checkmark			
4 Bit Bistable		75					\checkmark
		375					\checkmark
Quad Clocked D		4042		\checkmark			
Quad NAND R-S	3 S	4044		\checkmark			
Quad NOR R-S	3S	4043		\checkmark			
Quad $\bar{S}-\bar{R}$		279					\checkmark
8 Bit Addressable		259	\checkmark		\checkmark	\checkmark	\checkmark
		4099		\checkmark			
		4724		\checkmark			
8 Bit D-Type Transparent Read-Back		990	\checkmark				
8 Bit Edge-Triggered Read-Back		996	\checkmark				
10 Bit D-Type Transparent Read-Back		994	\checkmark				

Little Logic

AND Gates

DESCRIPTION	TYPE	TECHNOLOGY		
		AHC	AHCT	LVC
Single 2 Input	1G08	\checkmark	\checkmark	$+$

NAND Gates

DESCRIPTION	TYPE	TECHNOLOGY		
		AHC	AHCT	LVC
Single 2 Input	1G00	\checkmark	\checkmark	$+$

OR Gates
DESCRIPTION

NOR Gates

DESCRIPTION	TYPE	TECHNOLOGY		
		AHC	AHCT	LVC
Single 2 Input	$1 \mathrm{GOP2}$	\boldsymbol{V}	\boldsymbol{V}	+

Exclusive-OR Gates

DESCRIPTION	TYPE	TECHNOLOGY		
		AHC	AHCT	LVC
Single 2 lnput	1 G86	\checkmark	\checkmark	+

D-Type Flip-Flops

DESCRIPIION		TYPE	TECHNOLOGY	
		LVC		
Single Edge Triggered			1G79	$+$
		1G80	$+$	

Inverters

DESCRIPTION	TYPE	TECHNOLOGY		
		AHC	АНСт	Lvc
Single	1G04	\checkmark	\checkmark	$+$
	1GU04	\checkmark		\checkmark
Single Schmitt Trigger	1G14	\checkmark	\checkmark	+

Inverting Buffers and Drivers

DESCRIPTION		OUTPUT	TYPE	TECHNOLOGY	
		Lvc			
Single			OD	1G06	\checkmark
		35	1G240	+	

LITTLE LOGIC

Noninverting Buffers and Drivers

descripmon	OUIPUT	TYPE	TECHNOLOGY		
			AHC	AHCT	Lvc
Single	OD	1G07			\checkmark
		1G125	\checkmark	\checkmark	$+$
Bus Bufiers	35	1G126	\checkmark	\checkmark	$+$

Standard Bus Switches

DESCRIPTION	TYPE	TECHNOLOGY		
		CBT	CBTLV	Lvc
Single Bilaterial (Analog or Digital)	1G66			+
Single FET	$1 \mathrm{G66}$	$+$		
	1G125	\checkmark	\checkmark	
	1G384	\checkmark		
Single FET with Level Shifting	1G125	\checkmark		

MEMORY DRIVERS AND TRANSCEIVERS (HSTL, SSTL, AND SSTV)

Buffers, Drivers, and Latches

DESCRIPIION	OUTPUT	TYPE	TECHNOLOGY		
			HSTL	SSTL	SSTV
9-Bit to 18-Bit HSTL-to-LVTTL Memory Address Latches	3S	16918	\checkmark		
13-Bit to 26-Bit Registered Buffers with SSTL_2 Inputs and Outputs	3S	16859			$+$
14-Bit Registered Buffers with SSTL_2 Inputs and Outputs	3 S	16857		\checkmark	$+$
14-Bit to 28-Bit HSTL-to-LVTTL Memory Address Latches		162822	\checkmark		
20-Bit SSTL_3 Interface Buffers	3 S	16847		\checkmark	
20-Bit SSTL_3 Interface Universal Bus Drivers	3S	16837		\checkmark	

REGISTERS

Registers (continued)

SPECIALTY LOGIC

Adders

DESCRIPTION	TYPE	TECHNOLOGY						
		AC	ACT	F	HC	HCT	LS	s
9 Bit Binary Full with Fast Carry	283	\checkmark						

Arithmetic Logic Units

DESCRIPTION	TYPE	TECHNOLOGY		
		AS	LS	S
Arithmetic Logic Units/Function Generators	181	\checkmark	\checkmark	
	381			\checkmark
Look-Ahead Carry Generators	182			\checkmark

Bus-Termination Arrays and Networks

DESCRIPTION	TYPE	TECHNOLOGY			
		ACT	CD4K	F	s
Dual 4-Bit Programmable Terminators	40117		\checkmark		
8-Bit Schottky Barrier Diode Bus-Termination Arrays	1056			\checkmark	
10-Bit Bus-Termination Networks with Bus Hold	1071	\checkmark			
12-Bit Schottky Barrier Diode Bus-Termination Arrays	1050				\checkmark
	1051				\checkmark
16-Bit Bus-Termination Networks with Bus Hold	1073	\checkmark			
16-Bit Schotky Barrier Diode Bus-Termination Arrays	1052				\checkmark
	1053				\checkmark
16-Bit Schottky Barrier Diode R-C Bus-Termination Arrays	1016			\checkmark	

Comparators (identity)

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY	
			ALS	F
8 Bit Identity ($\overline{\mathrm{P}=\mathrm{Q}})$		521	\checkmark	\checkmark
8 Bit Identity ($\mathrm{P}=\mathrm{Q}$) with Input Pullup Resistors	OC	518	\checkmark	
8 Bit Identity ($\overline{\mathrm{P}=\mathrm{Q}})$ with Input Pullup Resistors		520	\checkmark	\checkmark
12 Bit Address		679	\checkmark	

Comparators (magnitude)

DESCRIPTION	TYPE	TECHNOLOGY						
		ALS	AS	CD4K	HC	HCT	LS	s
4 Bit	85				\checkmark	\checkmark	\checkmark	\checkmark
	4063			\checkmark				
	4585			\checkmark				
8 Bit	682				\checkmark		\checkmark	
	684				\checkmark		\checkmark	
	688	\checkmark			\checkmark	\checkmark	\checkmark	
	885		\checkmark					

Digital Phase-Locked Loops (PLLs)

DESCRIPTION	TYPE	TECHNOLOGY				
		ACT	CD4K	HC	нст	LS
Digital PLLs	297	\checkmark		\checkmark	\checkmark	\checkmark
PLLs with VCO	4046		\checkmark	\checkmark	\checkmark	
PLLs with VCO and Lock Detectors	7046			\checkmark	\checkmark	

Drivers/Multipliers

DESCRIPTION	TYPE	TECHNOLOGY	
		CD4K	TIL
4-Bit Binary Rate Multipliers	4089	\checkmark	
BCD Rate Multipliers	4527	\checkmark	
Synchronous 6-Bit Binary Rate Multipliers	97		\checkmark

ECL/TTL Functions

DESCRIPTION	OUIPUT	TYPE	TECHNOLOGY
			ECL
Octal ECL-to-TTL Translators	35	10KHT5541	\checkmark
Octal ECL-to-TTL Translators with Edge-Triggered D-Type Flip-Flops	35	10KHT5574	\checkmark
Octal TTL-to-ECL Translators with Edge-Triggered D-Type Flip-Flops and Output Enable		10KHT5578	\checkmark
Octal TTL-to ECL Translators with Output Enable		10KHT5542	\checkmark
L-to-ECL Translators with Output Enable		10KHT5543	\checkmark

Frequency Dividers/Timers

DESCRIPTION	TYPE	TECHNOLOGY	
		CD4K	LS
24-Stage Frequency Dividers	4521	\checkmark	
Programmable Frequency Dividers/Digital Timers	292		\checkmark
	294		\checkmark
Programmable Timers	4536	\checkmark	
	4541	\checkmark	

Translation Voltage Clamps

DESCRIPIION		TYPE	TECHNOLOGY	
		TVC		
10 Bit			3010	\checkmark
22 Bit		16222	\checkmark	

Voltage-Level Shifters

Standard Transceivers

DESCRIPTION	OUTPU	TYPE	TECHNOLOGY																						
			ABT	ABte	AC	ACT	AHC	AHCT	ALB	ALS	alvc	As	Avc	вст	64BCT	F	FCT	GIL	GILP	нс	нст	เs	Lv	Lvc	Lvt
2 Bit LVTTL to GTLP Adjustable Edge Rate with Selectable Parity	35	1394																	$+$						
Quad	35	243								\checkmark										\checkmark	\checkmark	\checkmark			
Quad Tridirectional	35	442																				\checkmark			
7 Bit Bus Interface IEEE Std 1284	35	1284				\checkmark																			
8 Bit LVTTL to GTLP	35	306																	$+$						
Octal	35	245	\checkmark		\checkmark	$\checkmark \cdot$	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
		1245								\checkmark															
		11245			\checkmark	\checkmark																			
		620	\checkmark							\checkmark															
	OC	621								\checkmark															
	35	623	\checkmark		\checkmark	\checkmark				\checkmark				\checkmark		\checkmark	\checkmark			\checkmark	\checkmark	\checkmark			
		638								\checkmark															
		639								\checkmark															
		640	\checkmark							\checkmark		\checkmark		\checkmark						\checkmark	\checkmark	\checkmark			
		1640								\checkmark															
	OC	641								\checkmark		\checkmark										\checkmark			
		642								\checkmark												\checkmark			
	35	645								\checkmark		\checkmark								\checkmark	\checkmark	\checkmark			
		1645								\checkmark															
Octal with Series Damping Resistors	35	2245	\checkmark													\checkmark	\checkmark							\checkmark	\checkmark
Octal Transceivers and Line/MOS Drivers with B-Port Series Damping Resistors	35	2245	\checkmark											\checkmark											
Octal with Adjustable Output Voltage	35	3245																						\checkmark	
Octal Dual Supply with Configurable Output Voltage	35	4245																						\checkmark	

Standard Transceivers (continued)

DESCRIPIION	OUTPUT	TYPE	TECHNOLOGY																						
			ABT	ABTE	AC	ACT	AHC	AHCT	ALB	ALS	Alvc	AS	AVC	BCT	64BCT	F	FCT	GIL	GTLP	HC	HCT	Ls	LV	Lvc	LVT
Octal with 3.3-V to 5-V Shifters	3S	4245																						\checkmark	
9 Bit	3 S	863	\checkmark																					\checkmark	
		29863								\checkmark				\checkmark											
		29864												\checkmark											
10 Bit	3S	861	\checkmark																					\checkmark	
11 Bit Incident Wave Switching	3S/OC	16246		\checkmark																					
16 Bit	3S	16245	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark				+							\checkmark	\checkmark
		16623	\checkmark			\checkmark																			
		16640	\checkmark																						
16 Bit LVTTL to GTLP Adjustable Edge Rate	$3 S$	1645								\checkmark									$+$						
16 Bit with Input/Output Series Damping Resistors	3S	16245																							
16 Bit Incident Wave Switching	3S	16245		\checkmark																					
16 Bit with Series Damping Resistors	3S	16245									\checkmark														
		162245	\checkmark														$+$							\checkmark	\checkmark
		163245															$+$								
16 Bit 3.3 V to 5 V Level Shifting	3S	164245									\checkmark														
16 Bit LVTTL to GTLP	3 S	16945																	$+$						
18 Bit Bus Interface	3S	16863	\checkmark			\checkmark					\checkmark														
18 Bit LVTTL to GTL/GTL+		16622																\checkmark							
		16923																\checkmark							
19 Bit Bus Interface IEEE Std 1284		161284																					\checkmark	\checkmark	
20 Bit	3S	16861				\checkmark																			
25Ω Octal	3 S	25245	\checkmark											\checkmark	\checkmark										
	OC	25642												\checkmark											
32 Bit	3S	32245	\checkmark								\checkmark													\checkmark	\checkmark
32 Bit LVTTL to GTLP	3 S	32945																	$+$						
32 Bit LVTTL to GTLP Adjustable Edge Rate	3S	3245																	$+$						

UNIVERSAL BUS FUNCTIONS

Universal Bus Transceivers

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY							
			ABT	ALVC	ALVT	FCT	GTL	GTLP	LVC	LVT
16 Bit LVTTL to GTL/GTL+ with Live Insertion		1655					\checkmark			
16 Bit LVTTL to GTLP Adjustable Edge Rate	3S	1655						$+$		
17 Bit LVTTL to GTLP Adjustable Edge Rate	3S	1616						$+$		
17 Bit LVTTL to GTL/GTL+		16616					\checkmark			
17 Bit LVTTL to GTLP with Buffered Clock	3S	16916						$+$		
18 Bit	3 S	16500	\checkmark	\checkmark		$+$				\checkmark
		162500	\checkmark			$+$				
		163500				$+$				
		16501	\checkmark	\checkmark		$+$				\checkmark
		162501	\checkmark			$+$				
		163501				$+$				
		16600	\checkmark	\checkmark						
		16601	\checkmark	\checkmark	\checkmark					
		162601	\checkmark	\checkmark						
18 Bit with Parity Generators/Checkers	3S	16901		\checkmark					\checkmark	
18 Bit LVTTL to GTL/GTL+		16612					\checkmark			
18 Bit LVTTL to GTLP	3S	16612						\checkmark		
		16912						$+$		
18 Bit LVTTL to GTLP Adjustable Edge Rate	3 S	1612						$+$		
32 Bit	3 S	32501	\checkmark	\checkmark						$+$

Universal Bus Drivers

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY		
			ALVC	AVC	LvT
12 Bit with Parity Checker and Dual 3-State Outputs	35	16903	\checkmark		
16 Bit	3 S	16334	\checkmark	\checkmark	
		162334	\checkmark		
18 Bit	35	16834	\checkmark	\checkmark	
		162834	\checkmark		
		16835	\checkmark	\checkmark	\checkmark
		162835	\checkmark		
20 Bit	35	16836			
		162836	\checkmark		

Universal Bus Exchangers

LOGIC OVERVIEW

FOCUS ON THE HISTORY OF LOGIC

FUNCTIONAL INDEX

3

FUNCTIONAL CROSS-REFERENCE

EONEYヨヨヨy－SSOYO TVNOIIONns
\checkmark Product available in technology indicated
－Product available in reduced－noise advanced CMOS（11000 series）

DEVICE	ป Product available in technology indicated BiCMOS BIPOLAR												Product available in reduced－noise advanced CMOS（11000 series）CMOS															OTHER									
	$\underset{\underset{4}{\mathrm{~m}}}{\text { ■ }}$	$\stackrel{\text { n }}{4}$	$\frac{5}{4}$	Ł	$\begin{aligned} & \text { 匕 } \\ & \text { W } \\ & \hline \end{aligned}$	5	$\stackrel{9}{4}$	の	«	0	∞	三	O	눈	옺	$\begin{aligned} & \text { 는 } \\ & \hline \end{aligned}$		U	$\stackrel{\llcorner }{\mathrm{w}}$	$\begin{array}{\|l\|} \hline \text { 긍 } \\ \hline \mathbf{y y} \end{array}$	苓	ㄴ	오	노	\geq	U	$\underset{~}{\text { U }}$		파	읖	$\stackrel{1}{6}$	$\frac{\square}{5}$	ㅌㅗㅗ	$\begin{aligned} & \text { 돈 } \\ & \hline \end{aligned}$	ভু	$\underset{\sim}{\ldots}$	ミ
1G00															\checkmark	\checkmark										＋											
1G02															\checkmark	\checkmark										＋											
1G04															\checkmark	\checkmark										＋											
1 GU 04															\checkmark											\checkmark											
1G06																										\checkmark											
1G07																										\checkmark											
1G08															\checkmark	\checkmark																					
$1 \mathrm{G14}$															\checkmark	\checkmark										＋											
1 G 32															\checkmark	\checkmark										＋											
1 G66																			＋							＋											
1G79																										＋											
$1 \mathrm{G80}$																										$+$											
$1 \mathrm{G86}$															\checkmark	\checkmark																					
1 G125															\checkmark	\checkmark			\checkmark																		
1G126															\checkmark	\checkmark										＋											
1 G 240																										＋											
1G384																			\checkmark																		
00							\checkmark •	\checkmark	\checkmark	\checkmark	\checkmark						\checkmark	\checkmark	\checkmark	\checkmark																	
02							\checkmark							\checkmark	\checkmark	\checkmark	\checkmark																				
03							\checkmark			\checkmark													\checkmark	\checkmark													
04							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\checkmark \cdot$	\checkmark •	\checkmark	\checkmark	\checkmark						\checkmark	\checkmark	\checkmark	\checkmark											
U04															\checkmark								\checkmark		\checkmark	\checkmark											
05							\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark								\checkmark		\checkmark												
06										\checkmark		\checkmark														\checkmark											
07										\checkmark		\checkmark														\checkmark											
08							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		$\checkmark \cdot$	\checkmark	\checkmark	\checkmark	\checkmark						\checkmark	\checkmark	\checkmark	\checkmark											
09							\checkmark			\checkmark	\checkmark																										
10							\checkmark			\checkmark						\checkmark	\checkmark		\checkmark																		
11							\checkmark	\checkmark	\checkmark	\checkmark			$\checkmark \cdot$	\checkmark									\checkmark	\checkmark													
14										\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						\checkmark	\checkmark	\checkmark	\checkmark											

FUNCTIONAL CROSS－REFERENCE

	BiCMOS						BIPOLAR						CMOS															OTHER									
DEVICE	$\underset{\text { 㐫 }}{2}$	$\stackrel{\text { m }}{4}$	$\frac{5}{4}$	니	$\begin{aligned} & \hline \text { ছ } \\ & \text { © } \end{aligned}$	5	$\frac{0}{4}$	の	－	0	∞	三	O	눈	茎	$\begin{aligned} & \text { 눈 } \\ & \hline \end{aligned}$	只	$\underset{~}{~}$	$\stackrel{\leftarrow}{\mathrm{E}}$	$\begin{array}{\|l} \hline \text { 之 } \\ \text {. } \end{array}$	夺	는	오	노	λ	U	$\underset{1}{2}$		ㄲ	$\begin{aligned} & \text { 은 } \\ & \text { 는 } \end{aligned}$	$\underset{6}{\underline{E}}$	$\stackrel{\square}{\bar{E}}$	$\stackrel{-1}{6}$	$\begin{aligned} & \text { © } \\ & \stackrel{5}{5} \end{aligned}$	ভ	$\stackrel{1}{6}$	$\underset{\sim}{\text { ¿ }}$
16												\checkmark																									
17												\checkmark																									
19										\checkmark																											
20							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark									\checkmark	\checkmark													
21							\checkmark	\checkmark	\checkmark	\checkmark													\checkmark	\checkmark													
25												\checkmark																									
26										\checkmark																											
27							\checkmark	\checkmark	\checkmark	\checkmark													\checkmark	\checkmark													
30							\checkmark	\checkmark	\checkmark	\checkmark				\bullet									\checkmark	\checkmark													
31										\checkmark																											
32							\checkmark						\checkmark	\checkmark	\checkmark	\checkmark																					
33							\checkmark			\checkmark																											
35							\checkmark																														
37							\checkmark			\checkmark	\checkmark	\checkmark																									
38							\checkmark		\checkmark	\checkmark	\checkmark	\checkmark																									
42										\checkmark													\checkmark	\checkmark													
45												\checkmark																									
47										\checkmark		\checkmark																									
51										\checkmark	\checkmark																										
52																						\checkmark															
73										\checkmark													\checkmark	\checkmark													
74							\checkmark •	\checkmark	\checkmark	\checkmark							\checkmark	\checkmark	\checkmark	\checkmark																	
75										\checkmark													\checkmark	\checkmark													
85										\checkmark	\checkmark												\checkmark	\checkmark													
86							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		$\checkmark \cdot$	\checkmark	\checkmark	\checkmark							\checkmark	\checkmark	\checkmark	\checkmark											
90										\checkmark																											
92										\checkmark																											
93										\checkmark													\checkmark	\checkmark													
96										\checkmark																											
97												\checkmark																									
107										\checkmark		\checkmark											\checkmark	\checkmark													

DEVICE	BiCMOS						BIPOLAR						CMOS															OTHER									
		$\stackrel{9}{4}$	$\frac{5}{4}$	Ł	$\begin{array}{\|l\|} \hline \text { Ło } \\ \text { 岕 } \\ \hline \end{array}$	5	$\frac{0}{4}$	¢	L	0	∞	三	O	$\stackrel{\leftarrow}{4}$	웆	$\stackrel{-}{1}$		U			咅	단	오	$\stackrel{\leftarrow}{\text { 노 }}$	\geq	$\underset{y}{2}$	$\underset{Z}{\text { U }}$	$\stackrel{\underset{y}{\mathrm{~m}}}{\stackrel{\mathrm{w}}{2}}$	ㅍ	읖	븐	$\frac{\text { 믇 }}{\text { I }}$	동	$\begin{aligned} & \text { © } \\ & \hline 5 \end{aligned}$	ভ		方
109							\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark									\checkmark	\checkmark													
112							\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark									\checkmark	\checkmark		\checkmark											
121												\checkmark																									
122							－			\checkmark																											
123										\checkmark		\checkmark			\checkmark	\checkmark							\checkmark	\checkmark	\checkmark												
124											\checkmark																										
125	\checkmark			\checkmark	\checkmark	\checkmark			\checkmark	\checkmark					\checkmark	\checkmark	\checkmark						\checkmark	\checkmark	\checkmark	\checkmark											
126	\checkmark			\checkmark	\checkmark	$+$			\checkmark	\checkmark					\checkmark	\checkmark	\checkmark						\checkmark	\checkmark	\checkmark	\checkmark											
128												\checkmark																									
132										\checkmark	\checkmark	\checkmark			\checkmark	\checkmark							\checkmark	\checkmark	\checkmark												
133							\checkmark				\checkmark																										
136										\checkmark																											
137							\checkmark																\checkmark	\checkmark													
138							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark •	\checkmark	\checkmark	\checkmark						\checkmark	\checkmark	\checkmark	\checkmark	\checkmark											
139							\checkmark			\checkmark	\checkmark		\checkmark	\checkmark •	\checkmark	\checkmark							\checkmark	\checkmark	\checkmark	\checkmark											
140											\checkmark																										
145										\checkmark		\checkmark																									
147																							\checkmark	\checkmark													
148										\checkmark		\checkmark											\checkmark														
150												\checkmark																									
151							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark									\checkmark	\checkmark													
153							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark									\checkmark	\checkmark													
154												\checkmark											\checkmark	\checkmark													
155										\checkmark																											
156							\checkmark			\checkmark																											
157							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark						\checkmark	\checkmark	\checkmark		\checkmark											
158							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark							\checkmark	\checkmark													
159												\checkmark																									
161							\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark									\checkmark	\checkmark													
163							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark								\checkmark	\checkmark	\checkmark													
164							\checkmark			\checkmark			\checkmark	\checkmark									\checkmark	\checkmark	\checkmark												

FUNCTIONAL CROSS－REFERENCE

DEVICE	BiCMOS						BIPOLAR						CMOS															OTHER									
	$\stackrel{\text { ■ }}{\underset{4}{4}}$	$\stackrel{\text { m }}{4}$	$\frac{5}{4}$	Ł	$\begin{array}{\|l\|} \hline \text { Ł } \\ \text { 品 } \\ \hline \end{array}$	5	$\stackrel{0}{4}$	の	L	9	∞	三	O	눈	O	$\begin{array}{\|l} \text { 는 } \\ \hline \end{array}$	$\begin{aligned} & \text { U } \\ & \hline \end{aligned}$	U	鹵	$\begin{array}{\|c} \hline \stackrel{\rightharpoonup}{\mathrm{p}} \\ \hline \end{array}$	咅	난	오	노	\geq	3	0	$\begin{aligned} & \text { w } \\ & \stackrel{y}{\mathbf{m}} \end{aligned}$	따	$\begin{aligned} & \text { 은 } \\ & \text { 늪 } \end{aligned}$	$\stackrel{\rightharpoonup}{6}$	$\stackrel{\square}{ㄴ}$	돋	$\begin{aligned} & \text { © } \\ & \hline 5 \end{aligned}$	U		亥
165							\checkmark			\checkmark													\checkmark	\checkmark	\checkmark												
166							\checkmark			\checkmark													\checkmark	\checkmark													
169							\checkmark	\checkmark	\checkmark	\checkmark																											
170										\checkmark																											
173										\checkmark													\checkmark	\checkmark													
174							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark									\checkmark	\checkmark	\checkmark												
175							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\checkmark \cdot$	\checkmark									\checkmark	\checkmark	\checkmark												
181								\checkmark		\checkmark																											
182											\checkmark																										
190																							\checkmark														
191							\checkmark			\checkmark												\checkmark	\checkmark	\checkmark													
192																							\checkmark														
193							\checkmark			\checkmark		\checkmark											\checkmark	\checkmark													
194								\checkmark		\checkmark													\checkmark	\checkmark													
195											\checkmark												\checkmark														
221										\checkmark		\checkmark											\checkmark	\checkmark	\checkmark												
224																														\checkmark							
225											\checkmark																										
229																														\checkmark							
230								\checkmark																													
232																														\checkmark							
233																														\checkmark							
236																														\checkmark							
237																							\checkmark	\checkmark													
238													\checkmark	\checkmark									\checkmark	\checkmark													
240	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		$\checkmark \cdot$	\checkmark	\checkmark	\checkmark						\checkmark	\checkmark	\checkmark	\checkmark	\checkmark											
241	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark									\checkmark	\checkmark													
243							\checkmark			\checkmark													\checkmark	\checkmark													
244	\checkmark			\checkmark		$\checkmark \cdot$	\checkmark	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark	\checkmark	\checkmark																		
245	\checkmark			\checkmark			$\checkmark \cdot$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark																	
247										\checkmark																											

FUNCTIONAL CROSS-REFERENCE

	BiCMOS						BIPOLAR						CMOS															OTHER									
DEVICE	$\stackrel{\text { bex }}{\mathbf{x}}$	$\stackrel{\text { ® }}{4}$	$\frac{5}{4}$	Ł	$\begin{aligned} & \hline \text { ■ } \\ & \text { O+ } \end{aligned}$	5	$\frac{0}{4}$	の	4	0	∞	E	O	ছ	옺	$\stackrel{\leftarrow}{\substack{1}}$		$\underset{~}{\text { U }}$	$\stackrel{\leftarrow}{\mathbf{0}}$	$\stackrel{\lambda}{\text { ¿ }}$	夺	단	오	노	\geq	U	$\begin{aligned} & \text { U } \\ & \gtrless \end{aligned}$	$\begin{array}{\|c} \stackrel{\text { w }}{\mathbf{m}} \end{array}$	ロ	$\begin{aligned} & \text { 은 } \\ & \text { 는 } \end{aligned}$	$\underset{\sim}{\leftarrow}$	늘	$\underset{\underline{5}}{\underline{5}}$	$\begin{aligned} & \text { © } \\ & \stackrel{y}{5} \end{aligned}$	ভ	$\stackrel{1}{6}$	$\underset{\sim}{7}$
373	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark •	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark	\checkmark	\checkmark											
374	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark •	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark	\checkmark	\checkmark											
375										\checkmark																											
377	\checkmark								\checkmark	\checkmark												\checkmark	\checkmark	\checkmark													
378										\checkmark																											
381											\checkmark																										
390										\checkmark													\checkmark	\checkmark													
393										\checkmark		\checkmark											\checkmark	\checkmark													
395										\checkmark																											
399										\checkmark												\checkmark															
423										\checkmark													\checkmark	\checkmark													
442										\checkmark																											
465										\checkmark																											
480																						\checkmark															
518							\checkmark																														
520							\checkmark		\checkmark													\checkmark															
521							\checkmark		\checkmark																												
533	\checkmark						\checkmark	\checkmark					\checkmark	\checkmark									\checkmark	\checkmark													
534	\checkmark						\checkmark	\checkmark					\checkmark	\checkmark									\checkmark	\checkmark													
540	\checkmark			\checkmark		\checkmark	\checkmark			\checkmark			\checkmark	\checkmark	\checkmark	\checkmark						\checkmark	\checkmark	\checkmark	\checkmark	\checkmark											
541	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark						\checkmark	\checkmark	\checkmark	\checkmark	\checkmark											
543	\checkmark			\checkmark		\checkmark			\checkmark					\bullet								\checkmark				\checkmark											
561							\checkmark																														
563							\checkmark						\checkmark	\checkmark									\checkmark	\checkmark													
564							\checkmark						\checkmark	\checkmark								\checkmark	\checkmark	\checkmark													
569							\checkmark																														
573	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark						\checkmark	\checkmark	\checkmark	\checkmark	\checkmark											
574	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark						\checkmark	\checkmark	\checkmark	\checkmark	\checkmark											
575							\checkmark	\checkmark																													
576							\checkmark	\checkmark																													
577							\checkmark																														

DEVICE	BiCMOS						BIPOLAR						CMOS															OTHER									
			$\frac{5}{4}$	Ło	$\begin{aligned} & \text { Ł } \\ & \text { 品 } \end{aligned}$	5	$\frac{0}{4}$	¢	ᄂ	0	∞	三	O	눈	웆	$\begin{aligned} & \text { 눈 } \\ & \hline \end{aligned}$		U	$\stackrel{\llcorner }{\mathrm{w}}$		夺	는	오	$\begin{array}{\|c} \hline \text { 노 } \\ \hline \end{array}$	\geq	U	$\underset{\gtrless}{\text { U }}$	$\stackrel{\text { w }}{\stackrel{\omega}{\mathbf{\omega}}}$	난	읖	$\underset{\sim}{E}$	$\frac{\text { 믈 }}{\text { N }}$	ㅌㅗㅗ	$\begin{aligned} & \text { © } \\ & \hline 5 \end{aligned}$	ভ	$\stackrel{1}{6}$	ミ
580							\checkmark																														
590										\checkmark													\checkmark														
592										\checkmark																											
593										\checkmark																											
594										\checkmark					\checkmark	\checkmark							\checkmark		\checkmark												
595										\checkmark					\checkmark	\checkmark							\checkmark		\checkmark												
596										\checkmark																											
597										\checkmark													\checkmark	\checkmark													
598										\checkmark																											
599										\checkmark																											
620	\checkmark						\checkmark																														
621							\checkmark																														
623	\checkmark			\checkmark			\checkmark		\checkmark	\checkmark			\checkmark	\checkmark								\checkmark	\checkmark	\checkmark													
624										\checkmark																											
628										\checkmark																											
629										\checkmark																											
638							\checkmark	\checkmark																													
639							\checkmark																														
640	\checkmark			\checkmark			\checkmark	\checkmark		\checkmark													\checkmark	\checkmark													
641							\checkmark	\checkmark		\checkmark																											
642							\checkmark			\checkmark																											
645							\checkmark	\checkmark		\checkmark													\checkmark	\checkmark													
646	\checkmark					\checkmark				\checkmark			\checkmark	\checkmark								\checkmark	\checkmark	\checkmark		\checkmark											
648							\checkmark	\checkmark		\checkmark																											
651	\checkmark																																				
652	\checkmark					\checkmark	\checkmark			\checkmark			\checkmark	$\checkmark \cdot$								\checkmark	\checkmark	\checkmark		\checkmark											
653							\checkmark																														
654							\checkmark																														
657	\checkmark								\checkmark																												
666							\checkmark																														
667							\checkmark																														

FUNCTIONAL CROSS－REFERENCE

	BiCMOS						BIPOLAR						CMOS															OTHER									
DEVICE	$\stackrel{\text { Ł }}{\text { ¢ }}$	$\frac{9}{4}$	$\stackrel{5}{4}$	Ł-p		5	$\frac{9}{4}$	の	แ	0	∞	三	O	눈	O	$\stackrel{\leftarrow}{\substack{1}}$		U	$\stackrel{\boxed{W}}{\mathbf{0}}$	$\frac{\lambda}{\stackrel{\rightharpoonup}{\mathrm{B}}}$	杂	는	오	노	\geq	U	$\underset{Z}{\mathrm{Z}}$	$\begin{array}{\|c} \text { w } \\ \text { 受 } \end{array}$	ロ	$\begin{aligned} & \text { 읖 } \\ & \text { 눌 } \end{aligned}$	$\underset{\circlearrowleft}{\leftarrow}$	믈	ㄷㅗㅗ	$\begin{aligned} & \text { © } \\ & \stackrel{5}{5} \end{aligned}$	U	$\stackrel{1}{6}$	を
669										\checkmark																											
670										\checkmark													\checkmark	\checkmark													
673										\checkmark																											
674										\checkmark																											
679							\checkmark																														
682										\checkmark													\checkmark														
684										\checkmark													\checkmark														
688							\checkmark			\checkmark													\checkmark	\checkmark													
697										\checkmark																											
746							\checkmark																														
756				\checkmark				\checkmark																													
757				\checkmark	\checkmark			\checkmark																													
760				\checkmark			\checkmark	\checkmark																													
804							\checkmark	\checkmark																													
805							\checkmark	\checkmark																													
808								\checkmark																													
817																																$+$					
818																						\checkmark															
821	\checkmark							\checkmark														\checkmark				\checkmark											
822																						\checkmark															
823	\checkmark							\checkmark														\checkmark				\checkmark											
824																						\checkmark															
825								\checkmark														\checkmark															
827	\checkmark																					\checkmark				\checkmark											
828																										\checkmark											
832							\checkmark	\checkmark																													
833	\checkmark																																				
841	\checkmark						\checkmark	\checkmark														\checkmark				\checkmark											
842																						\checkmark															
843	\checkmark						\checkmark															\checkmark															
844																						\checkmark															

DEVICE	BiCMOS						BIPOLAR						CMOS															OTHER									
	$\underset{\sim}{\text { ■ }}$	$\underset{\sim}{\underset{4}{4}}$	$\frac{5}{4}$	Ł	$\begin{aligned} & \text { 느 } \\ & \text { 哭 } \end{aligned}$	5	$\stackrel{0}{4}$	の	«	0	\cdots	三	O	$\stackrel{\leftarrow}{4}$	옺	$\stackrel{-}{\mathbf{N}}$	$\begin{aligned} & \text { 0 } \\ & \hline \end{aligned}$	U	$\stackrel{\leftarrow}{\mathrm{O}}$	$$	華	는	오	노	\geq	U	$\underset{~}{\text { O}}$	$\stackrel{\text { 山゙ }}{\stackrel{y}{\mathbf{m}}}$	판	읖	튼	$\frac{\square}{5}$	$\underline{\underline{6}}$	$\begin{aligned} & \text { © } \\ & \hline 5 \\ & \hline \end{aligned}$	ভ	ூ	方
845							\checkmark																														
853	\checkmark																																				
857							\checkmark																														
861	\checkmark																									\checkmark											
863	\checkmark																									\checkmark											
867							\checkmark	\checkmark																													
869							\checkmark	\checkmark																													
870							\checkmark																														
873							\checkmark	\checkmark																													
874							\checkmark	\checkmark																													
876							\checkmark	\checkmark																													
885								\checkmark																													
990							\checkmark																														
992							\checkmark																														
994							\checkmark																														
996							\checkmark																														
1000								\checkmark																													
1004							\checkmark	\checkmark																													
1005							\checkmark																														
1008								\checkmark																													
1016									\checkmark																												
1032								\checkmark																													
1034							\checkmark	\checkmark																													
1035							\checkmark																														
1050											\checkmark																										
1051											\checkmark																										
1052											\checkmark																										
1053											\checkmark																										
1056									\checkmark																												
1071														\checkmark																							
1073														\checkmark																							

FUNCTIONAL CROSS-REFERENCE

DEVICE	BiCMOS						BIPOLAR						CMOS															OTHER									
		$\stackrel{\text { m }}{4}$	$\frac{5}{4}$	ছ	$\begin{aligned} & \hline \text { Ł } \\ & \text { 品 } \\ & \hline \end{aligned}$	5	$\begin{aligned} & \infty \\ & 4 \\ & \hline \end{aligned}$	¢	－	9	∞	三	O	ঢ	운	$\begin{aligned} & \text { 는 } \\ & \hline \frac{1}{2} \end{aligned}$	$\begin{aligned} & \text { 0 } \\ & \hline \end{aligned}$	$\underset{X}{0}$	$\stackrel{\boxed{\circ}}{\mathbf{\circ}}$	$\frac{\lambda}{\stackrel{\rightharpoonup}{0}}$	杂	나	오	$\begin{array}{\|c} \text { 노 } \\ \hline \end{array}$	\geq	U	$\underset{\gtrless}{\mathrm{U}}$	$\begin{aligned} & \text { w } \\ & \stackrel{y}{\mathbf{m}} \end{aligned}$	¢	읖	$\stackrel{1}{6}$	$\frac{\square}{\bar{E}}$		$\begin{array}{\|l} \hline \mathbf{5} \\ \hline \end{array}$	ভ	-	ミ
4001																					\checkmark																
4002																					\checkmark		\checkmark														
4007																					\checkmark																
4009																					\checkmark																
4010																					\checkmark																
4011																					\checkmark																
4012																					\checkmark																
4013																					\checkmark																
4014																					\checkmark																
4015																					\checkmark		\checkmark														
4016																					\checkmark		\checkmark														
4017																					\checkmark		\checkmark														
4018																					\checkmark																
4019																					\checkmark																
4020																					\checkmark		\checkmark	\checkmark													
4021																					\checkmark																
4022																					\checkmark																
4023																					\checkmark																
4024																					\checkmark		\checkmark	\checkmark													
4025																					\checkmark																
4026																					\checkmark																
4027																					\checkmark																
4028																					\checkmark																
4029																					\checkmark																
4030																					\checkmark																
4031																					\checkmark																
4033																					\checkmark																
4034																					\checkmark																
4035																					\checkmark																
4040																					\checkmark		\checkmark	\checkmark	\checkmark												
4041																					\checkmark																

FUNCTIONAL CROSS-REFERENCE

	BiCMOS						BIPOLAR						CMOS															OTHER									
DEVICE	$\stackrel{\text { ºn }}{\mathbf{c}}$	$\stackrel{9}{4}$	$\frac{5}{4}$	ঢ	$\begin{aligned} & \hline \text { ছ } \\ & \text { 品 } \\ & \hline \end{aligned}$	5	$\underset{\sim}{0}$	¢	แ	0	∞	三	O	눈	옺	는		$\underset{~}{\text { O}}$	$\stackrel{\leftarrow}{\mathrm{E}}$	$\begin{array}{\|l} \hline \text { 之 } \\ \text { 틍 } \\ \hline \end{array}$	亲	나	오	노	\geq	U	Z	$\begin{aligned} & \text { w } \\ & \stackrel{\text { w }}{\text { N }} \end{aligned}$	ㄴ	은	$\stackrel{1}{6}$	$\frac{\square}{2}$	ㄷㅜㅗ	$\begin{aligned} & \text { © } \\ & \stackrel{y}{5} \end{aligned}$	ভ	占	ミ
4082																					\checkmark																
4085																					\checkmark																
4086																					\checkmark																
4089																					\checkmark																
4093																					\checkmark																
4094																					\checkmark		\checkmark	\checkmark													
4097																					\checkmark																
4098																					\checkmark																
4099																					\checkmark																
4245																										\checkmark											
4316																							\checkmark	\checkmark													
4351																							\checkmark	\checkmark													
4352																							\checkmark														
4374								\checkmark																													
4502																					\checkmark																
4503																					\checkmark																
4504																					\checkmark																
4508																					\checkmark																
4510																					\checkmark																
4511																					\checkmark		\checkmark	\checkmark													
4512																					\checkmark																
4514																					\checkmark		\checkmark	\checkmark													
4515																					\checkmark		\checkmark														
4516																					\checkmark																
4517																					\checkmark																
4518																					\checkmark		\checkmark														
4520																					\checkmark		\checkmark	\checkmark													
4521																					\checkmark																
4522																					\checkmark																
4527																					\checkmark																
4532																					\checkmark																

FUNCTIONAL CROSS-REFERENCE

DEVICE	BiCMOS						BIPOLAR						CMIOS															OTHER									
			$\begin{aligned} & 5 \\ & \hline \end{aligned}$	ছ	$$	5	$\frac{\infty}{4}$	¢	－	0	∞	三	O	ঢ	운	$\begin{array}{\|l} \hline \text { 눈 } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { U } \\ \hline \end{array}$	U	등	$\begin{array}{\|l\|} \hline \text { 学 } \\ \hline \end{array}$	$\begin{aligned} & \text { y } \\ & \hline 0.0 \end{aligned}$	난	오	노	\geq	0	$\underset{~}{\text { U }}$	$\begin{aligned} & \text { w } \\ & \stackrel{y}{\mathbf{m}} \end{aligned}$	ロ	$\begin{array}{\|l} \text { 읖 } \\ \hline \end{array}$	튼	$\stackrel{\text { Q }}{2}$	ㄴㅗㅗ	ভ	ভ	$\underset{\sim}{\ldots}$	さ
7881																														\checkmark							
7882																														\checkmark							
8240																																		\checkmark			
8244																																		\checkmark			
8245																																		\checkmark			
8373																																		\checkmark			
8374																																		\checkmark			
8543																																		\checkmark			
8550																																			\checkmark		
8646																																		\checkmark			
8652																																		\checkmark			
8952																																		\checkmark			
8980																																		\checkmark			
8990																																		\checkmark			
8996																																		\checkmark			
8997																																		\checkmark			
11000													\checkmark	\checkmark																							
11004													\checkmark	\checkmark																							
11008													\checkmark	\checkmark																							
11030														\checkmark																							
11032													\checkmark	\checkmark																							
11074													\checkmark	\checkmark																							
11086													\checkmark																								
11138													\checkmark																								
11139														\checkmark																							
11175													\checkmark																								
11240													\checkmark	\checkmark																							
11244													\checkmark	\checkmark																							
11245													\checkmark	\checkmark																							
11257													\checkmark	\checkmark																							
11286														\checkmark																							

DEVICE	BiCMOS						BIPOLAR						CMOS															OTHER									
	$\stackrel{\text {. }}{\text { ¢ }}$	$\stackrel{9}{4}$	$\frac{5}{\gtrless}$	ছ	$$	5	$\frac{\infty}{4}$	0	ᄂ	0	∞	三	O	$\underset{\sim}{\circ}$	옺	$\stackrel{-}{\text { 문 }}$		$\underset{~}{\text { U }}$	1⁄	$\stackrel{\rightharpoonup}{\text { 글 }}$	亲	나	오	노	\geq	U	$\underset{1}{\mathrm{O}}$	$\begin{aligned} & \text { w } \\ & \stackrel{y}{\mathbf{w}} \end{aligned}$	판	$\begin{aligned} & \text { 읖 } \\ & \hline \end{aligned}$	$\stackrel{1}{6}$	$\frac{\square}{E}$	$\underset{\underline{x}}{\underline{5}}$!	ভ ভ	$\stackrel{1}{6}$	ミ
16460	\checkmark																																				
16470	\checkmark																																				
16500	\checkmark					\checkmark											\checkmark					$+$															
16501	\checkmark					\checkmark											\checkmark					$+$															
16524																	\checkmark																				
16525																	\checkmark																				
16540	\checkmark														\checkmark	\checkmark										\checkmark											
16541	\checkmark					\checkmark								\checkmark	\checkmark	\checkmark										\checkmark											
16543	\checkmark					\checkmark								\checkmark			\checkmark					$+$				\checkmark											
16600	\checkmark																\checkmark																				
16601	\checkmark		\checkmark														\checkmark																				
16612																															\checkmark	\checkmark					
16616																															\checkmark						
16622																															\checkmark						
16623	\checkmark													\checkmark																							
16640	\checkmark																																				
16646	\checkmark					\checkmark								\checkmark			\checkmark	＋				$+$				\checkmark											
16651														\checkmark																							
16652	\checkmark					\checkmark							\checkmark	\checkmark								$+$				\checkmark											
16657	\checkmark													\checkmark																							
16721																	\checkmark																				
16722																		\checkmark																			
16800																				\checkmark																	
16820																	\checkmark																				
16821	\checkmark		\checkmark														\checkmark																				
16823	\checkmark													\checkmark			\checkmark					$+$															
16825	\checkmark													\checkmark			\checkmark																				
16827			\checkmark											\checkmark			\checkmark	\checkmark				$+$															
16831																	\checkmark																				
16832																	\checkmark																				
16833	\checkmark																																				

DEVICE	BiCMOS						BIPOLAR						CMOS															OTHER									
		$\stackrel{\text { m }}{4}$	$\frac{5}{4}$	Ł్ల	$\begin{aligned} & \text { Ł } \\ & \text { 品 } \end{aligned}$	5	$\frac{9}{4}$	O	ᄂ	0	∞	三	O	$\stackrel{\square}{4}$	옺	눈	O	O	$\stackrel{\leftarrow}{\mathrm{m}}$	$\begin{array}{\|l} \hline \text { ミ } \\ \text { 응 } \end{array}$	亲	는	오	노	\geq	U	$\underset{Z}{\text { U }}$		ㄴ．		$\stackrel{1}{6}$	$\stackrel{\text { 口 }}{\text { E }}$	$\stackrel{1}{\underline{5}}$	$\begin{aligned} & \text { © } \\ & \hline \end{aligned}$	ভ	上	永
16834																	\checkmark	\checkmark																			
16835						\checkmark											\checkmark	\checkmark																			
16837																																				\checkmark	
16841	\checkmark													\checkmark			\checkmark					$+$															
16843	\checkmark																																				
16847																																				\checkmark	
16853	\checkmark																																				
16857																																				\checkmark	$+$
16859																																					$+$
16861														\checkmark					\checkmark																		
16863	\checkmark													\checkmark			\checkmark																				
16901																	\checkmark									\checkmark											
16903																	\checkmark																				
16912																																$+$					
16916																																$+$					
16918																																	\checkmark				
16923																															\checkmark						
16945																																$+$					
16952	\checkmark					\checkmark								\checkmark			\checkmark					$+$				\checkmark											
18245																																		\checkmark			
18502																																		\checkmark			
18504																																		\checkmark			
18512																																		\checkmark			
18514																																		\checkmark			
18640																																		\checkmark			
18646																																		\checkmark			
18652																																		\checkmark			
25244				\checkmark	\checkmark																																
25245	\checkmark			\checkmark	\checkmark																																
25642				\checkmark																																	
29821				\checkmark			\checkmark																														

FUNCTIONAL CROSS－REFERENCE

	BiCMOS						BIPOLAR						CMOS															OTHER									
DEVICE	$\stackrel{\boxed{x}}{\mathbf{\alpha}}$	$\underset{\sim}{\underset{4}{4}}$	$\frac{5}{4}$	Ł్ల		5	$\frac{9}{4}$	¢	แ	0	∞	三	4	ঢ	O		O	O	$\stackrel{\leftarrow}{\mathrm{O}}$	$\begin{aligned} & \text { 之 } \\ & \text { 릉 } \end{aligned}$	궁	난	오	노	\geq	U	$\underset{1}{\mathrm{~L}}$	$\stackrel{\text { w }}{\text { w }}$	판	$\begin{aligned} & \text { 은 } \\ & \text { 는 } \end{aligned}$	$\underset{\substack{1}}{ }$	$\frac{\square}{\bar{E}}$	ㄷㅜㅗ	$\begin{aligned} & \text { ¢ } \\ & \hline \end{aligned}$	ভ	$\stackrel{1}{6}$	ミ
29823							\checkmark																														
29825				\checkmark																																	
29827				\checkmark			\checkmark																														
29828							\checkmark																														
29833							\checkmark																														
29841							\checkmark																														
29843				\checkmark																																	
29854							\checkmark																														
29863				\checkmark			\checkmark																														
29864				\checkmark																																	
32244			\checkmark			\checkmark											\checkmark									\checkmark											
32245	\checkmark					\checkmark											\checkmark		\checkmark							\checkmark											
32316	\checkmark																																				
32318	\checkmark																																				
32373			\checkmark			\checkmark																				\checkmark											
32374			\checkmark			\checkmark											\checkmark									\checkmark											
32501	\checkmark					$+$											\checkmark																				
32543	\checkmark																																				
32945																																$+$					
40102																					\checkmark																
40103																					\checkmark		\checkmark	\checkmark													
40105																														\checkmark							
40106																					\checkmark																
40107																					\checkmark																
40109																					\checkmark																
40110																					\checkmark																
40117																					\checkmark																
40147																					\checkmark																
40161																					\checkmark																
40174																					\checkmark																
40175																					\checkmark																

DEVICE	BiCMOS						BIPOLAR						CMOS															OTHER									
		$\frac{\square}{4}$	$\frac{5}{4}$	Ło	$\begin{aligned} & \hline \text { Ł } \\ & \text { 品 } \end{aligned}$	5	$\frac{9}{4}$	¢	แ	0	∞	三	O	$\stackrel{\square}{\mathrm{O}}$	옺	$\begin{aligned} & \text { 눈 } \\ & \hline \end{aligned}$	只	U	$\stackrel{\leftarrow}{\mathrm{m}}$			는	오	노	\geq	U	$\underset{1}{\text { U }}$	$\begin{aligned} & \text { 㟶 } \\ & \hline \end{aligned}$	¢	읖	$\frac{1}{6}$	$\frac{\square}{ㄷ ㅡ ㄷ ~}$	통	$\begin{aligned} & \text { ¢ } \\ & \hline \end{aligned}$	ভ	$\stackrel{1}{6}$	需
40192																					\checkmark																
40193																					\checkmark																
40194																					\checkmark																
40257																					\checkmark																
161284																									\checkmark	\checkmark											
162240						\checkmark																$+$															
162241						\checkmark																															
162244	\checkmark		\checkmark			\checkmark											\checkmark					＋				\checkmark											
162245	\checkmark					\checkmark																$+$				\checkmark											
162260	\checkmark																\checkmark																				
162268																	\checkmark																				
162280																	\checkmark																				
162282																	\checkmark																				
162292																			\checkmark																		
162334																	\checkmark																				
162344																	\checkmark																				
162373						\checkmark																$+$															
162374						\checkmark											\checkmark					$+$															
162409																	\checkmark																				
162460	\checkmark																																				
162500	\checkmark																					$+$															
162501	\checkmark																					$+$															
162525																	\checkmark																				
162541						\checkmark																															
162543																						$+$															
162601	\checkmark																\checkmark																				
162646																						$+$															
162652																						$+$															
162721																	\checkmark																				
162820																	\checkmark																				
162822																																	\checkmark				

	BiCMOS						BIPOLAR						CMOS															OTHER									
DEVICE	$\stackrel{\text { ■ }}{\text { ¢ }}$	$\stackrel{̣}{4}$	$\frac{5}{4}$	ছ	$\begin{aligned} & \hline \text { Ł } \\ & \text { 品 } \\ & \hline \end{aligned}$	5	$\begin{aligned} & 0 \\ & 4 \end{aligned}$	の	4	0	∞	三	O	Ł	$\begin{array}{\|l} \hline \text { N } \\ \hline \end{array}$	$\begin{aligned} & \text { 눈 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 0 } \\ & \hline \end{aligned}$	$\underset{\mathbb{K}}{\mathbf{U}}$	鹵	$\begin{array}{\|l\|} \hline \text { خ } \\ \text { 른 } \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { 芯 } \\ \hline \end{array}$	는	오	$\begin{array}{\|c} \text { 노 } \\ \hline \end{array}$	\geq	U	$\underset{1}{2}$	$\stackrel{\text { w }}{\stackrel{\text { w }}{\mathbf{m}}}$	ㅍ	읖	등		톧	范	$\begin{array}{\|l} \text { U } \\ \hline \end{array}$	尔	ミ
162823	\checkmark																					$+$															
162825	\checkmark																																				
162827	\checkmark		\checkmark														\checkmark					$+$															
162830																	\checkmark																				
162831																	\checkmark																				
162832																	\checkmark																				
162834																	\checkmark																				
162835																	\checkmark																				
162836																	\checkmark																				
162841	\checkmark																\checkmark					$+$															
162952																						$+$															
163244																						$+$															
163245																						$+$															
163373																						$+$															
163374																						$+$															
163500																						＋															
163501																						＋															
163543																						$+$															
163646																						$+$															
163652																						＋															
163827																						$+$															
163952																						$+$															
164245																	\checkmark																				
182502																																		\checkmark			
182504																																		\checkmark			
182512																																		\checkmark			
182646																																		\checkmark			
182652																																		\checkmark			

FOCUS ON THE HISTORY OF LOGIC

ヨainv NOILOヨาヨS ヨગI＾ヨa

CONTENTS

ABT - Advanced BiCMOS Technology Logic 5-5
ABTE/ETL - Advanced BiCMOS Technology/Enhanced Transceiver Logic 5-11
AC/ACT - Advanced CMOS Logic 5-13
AHC/AHCT - Advanced High-Speed CMOS Logic 5-21
ALB - Advanced Low-Voltage BiCMOS Logic 5-27
ALS - Advanced Low-Power Schottky Logic 5-29
ALVC - Advanced Low-Voltage CMOS Technology Logic 5-35
ALVT - Advanced Low-Voltage BiCMOS Technology Logic 5-39
AS - Advanced Schottky Logic 5-41
AVC - Advanced Very-Low-Voltage CMOS Logic 5-45
BCT - BiCMOS Technology Logic 5-47
64BCT - 64-Series BiCMOS Technology Logic 5-47
BTA - Bus-Termination Arrays 5-51
CBT - Crossbar Technology Logic 5-53
CBTLV - Low-Voltage Crossbar Technology Logic 5-57
CD4000 - CMOS B-Series Integrated Circuits 5-59
74F - Fast Logic 5-63
FB+/BTL - FutureBus+/Backplane Transceiver Logic 5-67
FCT - Fast CMOS TTL Logic 5-69
FIFO - First-In, First-Out Memories 5-77
GTL - Gunning Transceiver Logic 5-81
GTLP - Gunning Transceiver Logic Plus 5-83
HC/HCT - High-Speed CMOS Logic 5-87
IEEE Std 1149.1 (JTAG) Boundary-Scan Logic 5-97
Little Logic 5-101
LS - Low-Power Schottky Logic 5-105
LV - Low-Voltage CMOS Technology Logic 5-111
LVC - Low-Voltage CMOS Technology Logic 5-115
LVT - Low-Voltage BiCMOS Technology Logic 5-119
PCA - I ${ }^{2}$ C Inter-Integrated Circuit Applications 5-123
S - Schottky Logic 5-125
SSTL/SSTV - Stub Series-Terminated Logic 5-129
HSTL - High-Speed Transceiver Logic 5-129
TTL - Transistor-Transistor Logic 5-131
TVC - Translation Voltage Clamp Logic 5-135

ABT

Advanced BiCMOS Technology Logic

The ABT family, Tl's second-generation family of BiCMOS bus-interface products, is manufactured using a $0.8-\mu \mathrm{BiCMOS}$ process. It provides high drive up to 64 mA and propagation delays in the 5 -ns range, while maintaining very low power consumption. ABT products are well suited for live-insertion applications with an $\mathrm{I}_{\text {off }}$ specification of 0.1 mA and power-up 3-state (PU3S) circuitry.

The ABT family offers series-damping-resistor options where reduced transmission-line effects are required. Special ABT parts that provide high-current drive (180 mA) for use with $25-\Omega$ transmission lines also are offered. Advanced bus functions, such as universal bus transceivers (UBT ${ }^{\text {TM }}$) emulate a wide variety of bus-interface functions. Multiplexing options for memory interleaving and bus upsizing or downsizing also are provided.

The ABT devices can be purchased in octal, Widebus ${ }^{\text {TM }}$, or Widebus $+{ }^{\text {TM }}$. The Widebus and Widebus+ packages feature higher performance with reduced noise and flow-through pinout for easier board layout. Widebus+ devices offer input bus-hold circuitry to eliminate the need for external pullup resistors for floating inputs.

See www.ti.com/sc/logic for the most current data sheets.

DEVICE SELECTION GUIDE

ABT

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY								LITERATURE REFERENCE
			MIL	PDIP	QFP	SOIC	SSOP	TQFP	TSSOP	TVSOP	
SN74ABT640	20	Octal Bus Transceivers with 3-State Outputs		\checkmark		\checkmark	\checkmark		\checkmark		SCBS104
SN74ABT646A	24	Octal Registered Bus Transceivers with 3-State Outputs	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	SCBS069
SN74ABT651	24	Octal Bus Transceivers and Registers with 3-State Outputs		\checkmark		\checkmark	\checkmark				SCBS083
SN74ABT652A	24	Octal Bus Transceivers and Registers with 3-State Outputs	\checkmark	\checkmark		\checkmark	\checkmark				SCBS072
SN74ABT657A	24	Octal Bus Transceivers with Parity Generators/Checkers and 3-State Outputs		\checkmark		\checkmark	\checkmark				SCBS192
SN54ABT821	24	10-Bit Bus-Interface Flip-Flops with 3-State Outputs	\checkmark								SCBS193
SN74ABT821A	24	10-Bit Bus-Interface Flip-Flops with 3-State Outputs	\checkmark	\checkmark		\checkmark	\checkmark				SCBS193
SN74ABT823	24	9-Bit Bus-Interface Flip-Flops with 3-State Outputs	\checkmark	\checkmark		\checkmark	\checkmark				SCBS158
SN74ABT827	24	10-Bit Buffers/Drivers with 3-State Outputs	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		SCBS159
SN74ABT833	24	8 -Bit to 9-Bit Parity Bus Transceivers	\checkmark	\checkmark		\checkmark					SCBS195
SN74ABT841	24	10-Bit Bus-Interface D-Type Latches with 3-State Outputs	\checkmark								SCBS196
SN74ABT841A	24	10-Bit Bus-Interface D-Type Latches with 3-State Outputs		\checkmark		\checkmark	\checkmark				SCBS196
SN74ABT843	24	9-Bit Bus-Interface D-Type Latches with 3-State Outputs	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		SCBS197
SN74ABT853	24	8 -Bit to 9-Bit Parity Bus Transceivers	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		SCBS198
SN74ABT861	24	10-Bit Transceivers with 3-State Outputs		\checkmark		\checkmark					SCBS199
SN74ABT863	24	9-Bit Bus Transceivers with 3-State Outputs		\checkmark		\checkmark	\checkmark				SCBS201
SN74ABT2240A	20	Octal Buffers and Line/MOS Drivers with Series Damping Resistors and 3-State Outputs	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		SCBS232
SN74ABT2241	20	Octal Buffers and Line/MOS Drivers with Series Damping Resistors and 3-State Outputs		\checkmark		\checkmark	\checkmark		\checkmark		SCBS233
SN74ABT2244A	20	Octal Buffers/Line Drivers with Series Damping Resistors and 3-State Outputs	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		SCBS106
SN74ABT2245	20	Octal Transceivers and Line MOS Drivers with Series Damping Resistors and 3-State Outputs	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		SCBS234
SN74ABTR2245	20	Octal Transceivers and Line MOS Drivers with Series Damping Resistors and 3-State Outputs		\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	SCBS680
SN74ABT2827	24	10-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs		\checkmark		\checkmark					SCBS648
SN74ABT2952A	24	Octal Bus Transceivers and Registers with 3-State Outputs	\checkmark	\checkmark		\checkmark	\checkmark				SCBS203
SN74ABT5400A	28	11-Bit Line/Memory Drivers with 3-State Outputs				\checkmark					SCBS661
SN74ABT5401	28	11-Bit Line/Memory Drivers with 3-State Outputs				\checkmark					SCBS235
SN74ABT5402A	28	12-Bit Line/Memory Drivers with 3-State Outputs				\checkmark					SCBS660
SN74ABT5403	28	12-Bit Line/Memory Drivers with 3-State Outputs				\checkmark					SCBS236
SN74ABT16240A	48	16-Bit Buffers/Drivers with 3-State Outputs	\checkmark				\checkmark		\checkmark	\checkmark	SCBS095
SN74ABT16241A	48	16-Bit Buffers/Drivers with 3-State Outputs	\checkmark				\checkmark		\checkmark	\checkmark	SCBS096
SN74ABT16244A	48	16-Bit Buffers/Drivers with 3-State Outputs					\checkmark		\checkmark	\checkmark	SCBS073
SN74ABTH16244	48	16-Bit Buffers/Drivers with 3-State Outputs	\checkmark				\checkmark		\checkmark		SCBS677
SN74ABT16245A	48	16-Bit Bus Transceivers with 3-State Outputs					\checkmark		\checkmark	\checkmark	SCBS300
SN74ABTH16245	48	16-Bit Bus Transceivers with 3-State Outputs	\checkmark				\checkmark		\checkmark	\checkmark	SCBS662
SN74ABTH16260	56	12-Bit to 24-Bit Multiplexed D-Type Latches with 3-State Outputs	\checkmark				\checkmark				SCBS204
SN74ABT16373A	48	16-Bit Transparent D-Type Latches with 3-State Outputs	\checkmark				\checkmark		\checkmark		SCBS160
SN74ABT16374A	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark				\checkmark		\checkmark		SCBS205

DEVICE SELECTION GUIDE

ABT

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY								LITERATURE REFERENCE
			MIL	PDIP	QFP	soic	ssop	TQFP	TSSOP	TVSOP	
SN74ABTH16460	56	4-to-1 Multiplexed/Demultiplexed Transceivers with 3 -State Outputs					\checkmark		\checkmark		SCBS207
SN74ABT16470	56	16-Bit Registered Transceivers with 3-State Outputs					\checkmark		\checkmark		SCBS085
SN74ABT16500B	56	18-Bit Universal Bus Transceivers with 3-State Outputs					\checkmark		\checkmark		SCBS057
SN74ABT16501	56	18-Bit Universal Bus Transceivers with 3-State Outputs					\checkmark		\checkmark		SCBS086
SN74ABT16540A	48	16-Bit Buffers/Drivers with 3-State Outputs					\checkmark		\checkmark	\checkmark	SCBS208
SN74ABT16541A	48	16-Bit Buffers/Drivers with 3-State Outputs					\checkmark		\checkmark	\checkmark	SCBS118
SN74ABT16543	56	16-Bit Registered Transceivers with 3-State Outputs	\checkmark				\checkmark		\checkmark		SCBS087
SN74ABT16600	56	18-Bit Universal Bus Transceivers with 3-State Outputs					\checkmark		\checkmark		SCBS209
SN74ABT16601	56	18-Bit Universal Bus Transceivers with 3-State Outputs	\checkmark				\checkmark		\checkmark		SCBS210
SN74ABT16623	48	16-Bit Bus Transceivers with 3-State Outputs					\checkmark		\checkmark		SCBS211
SN74ABT16640	48	16-Bit Bus Transceivers with 3-State Outputs	\checkmark				\checkmark		\checkmark		SCBS107
SN74ABT16646	56	16-Bit Bus Transceivers and Registers with 3-State Outputs	\checkmark				\checkmark		\checkmark		SCBS212
SN74ABT16652	56	16-Bit Bus Transceivers and Registers with 3-State Outputs	\checkmark				\checkmark				SCBS215
SN74ABT16657	56	16-Bit Transceivers with Parity Generators/Checkers and 3-State Outputs					\checkmark		\checkmark		SCBS103
SN74ABT16821	56	20-Bit D-Type Flip-Flops with 3-State Outputs					\checkmark		\checkmark		SCBS216
SN74ABT16823	56	18-Bit D-Type Flip-Flops with 3-State Outputs	\checkmark				\checkmark		\checkmark		SCBS217
SN74ABTH16823	56	18-Bit D-Type Flip-Flops with 3-State Outputs					\checkmark		\checkmark		SCBS664
SN74ABT16825	56	18-Bit Buffers/Drivers with 3-State Outputs					\checkmark				SCBS218
SN74ABT16827	56	20-Bit Buffers/Drivers with 3-State Outputs					\checkmark				SCBS220
SN74ABT16833	56	Dual 8-Bit to 9-Bit Parity Bus Transceivers					\checkmark		\checkmark		SCBS097
SN74ABT16841	56	20-Bit Bus-Interface D-Type Latches with 3-State Outputs	\checkmark				\checkmark				SCBS222
SN74ABT16843	56	18-Bit Bus-Interface D-Type Latches with 3-State Outputs					\checkmark		\checkmark		SCBS223
SN74ABT16853	56	Dual 8-Bit to 9-Bit Parity Bus Transceivers					\checkmark		\checkmark		SCBS153
SN74ABT16863	56	18-Bit Bus-Interface Transceivers with 3-State Outputs					\checkmark				SCBS225
SN74ABT16952	56	16-Bit Registered Transceivers with 3-State Outputs	\checkmark				\checkmark		\checkmark		SCBS082
SN74ABTH25245	24	$25-\Omega$ Octal Bus Transceivers with 3-State Outputs		\checkmark		\checkmark					SCBS251
SN74ABTH32245	100	32-Bit Bus Transceivers with 3-State Outputs						\checkmark			SCBS228
SN74ABTH32316	80	16-Bit Tri-Port Universal Bus Exchangers	\checkmark		\checkmark						SCBS179
SN74ABTH32318	80	18-Bit Tri-Port Universal Bus Exchangers			\checkmark						SCBS180
SN74ABTH32501	100	32-Bit Universal Bus Transceivers with 3-State Outputs						\checkmark			SCBS229
SN74ABTH32543	100	32-Bit Registered Bus Transceivers with 3-State Outputs						\checkmark			SCBS230
SN74ABT162244	48	16-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs	\checkmark				\checkmark		\checkmark	\checkmark	SCBS238
SN74ABT162245	48	16-Bit Bus Transceivers with Series Damping Resistors and 3-State Outputs	\checkmark				\checkmark		\checkmark		SCBS239
SN74ABTH162245	48	16-Bit Bus Transceivers with Series Damping Resistors and 3-State Outputs					\checkmark		\checkmark	\checkmark	SCBS712
SN74ABTH162260	56	12-Bit to 24-Bit Multiplexed D-Type Latches with Series Damping Resistors and 3-State Outputs					\checkmark				SCBS240
SN74ABTH162460	56	4-to-1 Multiplexed/Demultiplexed Registered Transceivers with 3-State Outputs					\checkmark		\checkmark		SCBS241
SN74ABT162500	56	18-Bit Universal Bus Transceivers with 3-State Outputs					\checkmark				SCBS242
SN74ABT162501	56	18-Bit Universal Bus Transceivers with 3-State Outputs					\checkmark		\checkmark		SCBS243
SN74ABT162601	56	18-Bit Universal Bus Transceivers with 3-State Outputs	\checkmark				\checkmark		\checkmark		SCBS247

DEVICE	No. PINS	DESCRIPTION	availability							LITERATURE REFERENCE
			MIL PDIP	afp	solc	ssop	tafp	Tssop	tvsop	
SN74ABT162823A	56	18-Bit Bus-Interface Flip-Flops with 3-State Outputs				\checkmark		\checkmark		SCBS666
SN74ABT162825	56	18-Bit Buffers/Drivers with Series Damping Resistors and 3 -State Outputs				\checkmark				SCBS474
SN74ABT162827A	56	20-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs				\checkmark		\checkmark		SCBS248
SN74ABT162841	56	20-Bit Bus-Interface D-Type Latches with 3-State Outputs				\checkmark		\checkmark		SCBS665

ABTE/ETL

Advanced BiCMOS Technology/ Enhanced Transceiver Logic

ABTE, with wide noise margin ETL logic levels on the A port, is backward compatible with existing LVTTL/TTL logic. ABTE devices support the ANSI/VITA 1-1994 specification (VME64) with tight tolerances for transition times and skew. ABTE is manufactured using the $0.8-\mu \mathrm{BiCMOS}$ process and provides A-port drive levels up to 90 mA for incident-wave switching. B-port features include bus-hold circuitry eliminating the need for external pullup resistors and $25-\Omega$ series output resistors to dampen signal reflections. Other features include a V_{CC} BIAS pin and internal pullup resistors on control pins for live-insertion protection.

The VMEbus International Trade Association (VITA) established a task group in 1997 to specify a synchronous protocol to double data transfer rates to 320 Mbytes/s or more. The new specification, 2eSST (double-edge source synchronous transfers), is based on the asynchronous 2eVME protocol.

Sustained data rates of 1 Gbyte/s, more then ten times faster than traditional VME64 backplanes with single-edge signaling, are possible by taking advantage of 2eSST's use of both edges of each VMEbus clock and the 21-slot VME320 star-configuration backplane.

TI, in conjunction with VITA, is designing a device to support the 2eSST protocol.

See www.ti.com/sc/logic for the most current data sheets and additional information on this new device.

ABTE/ETL

DEVICE	No. PINS	DESCRIPTION	AVAILABILITY			LITERATURE REFERENCE
			MLL	SSOP	TSSOP	
SN74ABTE16245	48	16-Bit Incident-Wave-Switching Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	SCBS226
SN74ABTE16246	48	11-Bit Incident-Wave-Switching Bus Transceivers with 3-State and Open-Collector Outputs		\checkmark	\checkmark	SCBS227

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)	PLCC (plastic leaded chip carrier)	SOIC (small-outline integrated circuit)	TSSOP (thin shrink small-outline package)
GKE $=96$ pins	FN = 20/28/44/68/84 pins	D $=8 / 14 / 16$ pins	PW $=8 / 14 / 16 / 20 / 24 / 28$ pins
GKF $=114$ pins	QFP (quad flatpack)	DW $=16 / 20 / 24 / 28 \mathrm{pins}$	DGG $=48 / 56 / 64$ pins
VFBGA (very-thin-profile fine-pitch ball grid array)	RC $=52$ pins (FB only)	QSOP (quarter-size outline package)	TVSOP (thin very small-outline package)
GQL = 56 pins (also includes 48-pin functions)	PH $=80$ pins (FIFO only)	DBQ $=16 / 20 / 24$ pins	DGV $=14 / 16 / 20 / 24 / 48 / 56$ pins
PDIP (plastic dual-in-line package)	PQ = 100/132 pins (FIFO only)	SSOP (shrink small-outline package)	DBB $=80$ pins
$\mathrm{P}=8$ pins	TQFP (plastic thin quad flatpack)	DB $=14 / 16 / 20 / 24 / 28 / 30 / 38$ pins	SOT (small-outline transistor)
$N=14 / 16 / 20$ pins	PAH $=52$ pins	DBQ $=16 / 20 / 24$	DBV $=5$ pins
$N T=24 / 28$ pins	PAG $=64$ pins (FB only)	DL $=28 / 48 / 56$ pins	DCK $=5$ pins
	PM $=64$ pins		
schedule	PN $=80$ pins		
	PCA, PZ $=100$ pins (FB only)		
$\boldsymbol{\checkmark}$ = Now $\boldsymbol{+}$ = Planned	PCB $=120$ pins (FIFO only)		

AC/ACT

Advanced CMOS Logic

TI offers a full family of advanced CMOS logic with a wide range of AC/ACT devices for low-power and medium- to high-speed applications. Products acquired from Harris Semiconductor provide many additional functions. Over 160 AC and ACT device types are available, including gates, latches, flip-flops, buffers/drivers, counters, multiplexers, transceivers, and registered transceivers. The AC/ACT family is a reliable, low-power logic family with $24-\mathrm{mA}$ output current drive at $5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}(\mathrm{AC} / \mathrm{ACT})$ and $12-\mathrm{mA}$ output current drive 3.3-V V_{CC} (AC only).

The family includes standard end-pin products and center-pin V_{CC} and ground-configuration products with output-edge control ($\mathrm{OEC}^{\text {TM }}$) circuitry. The OEC circuitry, available only with the center-pin products, helps reduce simultaneous switching noise associated with high-speed logic. The center-pin products include 16-, 18-, and 20-bit bus-interface functions packaged in 48 - and 56 -pin shrink small-outline package (SSOP) and thin shrink small-outline package (TSSOP). These packages allow the designer to double functionality in the same circuit board area or reduce the circuit board area by one-half.

The AC family offers CMOS inputs and outputs while the ACT family offers TTL inputs with CMOS outputs.

See www.ti.com/sc/logic for the most current data sheets.

DEVICE SELECTION GUIDE

AC

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY					LITERATURE REFERENCE
			MLL	PDIP	SOIC	SSOP	TSSOP	
CD74AC00	14	Quad 2-Input NAND Gates	\checkmark	\checkmark	\checkmark			SCHS223
SN74AC00	14	Quad 2-Input NAND Gates	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCAS524
CD74AC02	14	Quad 2-Input NOR Gates	\checkmark	\checkmark	\checkmark			SCHS224
CD74AC04	14	Hex Inverters	\checkmark	\checkmark	\checkmark			SCHS225
SN74AC04	14	Hex Inverters	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCAS519
CD74AC05	14	Hex Inverters with Open-Drain Outputs	\checkmark	\checkmark	\checkmark			SCHS225
CD74AC08	14	Quad 2-Input AND Gates	\checkmark	\checkmark	\checkmark			SCHS226
SN74AC08	14	Quad 2-Input AND Gates	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCAS536
CD74AC10	14	Triple 3-Input NAND Gates		\checkmark	\checkmark			SCHS227
SN74AC10	14	Triple 3-Input NAND Gates	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCAS529
SN74AC11	14	Triple 3-Input AND Gates	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCAS532
CD74AC14	14	Hex Schmitt-Trigger Inverters		\checkmark	\checkmark			SCHS228
SN74AC14	14	Hex Schmitt-Trigger Inverters	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCAS522
CD74AC20	14	Dual 4-Input NAND Gates	\checkmark	\checkmark	\checkmark			SCHS229
CD74AC32	14	Quad 2-Input OR Gates	\checkmark	\checkmark	\checkmark			SCHS230
SN74AC32	14	Quad 2-Input OR Gates	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCAS528
CD74AC74	14	Dual D-Type Flip-Flops with Set and Reset	\checkmark	\checkmark	\checkmark			SCHS231
SN74AC74	14	Dual D-Type Flip-Flops with Set and Reset	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCAS521
CD74AC86	14	Quad 2-Input Exclusive-OR Gates		\checkmark	\checkmark			SCHS232
SN74AC86	14	Quad 2-Input Exclusive-OR Gates	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCAS533
CD74AC109	16	Dual Positive-Edge-Triggered J-- Flip Flops with Set and Reset	\checkmark	\checkmark	\checkmark			SCHS282
CD74AC112	16	Dual Negative-Edge-Triggered J-K Flip-Flops with Set and Reset	\checkmark	\checkmark	\checkmark			SCHS233
CD74AC138	16	3-to-8 Line Inverting Decoders/Demultiplexers	\checkmark	\checkmark	\checkmark			SCHS234
CD74AC139	16	Dual 2-to-4 Line Decoders/Demultiplexers	\checkmark	\checkmark	\checkmark			SCHS235
CD74AC151	16	1-of-8 Data Selectors/Multiplexers		\checkmark	\checkmark			SCHS236
CD74AC153	16	Dual 1-of-4 Data Selectors/Multiplexers	\checkmark	\checkmark	\checkmark			SCHS237
CD74AC157	16	Quad 2-to-4 Line Data Selectors/Multiplexers	\checkmark	\checkmark	\checkmark			SCHS283
CD74AC158	16	Quad 2-to-4 Line Data Selectors/Multiplexers			\checkmark			SCHS283
CD74AC161	16	Synchronous 4-Bit Binary Counters	\checkmark	\checkmark	\checkmark			SCHS239
CD74AC163	16	Synchronous 4-Bit Binary Counters	\checkmark	\checkmark	\checkmark			SCHS284
CD74AC164	14	8-Bit Serial-In, Parallel-Out Shift Registers	\checkmark	\checkmark	\checkmark			SCHS240
CD74AC174	16	Hex D-Type Flip-Flops with Clear		\checkmark	\checkmark			SCHS241
CD74AC175	16	Quad D-Type Flip-Flops with Clear			\checkmark			SCHS242
CD74AC238	16	3-to-8 Line Decoders/Demultiplexers			\checkmark			SCHS234
CD74AC240	20	Octal Buffers/Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS287

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)
GKE $=96$ pins
GKF $=114$ pins
VFBGA (very-thin-profile fine-pitch ball grid array)
GQL $=56$ pins (also includes 48-pin functions)
PDIP (plastic dual-in-line package)
$\mathrm{P}=8 \mathrm{pins}$
$N=14 / 16 / 20$ pins
$N T=24 / 28$ pins

schedule

$\boldsymbol{\checkmark}=$ Now $\quad \boldsymbol{+}$ Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins
QFP (quad flatpack)
RC $=52$ pins (FB only)
PH $=80$ pins (FIFO only)
$P Q=100 / 132$ pins (FIFO only)
TQFP (plastic thin quad flatpack)
PAH $=52$ pins
PAG $=64$ pins (FB only)
$\mathrm{PM}=64$ pins
PN $\quad=80$ pins
PCA, PZ $=100$ pins (FB only)
PCB $=120$ pins (FIFO only)

SOIC (small-outine integrated circuit) D $=8 / 14 / 16$ pins DW $=16 / 20 / 24 / 28 \mathrm{pins}$
QSOP (quarter-size outline package)
DBQ $=16 / 20 / 24$ pins
SSOP (shrink small-outline package)
DB $=14 / 16 / 20 / 24 / 28 / 30 / 38$ pins
DBQ $=16 / 20 / 24$
DL $=28 / 48 / 56$ pins

TSSOP (thin shrink small-outline package) PW $=8 / 14 / 16 / 20 / 24 / 28$ pins
DGG $=48 / 56 / 64$ pins
TVSOP (thin very small-outline package)
DGV $=14 / 16 / 20 / 24 / 48 / 56$ pins
DBB $=80$ pins
SOT (small-outline transistor)
DBV $=5$ pins
DCK $=5$ pins

See Appendix A for package information on CD54/74AC devices.

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY					LITERATURE REFERENCE
			MIL	PDIP	soic	ssop	TSSOP	
SN74AC240	20	Octal Buffers/Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCAS512
CD74AC241	20	Octal Buffers/Drivers with 3-State Outputs	\checkmark					SCHS287
SN74AC241	20	Octal Buffers/Drivers with 3-State Outputs		\checkmark	\checkmark	\checkmark	\checkmark	SCAS513
CD74AC244	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS244
SN74AC244	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCAS514
CD74AC245	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark		SCHS245
SN74AC245	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCAS461
CD74AC251	16	1-of-8 Data Selectors/Multiplexers with 3-State Outputs			\checkmark			SCHS246
CD74AC253	16	Dual 1-of-4 Data Selectors/Multiplexers with 3-State Outputs			\checkmark			SCHS247
CD74AC257	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS248
CD74AC273	20	Octal D-Type Flip-Flops with Clear	\checkmark	\checkmark	\checkmark			SCHS249
CD74AC280	14	9-Bit Odd/Even Parity Generators/Checkers	\checkmark	\checkmark	\checkmark			SCHS250
CD74AC283	16	9-Bit Binary Full Adders with Fast Carry	\checkmark	\checkmark	\checkmark			SCHS251
CD74AC299	20	8-Bit Universal Shitt/Storage Registers	\checkmark		\checkmark			SCHS288
CD74AC323	20	8-Bit Universal Shitt/Storage Registers			\checkmark			SCHS288
CD74AC373	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS289
SN74AC373	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCAS540
CD74AC374	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS290
SN74AC374	20	Octal D-Type Edge-Triggered Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCAS543
SN74AC533	20	Octal Inverting Transparent Latches with 3-State Outputs		\checkmark	\checkmark	\checkmark	\checkmark	SCAS555
CD74AC534	20	Octal D-Type Inverting Flip-Flops with 3-State Outputs			\checkmark			SCHS290
SN74AC534	20	Octal D-Type Inverting Flip-Flops with 3-State Outputs		\checkmark	\checkmark	\checkmark	\checkmark	SCAS554
CD74AC540	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs			\checkmark			SCHS285
CD74AC541	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS285
CD74AC563	20	Octal Inverting Transparent Latches with 3-State Outputs		\checkmark				SCHS291
SN74AC563	20	Octal Inverting Transparent Latches with 3-State Outputs		\checkmark	\checkmark	\checkmark	\checkmark	SCAS552
SN74AC564	20	Octal D-Type Inverting Flip-Flops with 3-State Outputs		\checkmark	\checkmark	\checkmark	\checkmark	SCAS551
CD74AC573	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS291
SN74AC573	20	Octal Transparent D-Type Latches with 3-State Outputs		\checkmark	\checkmark	\checkmark	\checkmark	SCAS542
CD74AC574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS292
SN74AC574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCAS541
CD74AC623	20	Octal Bus Transceivers with 3-State Outputs		\checkmark				SCHS286
CD74AC646	24	Octal Registered Bus Transceivers with 3-State Outputs			\checkmark			SCHS293
CD74AC652	24	Octal Bus Transceivers and Registers with 3-State Outputs			\checkmark			SCHS294
74AC11000	16	Quad 2-Input NAND Gates		\checkmark	\checkmark			SCLS054
74AC11004	20	Hex Inverters		\checkmark	\checkmark			SCHS033
74AC11008	16	Quad 2-Input AND Gates		\checkmark	\checkmark		\checkmark	SCAS014
74AC11032	16	Quad 2-Input OR Gates		\checkmark	\checkmark			SCAS007
74AC11074	14	Dual D-Type Flip-Flops with Set and Reset		\checkmark	\checkmark	\checkmark	\checkmark	SCAS499
74AC11086	16	Quad 2-Input Exclusive-OR Gates		\checkmark	\checkmark			SCAS081
74AC11138	16	3-to-8 Line Inverting Decoders/Demultiplexers		\checkmark	\checkmark		\checkmark	SCAS042
74AC11175	20	Quad D-Type Flip-Flops with Clear		\checkmark	\checkmark			SCAS090
74AC11240	24	Octal Buffers/Drivers with 3-State Outputs		\checkmark	\checkmark	\checkmark		SCAS448
74AC11244	24	Octal Buffers and Line Drivers with 3-State Outputs		\checkmark	\checkmark	\checkmark	\checkmark	SCAS171

DEVICE SELECTION GUIDE

AC

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY					LITERATURE REFERENCE
			MIL	PDIP	solc	ssop	TSSOP	
74AC11245	24	Octal Bus Transceivers with 3-State Outputs		\checkmark	\checkmark			SCAS010
74AC11257	20	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs		\checkmark	\checkmark	\checkmark	\checkmark	SCAS049
74AC16244	48	16-Bit Buffers/Drivers with 3-State Outputs				\checkmark		SCAS120
74AC16245	48	16-Bit Bus Transceivers with 3-State Outputs				\checkmark		SCAS235
74AC16373	48	16-Bit Transparent D-Type Latches with 3-State Outputs				\checkmark		SCAS121
74AC16374	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Output				\checkmark		SCAS123
74AC16652	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				\checkmark		SCAS242

DEVICE SELECTION GUIDE

ACT

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY					LITERATURE REFERENCE
			MIL	PDIP	SOIC	SSOP	TSSOP	
SN74ACT240	20	Octal Buffers/Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCAS515
CD74ACT241	20	Octal Buffers/Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS287
SN74ACT241	20	Octal Buffers/Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCAS516
CD74ACT244	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS287
SN74ACT244	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCAS517
CD74ACT245	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark		SCHS245
SN74ACT245	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCAS452
CD74ACT253	16	Dual 1-of-4 Data Selectors/Multiplexers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS247
CD74ACT257	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS248
CD74ACT258	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs			\checkmark			SCHS248
CD74ACT273	20	Octal D-Type Flip-Flops with Clear	\checkmark	\checkmark	\checkmark	\checkmark		SCHS249
CD74ACT280	14	9-Bit Odd/Even Parity Generators/Checkers	\checkmark	\checkmark	\checkmark			SCHS250
CD74ACT283	16	9-Bit Binary Full Adders with Fast Carry	\checkmark	\checkmark	\checkmark			SCHS251
CD74ACT297	16	Digital Phase-Locked Loops			\checkmark			SCHS297
CD74ACT299	20	8-Bit Universal ShittStorage Registers	\checkmark		\checkmark			SCHS288
CD74ACT373	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS289
SN74ACT373	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCAS544
CD74ACT374	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS290
SN74ACT374	20	Octal D-Type Edge-Triggered Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCAS539
SN74ACT533	20	Octal Inverting Transparent Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCAS553
SN74ACT534	20	Octal D-Type Inverting Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCAS556
CD74ACT540	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS285
CD74ACT541	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark		SCHS285
SN74ACT563	20	Octal Inverting Transparent Latches with 3-State Outputs		\checkmark	\checkmark	\checkmark	\checkmark	SCAS550
SN74ACT564	20	Octal D-Type Inverting Flip-Flops with 3-State Outputs		\checkmark	\checkmark	\checkmark	\checkmark	SCAS549
CD74ACT573	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS291
SN74ACT573	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCAS538
CD74ACT574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS292
SN74ACT574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs		\checkmark	\checkmark	\checkmark	\checkmark	SCAS537
CD74ACT623	20	Octal Bus Transceivers with 3-State Outputs	\checkmark		\checkmark			SCHS286
CD74ACT646	24	Octal Registered Bus Transceivers with 3-State Outputs		\checkmark	\checkmark			SCHS293
CD74ACT652	24	Octal Bus Transceivers and Registers with 3-State Outputs		\checkmark	\checkmark			SCHS294
SN74ACT1071	14	10-Bit Bus Termination Networks with Bus Hold			\checkmark			SCAS192
SN74ACT1073	20	16-Bit Bus Termination Networks with Bus Hold			\checkmark			SCAS193
SN74ACT1284	20	7-Bit Bus-Interfaces with 3-State Outputs			\checkmark	\checkmark	\checkmark	SCAS459
74ACT11000	16	Quad 2-Input NAND Gates		\checkmark	\checkmark			SCAS002
74ACT11004	20	Hex Inverters		\checkmark	\checkmark	\checkmark	\checkmark	SCAS215
74ACT11008	16	Quad 2-Input AND Gates		\checkmark	\checkmark		\checkmark	SCAS013
74ACT11030	14	8-Input NAND Gates		\checkmark	\checkmark			SCLS050
74ACT11032	16	Quad 2-Input OR Gates		\checkmark	\checkmark	\checkmark	\checkmark	SCAS008
74ACT11074	14	Dual D-Type Flip-Flops with Set and Reset		\checkmark	\checkmark	\checkmark		SCAS498
74ACT11139	16	Dual 2-to-4 Line Decoders/Demultiplexers			\checkmark		\checkmark	SCAS175
74ACT11240	24	Octal Buffers/Drivers with 3-State Outputs		\checkmark	\checkmark	\checkmark		SCAS210
74ACT11244	24	Octal Buffers and Line Drivers with 3-State Outputs		\checkmark	\checkmark	\checkmark	\checkmark	SCAS006

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY					LITERATURE REFERENCE
			MIL	PDIP	SOIC	SSOP	TSSOP	
74ACT11245	24	Octal Bus Transceivers with 3-State Outputs		\checkmark	\checkmark	\checkmark	\checkmark	SCAS031
74ACT11257	20	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs		\checkmark	\checkmark	\checkmark		SCAS053
74ACT11286	14	9-Bit Parity Generators/Checkers with Bus-Driver Parity I/O Port		\checkmark	\checkmark			SCAS069
74ACT11373	24	Octal Transparent D-Type Latches with 3-State Outputs		\checkmark	\checkmark	\checkmark		SCAS015
74ACT11374	24	Octal Transparent D-Type Latches with 3-State Outputs		\checkmark	\checkmark			SCAS217
74ACT11543	28	Octal Registered Transceivers with 3-State Outputs			\checkmark			SCAS136
74ACT11652	28	Octal Bus Transceivers and Registers with 3-State Outputs			\checkmark			SCAS087
74ACT16240	48	16-Bit Buffers/Drivers with 3-State Outputs	\checkmark			\checkmark		SCAS137
74ACT16244	48	16-Bit Buffers/Drivers with 3-State Outputs	\checkmark			\checkmark	\checkmark	SCAS116
74ACT16245	48	16-Bit Bus Transceivers with 3-State Outputs	\checkmark			\checkmark	\checkmark	SCAS097
74ACT16373	48	16-Bit Transparent D-Type Latches with 3-State Outputs	\checkmark			\checkmark		SCAS122
74ACT16374	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Output	\checkmark			\checkmark		SCAS124
74ACT16541	48	16-Bit Buffers/Drivers with 3-State Outputs				\checkmark		SCAS208
74ACT16543	56	16-Bit Registered Transceivers with 3-State Outputs				\checkmark	\checkmark	SCAS126
74ACT16623	48	16-Bit Bus Transceivers with 3-State Outputs				\checkmark		SCAS152
74ACT16646	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				\checkmark		SCAS127
74ACT16651	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				\checkmark		SCAS449
74ACT16652	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				\checkmark		SCAS128
74ACT16657	56	16-Bit Transceivers with Parity Generators/Checkers and 3-State Outputs				\checkmark		SCAS164
74ACT16823	56	18-Bit D-Type Flip-Flops with 3-State Outputs				\checkmark		SCAS160
74ACT16825	56	18-Bit Buffers/Drivers with 3-State Outputs				\checkmark		SCAS155
74ACT16827	56	20-Bit Buffers/Drivers with 3-State Outputs				\checkmark		SCAS163
74ACT16841	56	20-Bit Bus Interface D-Type Latches with 3-State Outputs				\checkmark		SCAS174
74ACT16861	56	20-Bit Bus Transceivers with 3-State Outputs				\checkmark		SCAS197
74ACT16863	56	18-Bit Bus Interface Transceivers with 3-State Outputs				\checkmark		SCAS162
74ACT16952	56	16-Bit Registered Transceivers with 3-State Outputs				\checkmark		SCAS159

AHC/AHCT

Advanced High-Speed CMOS Logic

The AHC/AHCT logic family provides a natural migration path for HCMOS users who need more speed in low-power, low-noise, and low-drive applications. The AHC logic family consists of basic gates, octals, and 16-bit Widebus ${ }^{\text {TM }}$ functions. Tl also offers single-gate solutions, designated with 1G in the device name.

Performance characteristics of the AHC family are:

- Speed - Typical propagation delays of 5.2 ns (octals), about three times faster than HC devices. AHC devices are the quick and quiet solution at $5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ for higher-speed operation.
- Low noise - The AHC family allows designers to combine the low-noise characteristics of HCMOS devices with today's performance levels, without the overshoot and undershoot problems typical of higher-drive devices required to get AHC speeds.
- Low power - The AHC family CMOS technology exhibits low power consumption (40-mA max static current, one-half that of HCMOS).
- Drive - Output-drive current is $\pm 8 \mathrm{~mA}$ at $5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}(\mathrm{AHC} / \mathrm{AHCT})$ and $\pm 4 \mathrm{~mA}$ at $3.3-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ (AHC only).
- The AHC family offers CMOS inputs and outputs, while the AHCT family offers TTL inputs with CMOS outputs.
- Packaging - AHC devices are available in small-outline integrated circuit (SOIC), shrink small-outline package (SSOP), plastic dual in-line package (PDIP), thin shrink small-outline package (TSSOP), thin very small-outline package (TVSOP), and 5-pin small-outline transistor (SOT) package. Selected AHC devices are available in military versions (SN54AHCxx).

Using TI products offers several business advantages:

- Competitive advantage - AHC and competitors' VHC devices have equivalent specifications; therefore, AHC devices are drop-in replacements offering alternate sources. With Tl's production capacity, delivery performance, and competitive prices, AHC devices are among the most economical, easy-to-use, and easy-to-get logic products.

See www.ti.com/sc/logic for the most current data sheets.

DEVICE SELECTION GUIDE

AHC

DEVICE	$\begin{aligned} & \text { NO. } \\ & \text { PINS } \end{aligned}$	DESCRIPTION	AVAILABILITY							LITERATURE REFERENCE
			MIL	PDIP	SOIC	SOT	SSOP	TSSOP	TVSOP	
SN74AHC1G00	5	Single 2-Input NAND Gates				\checkmark				SCLS313
SN74AHC1G02	5	Single-2-Input NOR Gates				\checkmark				SCLS342
SN74AHC1G04	5	Single Inverters				\checkmark				SCLS318
SN74AHC1GU04	5	Single Inverters				\checkmark				SCLS343
SN74AHC1G08	5	Single 2-Input AND Gates				\checkmark				SCLS314
SN74AHC1G14	5	Single Schmitt-Trigger Inverters				\checkmark				SCLS321
SN74AHC1G32	5	Single 2-Input OR Gates				\checkmark				SCLS317
SN74AHC1G86	5	Single 2-Input Exclusive-OR Gates				\checkmark				SCLS323
SN74AHC1G125	5	Single Bus Buffers with 3-State Outputs				\checkmark				SCLS377
SN74AHC1G126	5	Single Bus Buffers with 3-State Outputs				\checkmark				SCLS379
SN74AHC00	14	Quad 2-Input NAND Gates	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS227
SN74AHC02	14	Quad 2-Input NOR Gates	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS254
SN74AHC04	14	Hex Inverters	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS231
SN74AHCU04	14	Hex Unbuffered Inverters	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS234
SN74AHC05	14	Hex Inverters with Open-Drain Outputs		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS357
SN74AHC08	14	Quad 2-Input AND Gates	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS236
SN74AHC14	14	Hex Schmitt-Trigger Inverters	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS238
SN74AHC32	14	Quad 2-Input OR Gates	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS247
SN74AHC74	14	Dual D-Type Flip-Flops with Set and Reset	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS255
SN74AHC86	14	Quad 2-Input Exclusive-OR Gates	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS249
SN74AHC123A	16	Dual Retriggerable Monostable Multivibrators with Reset	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS352
SN74AHC125	14	Quad Bus Buffers with 3-State Outputs	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS256
SN74AHC126	14	Quad Bus Buffers with 3-State Outputs	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS257
SN74AHC132	14	Quad 2-Input NAND Gates with Schmitt-Trigger Inputs		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS365
SN74AHC138	16	3-to-8 Line Inverting Decoders/Demultiplexers	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS258
SN74AHC139	16	Dual 2-to-4 Line Decoders/Demultiplexers		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS259
SN74AHC157	16	Quad 2-to-4 Line Data Selectors/Multiplexers	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS345
SN74AHC158	16	Quad 2-to-4 Line Data Selectors/Multiplexers		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS346
SN74AHC240	20	Octal Buffers/Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS251
SN74AHC244	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS226
SN74AHC245	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS230
SN74AHC273	20	Octal D-Type Flip-Flops with Clear	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS376
SN74AHC367	16	Hex Buffers/Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS424
SN74AHC373	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS235
SN74AHC374	20	Octal D-Type Edge-Triggered Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS240

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)	PLCC (plastic leaded chip carrier)
GKE $=96$ pins	FN $=20 / 28 / 44 / 68 / 84$ pins
GKF $=114$ pins	QFP (quad flatpack)
VFBGA (very-thin-profile fine-pitch ball grid array)	RC $=52$ pins (FB only)
GQL $=56$ pins (also includes 48-pin functions)	PH $=80$ pins (FIFO only)
PDIP (plastic dual-in-line package)	PQ $=100 / 132$ pins (FIFO only)
P $=8$ pins	TQFP (plastic thin quad flatpack)
N =14/16/20 pins	PAH $=52$ pins
NT $=24 / 28$ pins	PAG $=64$ pins (FB only)
schedule	PM $=64$ pins
$\boldsymbol{V}=$ Now $+=$ Planned	PN $=80$ pins
	PCA, PZ $=100$ pins (FB only)

SOIC (small-outine integrated circuit) D $=8 / 14 / 16$ pins $D W=16 / 20 / 24 / 28$ pins
QSOP (quarter-size outline package)
DBQ $=16 / 20 / 24$ pins
SSOP (shrink small-outline package)
DB $=14 / 16 / 20 / 24 / 28 / 30 / 38$ pins
DBQ $=16 / 20 / 24$
$D L=28 / 48 / 56$ pins

TSSOP (thin shrink small-outine package) PW $=8 / 14 / 16 / 20 / 24 / 28$ pins DGG $=48 / 56 / 64$ pins
TVSOP (thin very small-outline package) DGV $=14 / 16 / 20 / 24 / 48 / 56$ pins DBB $=80$ pins
SOT (small-outine transistor)
DBV $=5$ pins
DCK $=5$ pins

AHC

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY							LITERATURE REFERENCE
			MIL	PDIP	SOIC	SOT	SSOP	TSSOP	TVSOP	
SN74AHC540	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS260
SN74AHC541	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS261
SN74AHC573	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS242
SN74AHC574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS244
SN74AHC594	16	8 -Bit Shift Registers with Output Registers		\checkmark	\checkmark		\checkmark	\checkmark		SCLS423
SN74AHC595	16	8-Bit Shift Registers with 3-State Output Registers		\checkmark	\checkmark		\checkmark	\checkmark		SCLS373
SN74AHC16240	48	16-Bit Buffers/Drivers with 3-State Outputs					\checkmark	\checkmark	\checkmark	SCLS326
SN74AHC16244	48	16-Bit Buffers/Drivers with 3-State Outputs					\checkmark	\checkmark	\checkmark	SCLS327
SN74AHC16373	48	16-Bit Transparent D-Type Latches with 3-State Outputs					\checkmark	\checkmark	\checkmark	SCLS329
SN74AHC16374	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs					\checkmark	\checkmark	\checkmark	SCLS330
SN74AHC16540	48	16-Bit Buffers/Drivers with 3-State Outputs					\checkmark	\checkmark	\checkmark	SCLS331
SN74AHC16541	48	16-Bit Buffers/Drivers with 3-State Outputs					\checkmark	\checkmark	\checkmark	SCLS332

DEVICE SELECTION GUIDE

AHCT

AHCT

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY							LITERATURE REFERENCE
			MIL	PDIP	SOIC	SOT	SSOP	TSSOP	TVSOP	
SN74AHCT574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SCLS245
SN74AHCT594	16	8-Bit Shift Registers with Output Registers		\checkmark	\checkmark		\checkmark	\checkmark		SCLS417
SN74AHCT595	16	8-Bit Shift Registers with 3-State Output Registers		\checkmark	\checkmark		\checkmark	\checkmark		SCLS374
SN74AHCT16240	48	16-Bit Buffers/Drivers with 3-State Outputs					\checkmark	\checkmark	\checkmark	SCLS333
SN74AHCT16244	48	16-Bit Buffers/Drivers with 3-State Outputs					\checkmark	\checkmark	\checkmark	SCLS334
SN74AHCT16245	48	16-Bit Bus Transceivers with 3-State Outputs					\checkmark	\checkmark	\checkmark	SCLS335
SN74AHCT16373	48	16-Bit Transparent D-Type Latches with 3-State Outputs					\checkmark	\checkmark	\checkmark	SCLS336
SN74AHCT16374	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs					\checkmark	\checkmark	\checkmark	SCLS337
SN74AHCT16540	48	16-Bit Buffers/Drivers with 3-State Outputs					\checkmark	\checkmark	\checkmark	SCLS338
SN74AHCT16541	48	16-Bit Buffers/Drivers with 3-State Outputs					\checkmark	\checkmark	\checkmark	SCLS339

ALB

Advanced Low-Voltage BiCMOS Logic

The specially designed $3.3-\mathrm{V}$ ALB family uses $0.6-\mu \mathrm{BiCMOS}$ process technology for bus-interface functions. ALB provides $25-\mathrm{mA}$ drive at 3.3 V with maximum propagation delays of 2.2 ns , making it one of TI's fastest logic families. The inputs have clamping diodes to limit overshoot and undershoot.

The ALB family currently is available in two functions with Widebus ${ }^{T M}$ and Shrink Widebus ${ }^{\text {TM }}$ footprints, with advanced packaging options such as shrink small-outline package (SSOP), thin shrink small-outline package (TSSOP), and thin very small-outline package (TVSOP).

See www.ti.com/sc/logic for the most current data sheets.

ALB

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY			LItERATURE
			SSOP	TSSOP	TVSOP	REFERENCE
SN74ALB16244	48	16-Bit Buffers/Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	SCBS647
SN74ALB16245	48	16-Bit Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	SCBS678

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array) GKE $=96$ pins	PLCC (plastic leaded chip carrier) $\mathrm{FN}=20 / 28 / 44 / 68 / 84$ pins	SOIC (small-outline integrated circuit) D $=8 / 14 / 16$ pins	TSSOP (thin shrink small-outline package) $P W=8 / 14 / 16 / 20 / 24 / 28 \text { pins }$
GKF $=114$ pins	QFP (quad flatpack)	DW = 16/20/24/28 pins	DGG $=48 / 56 / 64$ pins
VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)	$\begin{aligned} & \mathrm{RC}=52 \text { pins (FB only) } \\ & \mathrm{PH}=80 \text { pins (FIFO only) } \end{aligned}$	QSOP (quarter-size outline package) $D B Q=16 / 20 / 24 \text { pins }$	TVSOP (thin very small-outline package) DGV $=14 / 16 / 20 / 24 / 48 / 56$ pins
PDIP (plastic dual-in-line package)	PQ = 100/132 pins (FIFO only)	SSOP (shrink small-outline package)	DBB $=80$ pins
$\mathrm{P}=8$ pins	TQFP (plastic thin quad flatpack)	DB $=14 / 16 / 20 / 24 / 28 / 30 / 38$ pins	SOT (small-outline transistor)
$N=14 / 16 / 20$ pins	PAH $=52$ pins	DBQ $=16 / 20 / 24$	DBV $=5$ pins
NT $=24 / 28$ pins	$\begin{array}{ll} \text { PAG } & =64 \text { pins (FB only) } \\ \text { PM } & =64 \text { pins } \end{array}$	DL $=28 / 48 / 56$ pins	DCK $=5$ pins
schedule	PN $=80$ pins		
$\boldsymbol{\checkmark}$ = Now $\boldsymbol{+}$ = Planned	PCA, PZ PCB P $=120$ pins (FB only) (FIFO only)		

ALS

Advanced Low-Power Schottky Logic

The ALS family provides over 140 bipolar logic functions.
This family, combined with the AS family, can be used to optimize systems through performance budgeting. By using AS in speed-critical paths and ALS where speed is less critical, designers can optimize speed and power performance in bipolar designs.

The ALS family includes gates, flip-flops, counters, drivers, transceivers, registered transceivers, readback latches, clock drivers, register files, and multiplexers.

See www.ti.com/sc/logic for the most current data sheets.

DEVICE SELECTION GUIDE

ALS

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY				LITERATURE REFERENCE
			MIL	PDIP	SOIC	SSOP	
SN74ALS166	16	8-Bit Parallel-Load Shitt Registers		\checkmark	\checkmark	\checkmark	SDAS156
SN74ALS169B	16	Synchronous 4-Bit Up/Down Binary Counters	\checkmark	\checkmark	\checkmark		SDAS125
SN74ALS174	16	Hex D-Type Flip-Flops with Clear	\checkmark	\checkmark	\checkmark		SDAS207
SN74ALS175	16	Quad D-Type Flip-Flops with Clear	\checkmark	\checkmark	\checkmark		SDAS207
SN74ALS191A	16	Presettable Synchronous 4-Bit Up/Down Binary Counters	\checkmark	\checkmark	\checkmark		SDAS210
SN54ALS193	16	Presettable Synchronous 4-Bit Up/Down Binary Counters	\checkmark				Call
SN74ALS193A	16	Presettable Synchronous 4-Bit Up/Down Binary Counters	\checkmark	\checkmark	\checkmark		SDAS211
SN74ALS240A	20	Octal Buffers/Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS214
SN74ALS240A-1	20	Octal Buffers/Drivers with 3-State Outputs		\checkmark	\checkmark		SDAS214
SN74ALS241C	20	Octal Buffers/Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS153
SN74ALS243A	14	Quad Bus-Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS069
SN74ALS244C	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SDAS142
SN74ALS244C-1	20	Octal Buffers and Line Drivers with 3-State Outputs		\checkmark	\checkmark		SDAS142
SN74ALS245A	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SDAS272
SN74ALS245A-1	20	Octal Bus Transceivers with 3-State Outputs		\checkmark	\checkmark		SDAS272
SN74ALS251	16	1-of-8 Data Selectors/Multiplexers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS215
SN74ALS253	16	Dual 1-of-4 Data Selectors/Multiplexers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS216
SN74ALS257	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs	\checkmark				SDAS124
SN74ALS257A	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs		\checkmark	\checkmark		SDAS124
SN74ALS258	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs	\checkmark				SDAS124
SN74ALS258A	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs		\checkmark	\checkmark		SDAS124
SN74ALS259	16	8-Bit Addressable Latches	\checkmark	\checkmark	\checkmark		SDAS217
SN74ALS273	20	Octal D-Type Flip-Flops with Clear	\checkmark	\checkmark	\checkmark		SDAS218
SN74ALS280	14	9-Bit Odd/Even Parity Generators/Checkers		\checkmark	\checkmark		SDAS038
SN74ALS299	20	8-Bit Universal Shitt/Storage Registers	\checkmark	\checkmark	\checkmark		SDAS220
SN74ALS323	20	8-Bit Universal Shitt/Storage Registers	\checkmark	\checkmark	\checkmark		SDAS267
SN74ALS373	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark				SDAS083
SN74ALS373A	20	Octal Transparent D-Type Latches with 3-State Outputs		\checkmark	\checkmark	\checkmark	SDAS083
SN74ALS374A	20	Octal D-Type Edge-Triggered Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SDAS167
SN74ALS518	20	8-Bit Identity Comparators ($\mathrm{P}=\mathrm{Q}$) with Open-Collector Outputs and Input Pullup Resistors		\checkmark	\checkmark		SDAS224
SN74ALS520	20	8-Bit Identity Comparators ($\overline{\mathrm{P}=\mathrm{Q}}$) with Input Pullup Resistors	\checkmark	\checkmark	\checkmark		SDAS224
SN74ALS521	20	8 -Bit Identity Comparators ($\overline{\mathrm{P}=\mathrm{Q}}$)		\checkmark	\checkmark		SDAS224
SN74ALS533A	20	Octal Inverting Transparent Latches with 3-State Outputs		\checkmark	\checkmark		SDAS270
SN74ALS534A	20	Octal D-Type Inverting Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS168
SN74ALS540	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs		\checkmark	\checkmark		SDAS025
SN74ALS540-1	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs		\checkmark	\checkmark		SDAS025
SN74ALS541	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SDAS025
SN74ALS541-1	20	Octal Buffers and Line Drivers with 3-State Outputs		\checkmark	\checkmark		SDAS025
SN74ALS561A	20	Octal Bus Transceivers and Registers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS225
SN74ALS563B	20	Octal Inverting Transparent Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS163
SN74ALS564B	20	Octal D-Type Inverting Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS164
SN74ALS569A	20	Synchronous 4-Bit Binary Counter with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS229
SN74ALS573C	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SDAS048
SN74ALS574B	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS165

DEVICE SELECTION GUIDE

ALS

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY				LITERATURE REFERENCE
			MLL	PDIP	SOIC	SSOP	
SN74ALS575A	24	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs		\checkmark	\checkmark		SDAS165
SN74ALS576B	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS065
SN74ALS577A	24	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs		\checkmark	\checkmark		SDAS065
SN74ALS580B	20	Octal D-Type Transparent Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS277
SN74ALS620A	20	Octal Bus Transceivers with 3-State Outputs		\checkmark	\checkmark		SDAS226
SN74ALS621A	20	Octal Bus Transceivers with Open-Collector Outputs		\checkmark	\checkmark		SDAS226
SN74ALS621A-1	20	Octal Bus Transceivers with Open-Collector Outputs		\checkmark	\checkmark		SDAS226
SN74ALS623A	20	Octal Bus Transceivers with 3-State Outputs		\checkmark	\checkmark		SDAS226
SN74ALS638A	20	Octal Bus Transceivers with 3-State Outputs		\checkmark	\checkmark		SDAS123
SN74ALS638A-1	20	Octal Bus Transceivers with 3-State Outputs		\checkmark	\checkmark		SDAS123
SN74ALS639A	20	Octal Bus Transceivers with 3-State Outputs		\checkmark	\checkmark		SDAS123
SN74ALS640B	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS122
SN74ALS640B-1	20	Octal Bus Transceivers with 3-State Outputs		\checkmark	\checkmark		SDAS122
SN74ALS641A	20	Octal Bus Transceivers with Open-Collector Outputs		\checkmark	\checkmark		SDAS300
SN74ALS641A-1	20	Octal Bus Transceivers with Open-Collector Outputs		\checkmark	\checkmark		SDAS300
SN74ALS642A	20	Octal Bus Transceivers with Open-Collector Outputs		\checkmark	\checkmark		SDAS300
SN74ALS642A-1	20	Octal Bus Transceivers with Open-Collector Outputs		\checkmark	\checkmark		SDAS300
SN74ALS645A	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS278
SN74ALS645A-1	20	Octal Bus Transceivers with 3-State Outputs		\checkmark	\checkmark		SDAS278
SN74ALS648A	24	Octal Registered Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS039
SN74ALS653	24	Octal Bus Transceivers and Registers with Open-Collector and 3-State Outputs		\checkmark	\checkmark		SDAS066
SN74ALS654	24	Octal Bus Transceivers and Registers with Open-Collector and 3-State Outputs		\checkmark	\checkmark		SDAS066
SN74ALS666	24	8-Bit D-Type Transparent Read-Back Latches with 3-State Outputs		\checkmark	\checkmark		SDAS227
SN74ALS667	24	8-Bit D-Type Transparent Read-Back Latches with 3-State Outputs		\checkmark	\checkmark		SDAS227
SN74ALS679	20	12-Bit Address Comparators		\checkmark	\checkmark		SDAS003
SN74ALS688	20	8-Bit Magnitude Comparators	\checkmark	\checkmark	\checkmark		SDAS228
SN74ALS746	20	Octal Buffers and Line Drivers with Input Pullup Resistors and 3-State Outputs		\checkmark	\checkmark		SDAS052
SN74ALS760	20	Octal Buffers and Line Drivers with Open-Collector Outputs		\checkmark	\checkmark		SDAS141
SN74ALS804A	20	Hex 2-Input NAND Drivers	\checkmark	\checkmark	\checkmark		SDAS022
SN74ALS805A	20	Hex 2-Input NOR Drivers	\checkmark	\checkmark	\checkmark		SDAS023
SN74ALS832A	20	Hex 2-Input OR Drivers	\checkmark	\checkmark	\checkmark		SDAS017
SN74ALS841	24	10-Bit Bus-Interface D-Type Latches with 3-State Outputs		\checkmark	\checkmark		SDAS059
SN74ALS843	24	9-Bit Bus-Interface D-Type Latches with 3-State Outputs		\checkmark	\checkmark		SDAS232
SN74ALS845	24	8-Bit Bus-Interface D-Type Latches with 3-State Outputs		\checkmark	\checkmark		SDAS233
SN74ALS857	24	Hex 2-to-1 Universal Multiplexers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS170
SN74ALS867A	24	Synchronous 8-Bit Up/Down Counters		\checkmark	\checkmark		SDAS115
SN74ALS869	24	Synchronous 8-Bit Up/Down Counters		\checkmark	\checkmark		SDAS115
SN74ALS870	24	Dual 16-by-4 Register Files		\checkmark	\checkmark		SDAS139
SN74ALS873B	24	Dual 4-Bit D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS036
SN74ALS874B	24	Dual 4-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS061
SN74ALS876A	24	Dual 4-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs		\checkmark	\checkmark		SDAS061
SN74ALS990	20	8-Bit D-Type Transparent Read-Back Latches		\checkmark	\checkmark		SDAS027
SN74ALS992	24	9-Bit D-Type Transparent Read-Back Latches with 3-State Outputs		\checkmark	\checkmark		SDAS028
SN74ALS994	24	10-Bit D-Type Transparent Read-Back Latches		\checkmark	\checkmark		SDAS237

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY				LITERATURE REFERENCE
			MLL	PDIP	SOIC	SSOP	
SN74ALS996	24	8-Bit Edge-Triggered Read-Back Latches	\checkmark	\checkmark	\checkmark		SDAS098
SN74ALS996-1	24	8-Bit Edge-Triggered Read-Back Latches		\checkmark	\checkmark		SDAS098
SN74ALS1004	14	Hex Inverting Drivers		\checkmark	\checkmark		SDAS074
SN74ALS1005	14	Hex Inverting Buffers with Open-Collector Outputs	\checkmark	\checkmark	\checkmark		SDAS240
SN74ALS1034	14	Hex Drivers	\checkmark	\checkmark	\checkmark		SDAS053
SN74ALS1035	14	Hex Non-Inverting Buffers with Open-Collector Outputs	\checkmark	\checkmark	\checkmark		SDAS243
SN74ALS1244A	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS186
SN74ALS1245A	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS245
SN74ALS1640A	20	Octal Bus Transceivers with 3-State Outputs		\checkmark			SDAS246
SN74ALS1645A	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS246
SN74ALS2240	20	Octal Buffers and Line/MOS Drivers with 3-State Outputs and Series Damping Resistors	\checkmark	\checkmark	\checkmark		SDAS268
SN74ALS2541	20	Octal Line Driver/MOS Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS273
SN74ALS29821	24	10-Bit Bus Interface Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS145
SN74ALS29823	24	9-Bit Bus Interface Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS146
SN74ALS29827	24	10-Bit Buffers/Drivers with 3-State Outputs		\checkmark	\checkmark		SDAS095
SN74ALS29828	24	10-Bit Buffers/Drivers with 3-State Outputs		\checkmark	\checkmark		SDAS095
SN74ALS29833	24	8-Bit to 9-Bit Parity Bus Transceivers		\checkmark	\checkmark		SDAS119
SN74ALS29841	24	10-Bit D-Type Bus-Interface Latches with 3-State Outputs		\checkmark	\checkmark		SDAS149
SN74ALS29854	24	8-Bit to 9-Bit Parity Bus Transceivers		\checkmark	\checkmark		SDAS118
SN74ALS29863	24	9-Bit Bus Transceivers with 3-State Outputs		\checkmark	\checkmark		SDAS096

ALVC

Advanced Low-Voltage CMOS Technology Logic

One of the highest-performance 3.3-V bus-interface families is the ALVC family. These specially designed $3-\mathrm{V}$ products are processed in $0.6-\mu \mathrm{CMOS}$ technology, with typical propagation delays of less than 3 ns , current drive of 24 mA , and static current of $40 \mu \mathrm{~A}$ for bus-interface functions. ALVC devices have input bus-hold cells to eliminate the need for external pullup resistors for floating inputs. With over 90 Widebus ${ }^{T M}$ and Widebus $+^{T M}$ devices with series damping resistors and gates and octals on the roadmap, ALVC quickly is becoming the industry standard for many $3.3-\mathrm{V}$ logic applications. The family also features innovative functions that make it ideal for memory interleaving, multiplexing, and interfacing to SDRAMs.

Selected devices in the ALVC family are offered in Widebus footprints with all of the advanced packaging, such as shrink small-outline package (SSOP) and thin shrink small-outline package (TSSOP).

Selected ALVC devices are offered in the MicroStar BGA ${ }^{\text {TM }}$ (LFBGA) package. Other devices are offered in the small-outline integrated circuit (SOIC) package, SSOP, TSSOP, and thin very small-outline package (TVSOP).

See www.ti.com/sc/logic for the most current data sheets.

ALVC

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY							LITERATURE REFERENCE
			LFBGA	PDIP	SOIC	SSOP	TSSOP	TVSOP	VFBGA	
SN74ALVCH16344	56	1-Bit to 4-Bit Address Drivers with 3-State Outputs				\checkmark	\checkmark			SCES054
SN74ALVCH16373	48	16-Bit Transparent D-Type Latches with 3-State Outputs				\checkmark	\checkmark		\checkmark	SCES020
SN74ALVCH16374	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3 -State Output				\checkmark	\checkmark		\checkmark	SCES021
SN74ALVCH16409	56	9-Bit 4-Port Universal Bus Exchangers with 3-State Outputs				\checkmark	\checkmark			SCES022
SN74ALVCHR16409	56	9-Bit 4-Port Universal Bus Exchangers with 3-State Outputs				\checkmark	\checkmark			SCES056
SN74ALVCH16500	56	18-Bit Universal Bus Transceivers with 3-State Outputs				\checkmark	\checkmark			SCES023
SN74ALVCH16501	56	18-Bit Universal Bus Transceivers with 3-State Outputs				\checkmark	\checkmark			SCES024
SN74ALVCH16524	56	18-Bit Registered Bus Transceivers with 3-State Outputs				\checkmark	\checkmark			SCES080
SN74ALVCH16525	56	18-Bit Registered Bus Transceivers with 3-State Outputs				\checkmark	\checkmark			SCES059
SN74ALVCH16543	56	16-Bit Registered Transceivers with 3-State Outputs				\checkmark	\checkmark			SCES025
SN74ALVCH16600	56	18-Bit Universal Bus Transceivers with 3-State Outputs				\checkmark	\checkmark			SCES030
SN74ALVCH16601	56	18-Bit Universal Bus Transceivers with 3-State Outputs				\checkmark	\checkmark			SCES027
SN74ALVCHR16601	56	18-Bit Universal Bus Transceivers with 3-State Outputs				\checkmark	\checkmark			SCES123
SN74ALVCH16646	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				\checkmark	\checkmark	\checkmark		SCES032
SN74ALVCH16721	56	20-Bit D-Type Flip-Flops with 3-State Outputs				\checkmark	\checkmark	\checkmark		SCES052
SN74ALVCH16820	56	10-Bit D-Type Flip-Flops with Dual Outputs and 3-State Outputs				\checkmark	\checkmark			SCES035
SN74ALVCH16821	56	20-Bit D-Type Flip-Flops with 3-State Outputs				\checkmark	\checkmark			SCES037
SN74ALVCH16823	56	18-Bit D-Type Flip-Flops with 3-State Outputs				\checkmark	\checkmark			SCES038
SN74ALVCH16825	56	18-Bit Buffers/Drivers with 3-State Outputs				\checkmark	\checkmark			SCES039
SN74ALVCH16827	56	20-Bit Buffers/Drivers with 3-State Outputs				\checkmark	\checkmark			SCES041
SN74ALVCH16831	80	1-to-4 Address Registers/Drivers with 3-State Outputs						\checkmark		SCES083
SN74ALVCH16832	64	1-to-4 Address Registers/Drivers with 3-State Outputs					\checkmark			SCES098
SN74ALVC16834	56	18-Bit Universal Bus Drivers with 3-State Outputs				\checkmark	\checkmark	\checkmark	\checkmark	SCES140
SN74ALVC16835	56	18-Bit Universal Bus Drivers with 3-State Outputs				\checkmark	\checkmark	\checkmark	\checkmark	SCES125
SN74ALVCH16835	56	18-Bit Universal Bus Drivers with 3-State Outputs				\checkmark	\checkmark	\checkmark	\checkmark	SCES053
SN74ALVCH16841	56	20-Bit Bus-Interface D-Type Latches with 3-State Outputs				\checkmark	\checkmark			SCES043
SN74ALVCH16863	56	18-Bit Bus-Interface Transceivers with 3-State Outputs				\checkmark	\checkmark			SCES060
SN74ALVCH16901	64	18-Bit Universal Bus Transceivers with Parity Generators/Checkers					\checkmark			SCES010
SN74ALVCH16903	56	12-Bit Universal Bus Drivers with Parity Checker and Dual 3 -State Outputs				\checkmark	\checkmark	\checkmark		SCES095
SN74ALVCH16952	56	16-Bit Registered Transceivers with 3-State Outputs				\checkmark	\checkmark	\checkmark		SCES011
Widebust ${ }^{\text {TM }}$ Devices										
SN74ALVCH32244	96	32-Bit Buffers/Drivers with 3-State Outputs	\checkmark							SCES281
SN74ALVCH32245	96	32-Bit Bus Transceivers with 3-State Outputs	\checkmark							SCES282
SN74ALVCH32374	96	32-Bit Edge-Triggered D-Type Flip-Flops with 3 -State Outputs	\checkmark							SCES283
SN74ALVCH32501	114	32-Bit Universal Bus Transceivers with 3-State Outputs	\checkmark							SCES144

DEVICE SELECTION GUIDE

ALVC

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY							LIterature
			LFBGA	PDIP	soic	ssop	TSSOP	TVSOP	vfbga	REFERENCE
Widebus ${ }^{\text {TM }}$ Devices With Series Damping Resistors										
SN74ALVCH162244	48	16-Bit Buffers/Drivers with Series Damping Resistors and 3 -State Outputs				\checkmark	\checkmark			SCES065
SN74ALVCH162260	56	12-Bit to 24-Bit Multiplexed D-Type Latches with Series Damping Resistors and 3-State Outputs				\checkmark	\checkmark			SCES570
SN74ALVCH162268	56	12-Bit to 24-Bit Registered Bus Exchangers with 3-State Outputs				\checkmark	\checkmark			SCES018
SN74ALVCHG162280	80	16-Bit to 32-Bit Bus Exchangers with Byte Masks and 3-State Outputs						\checkmark		SCES093
SN74ALVCHG162282	80	18-Bit to 36 -Bit Registered Bus Exchangers with 3-State Outputs						\checkmark		SCES094
SN74ALVC162334	48	16-Bit Universal Bus Drivers with 3-State Outputs				\checkmark	\checkmark	\checkmark		SCES127
SN74ALVCH162334	48	16-Bit Universal Bus Drivers with 3-State Outputs				\checkmark	\checkmark	\checkmark		SCES120
SN74ALVCH162344	56	1-Bit to 4-Bit Address Drivers with 3-State Outputs				\checkmark	\checkmark	\checkmark		SCES085
SN74ALVCH162374	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs				\checkmark	\checkmark			SCES092
SN74ALVCH162409	56	9-Bit 4-Port Universal Bus Exchangers with 3-State Outputs				\checkmark				SCES189
SN74ALVCH162525	56	18-Bit Registered Transceivers with 3-State Outputs				\checkmark	\checkmark			SCES058
SN74ALVCH162601	56	18-Bit Universal Bus Transceivers with 3-State Outputs				\checkmark	\checkmark			SCES026
SN74ALVCH162721	56	20-Bit Flip-Flops with 3-State Outputs				\checkmark	\checkmark			SCES055
SN74ALVCH162820	56	10-Bit Flip-Flops with Dual Outputs and 3-State Outputs				\checkmark	\checkmark			SCES012
SN74ALVCH162827	56	20-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs				\checkmark	\checkmark	\checkmark		SCES013
SN74ALVCH162830	80	1-Bit to 2-Bit Address Drivers with 3-State Outputs						\checkmark		SCES082
SN74ALVCHS162830	80	1-Bit to 2-Bit Address Drivers with 3-State Outputs						\checkmark		SCES097
SN74ALVC162831	80	1-Bit to 4-Bit Address Registors/Drivers with 3-State Outputs						\checkmark		SCES605
SN74ALVCH162831	80	1-Bit to 4-Bit Address Registers/Drivers with 3 -State Outputs						\checkmark		SCES084
SN74ALVCH162832	64	1-Bit to 4-Bit Address Registers/Drivers with 3-State Outputs					\checkmark			SCES588
SN74ALVC162834	56	18-Bit Universal Bus Drivers with 3-State Outputs				\checkmark	\checkmark	\checkmark		SCES172
SN74ALVC162835	56	18-Bit Universal Bus Drivers with 3-State Outputs				\checkmark	\checkmark	\checkmark		SCES126
SN74ALVCH162835	56	18-Bit Universal Bus Drivers with 3-State Outputs				\checkmark	\checkmark	\checkmark		SCES121
SN74ALVC162836	56	20-Bit Universal Bus Drivers with 3-State Outputs				\checkmark	\checkmark	\checkmark		SCES129
SN74ALVCH162836	56	20-Bit Universal Bus Drivers with 3-State Outputs				\checkmark	\checkmark	\checkmark		SCES122
SN74ALVCH162841	56	20-Bit Bus-Interface D-Type Latches with 3-State Outputs				\checkmark	\checkmark			SCES088
Widebus ${ }^{\text {TM }}$ Devices With Level Shifter										
SN74ALVC164245	48	16-Bit 3.3-V to-5-V Level-Shifting Transceivers with 3 -State Outputs				\checkmark	\checkmark			SCES416

ALVT

Advanced Low-Voltage BiCMOS Technology Logic

ALVT is a $5-\mathrm{V}$ tolerant, $3.3-\mathrm{V}$ and $2.5-\mathrm{V}$ product using $0.6-\mu$ BiCMOS technology for advanced bus-interface functions. ALVT provides superior performance, up to 28% speed improvement compared to similar LVT at 3.3 V , current drive of 64 mA , and pin-for-pin compatibility with existing ABT and LVT families.

ALVT operates at LVTTL signal levels in telecom and networking high-performance system point-to-point or distributed-load backplane applications. ALVT is an excellent migration path from ABT or LVT.

Performance characteristics of the ALVT family include:

- $3.3-\mathrm{V}$ or $2.5-\mathrm{V}$ operation with $5-\mathrm{V}$ tolerant I/O capability for use in a mixed-voltage environment
- Speed - Provides high performance with up to 28% speed improvement over LVT.
- Drive - Provides up to 64 mA of drive at $3.3-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ and 24 mA at $2.5-\mathrm{V}$ V_{CC}, yet consumes less than $330 \mu \mathrm{~W}$ of standby power.

Additional features include:

- Live insertion - ALVT devices incorporate $\mathrm{I}_{\text {off }}$ and power-up 3-state (PU3S) circuitry to protect the devices in live-insertion applications and make them ideally suited for hot-insertion applications. I Ioff prevents the devices from being damaged during partial power down, and PU3S forces the outputs to the high-impedance state during power up and power down.
- Bus hold - Eliminates floating inputs by holding them at the last valid logic state, eliminating the need for external pullup and pulldown resistors.
- Damping-resistor option - TI implements series damping resistors on selected devices, reducing overshoot and undershoot, matching line impedance, and minimizing ringing.
- Packaging - ALVT devices are available in shrink small-outline package (SSOP), thin shrink small-outline package (TSSOP), and thin very small-outline package (TVSOP), with selected devices offered in MicroStar BGA ${ }^{\text {TM }}$ (LFBGA) packages.

See www.ti.com/sc/logic for the most current data sheets.

ALVT

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY					LITERATURE REFERENCE
			LFBGA	SSOP	TSSOP	TVSOP	VFBGA	
SN74ALVTH16240	48	16-Bit Buffers/Drivers with 3-State Outputs		\checkmark	\checkmark	\checkmark		SCES138
SN74ALVTH16244	48	16-Bit Buffers/Drivers with 3-State Outputs		\checkmark	\checkmark	\checkmark	\checkmark	SCES070
SN74ALVTH16373	48	16-Bit Transparent D-Type Latches with 3-State Outputs		\checkmark	\checkmark	\checkmark		SCES067
SN74ALVTH16374	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs		\checkmark	\checkmark	\checkmark	\checkmark	SCES068
SN74ALVTH16601	56	18-Bit Universal Bus Transceivers with 3-State Outputs		\checkmark	\checkmark	\checkmark		SCES143
SN74ALVTH16821	56	20-Bit D-Type Flip-Flops with 3-State Outputs		\checkmark	\checkmark	\checkmark		SCES078
SN74ALVTH16827	56	20-Bit Buffers/Drivers with 3-State Outputs		\checkmark	\checkmark	\checkmark		SCES076
SN74ALVTH32244	96	32-Bit Buffers/Drivers with 3-State Outputs	\checkmark					SCES279
SN74ALVTH32373	96	32-Bit Transparent D-Type Latches with 3-State Outputs	\checkmark					SCES322
SN74ALVTH32374	96	32-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark					SCES280
SN74ALVTH162244	48	16-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs		\checkmark	\checkmark	\checkmark		SCES074
SN74ALVTH162827	56	20-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs		\checkmark	\checkmark	\checkmark		SCES079

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array) GKE $=96$ pins	PLCC (plastic leaded chip carrier) FN $=20 / 28 / 44 / 68 / 84$ pins	SOIC (small-outline integrated circuit) D $=8 / 14 / 16$ pins	TSSOP (thin shrink small-outline package) PW $=8 / 14 / 16 / 20 / 24 / 28$ pins
GKF $=114$ pins	QFP (quad flatpack)	DW = 16/20/24/28 pins	DGG $=48 / 56 / 64$ pins
VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48 -pin functions)	$\begin{aligned} & \text { RC }=52 \text { pins (FB only) } \\ & \text { PH }=80 \text { pins (FIFO only) } \end{aligned}$	QSOP (quarter-size outline package) $D B Q=16 / 20 / 24 \text { pins }$	TVSOP (thin very small-outline package) DGV $=14 / 16 / 20 / 24 / 48 / 56$ pins
PDIP (plastic dual-in-line package)	PQ = 100/132 pins (FIFO only)	SSOP (shrink small-outline package)	DBB $=80$ pins
$\mathrm{P}=8 \mathrm{pins}$	TQFP (plastic thin quad flatpack)	DB $=14 / 16 / 20 / 24 / 28 / 30 / 38$ pins	SOT (small-outline transistor)
$N=14 / 16 / 20$ pins	PAH $=52$ pins	DBQ $=16 / 20 / 24$	DBV $=5$ pins
NT $=24 / 28$ pins	$\begin{array}{ll} \text { PAG } & =64 \text { pins (FB only) } \\ \text { PM } & =64 \text { pins } \end{array}$	DL $=28 / 48 / 56$ pins	DCK $=5$ pins
schedule	PN $=80$ pins		
$\boldsymbol{\nu}=$ Now $+=$ Planned	$\begin{aligned} & \text { PCA, PZ }=100 \text { pins (FB only) } \\ & \text { PCB } \quad=120 \text { pins (FIFO only) } \end{aligned}$		

AS

Advanced Schottky Logic

The AS family of high-performance bipolar logic includes over 70 functions that offer high drive capabilities.

This family, combined with the ALS family, can be used to optimize system speed and power through performance budgeting where BiCMOS logic is used. By using AS in speed-critical paths and ALS where speed is less critical, designers can optimize speed and power performance.

The AS family includes gates, flip-flops, counters, drivers, transceivers, registered transceivers, readback latches, clock drivers, register files, and multiplexers.

See www.ti.com/sc/logic for the most current data sheets.

DEVICE SELECTION GUIDE

AS

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY				LITERATURE REFERENCE
			MLL	PDIP	SOIC	SSOP	
SN74AS00	14	Quad 2-Input NAND Gates	\checkmark	\checkmark	\checkmark		SDAS187
SN74AS02	14	Quad 2-Input NOR Gates	\checkmark	\checkmark	\checkmark		SDAS111
SN74AS04	14	Hex Inverters	\checkmark	\checkmark	\checkmark		SDAS063
SN74AS08	14	Quad 2-Input AND Gates	\checkmark	\checkmark	\checkmark		SDAS191
SN74AS10	14	Triple 3-Input NAND Gates	\checkmark	\checkmark	\checkmark		SDAS002
SN74AS11	14	Triple 3-Input AND Gates	\checkmark	\checkmark	\checkmark		SDAS009
SN74AS20	14	Dual 4-Input NAND Gates	\checkmark	\checkmark	\checkmark		SDAS192
SN74AS21	14	Dual 4-Input AND Gates		\checkmark	\checkmark		SDAS085
SN74AS27	14	Triple 3-Input NOR Gates	\checkmark	\checkmark	\checkmark		SDAS112
SN74AS30	14	8-Input NAND Gates	\checkmark	\checkmark	\checkmark		SDAS010
SN74AS32	14	Quad 2-Input OR Gates	\checkmark	\checkmark	\checkmark	\checkmark	SDAS113
SN74AS74A	14	Dual D-Type Flip-Flops with Set and Reset	\checkmark	\checkmark	\checkmark		SDAS143
SN74AS86A	14	Quad 2-Input Exclusive-OR Gates	\checkmark	\checkmark	\checkmark		SDAS006
SN74AS109A	16	Dual Positive-Edge-Triggered J-K Flip-Flops with Set and Reset	\checkmark	\checkmark	\checkmark		SDAS198
SN74AS138	16	3-to-8 Line Inverting Decoders/Demultiplexers	\checkmark	\checkmark	\checkmark		SDAS055
SN74AS151	16	1-of-8 Data Selectors/Multiplexers		\checkmark	\checkmark		SDAS205
SN74AS153	16	Dual 1-0f-4 Data Selectors/Multiplexers		\checkmark	\checkmark		SDAS206
SN74AS157	16	Quad 2-to-4 Line Data Selectors/Multiplexers		\checkmark	\checkmark		SDAS081
SN74AS158	16	Quad 2-to-4 Line Data Selectors/Multiplexers		\checkmark	\checkmark		SDAS081
SN74AS161	16	Synchronous 4-Bit Binary Counters	\checkmark	\checkmark	\checkmark		SDAS024
SN74AS163	16	Synchronous 4-Bit Binary Counters	\checkmark	\checkmark	\checkmark		SDAS024
SN74AS169A	16	Synchronous 4-Bit Up/Down Binary Counters	\checkmark	\checkmark	\checkmark		SDAS125
SN74AS174	16	Hex D-Type Flip-Flops with Clear	\checkmark	\checkmark	\checkmark		SDAS207
SN74AS175B	16	Quad D-Type Flip-Flops with Clear	\checkmark	\checkmark	\checkmark		SDAS207
SN74AS181A	24	Arithmetic Logic Units/Function Generators	\checkmark	\checkmark	\checkmark		SDAS209
SN74AS194	16	4-Bit Bidirectional Universal Shift Registers	\checkmark	\checkmark	\checkmark		SDAS212
SN74AS230A	20	Octal Buffers/Drivers with 3-State Outputs		\checkmark	\checkmark		SDAS213
SN74AS240A	20	Octal Buffers/Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS214
SN74AS241A	20	Octal Buffers/Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS153
SN74AS244A	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS142
SN74AS245	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS272
SN74AS250A	24	1-of-16 Data Generators/Multiplexers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS137
SN74AS253A	16	Dual 1-0f-4 Data Selectors/Multiplexers with 3-State Outputs		\checkmark	\checkmark		SDAS216
SN74AS257	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs		\checkmark	\checkmark		SDAS124
SN74AS258	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs		\checkmark	\checkmark		SDAS124

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array) GKE $=96$ pins	PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins
GKF = 114 pins	QFP (quad flatpack) RC $=52$ pins (FB only) PH $=80$ pins (FIFO only) $P Q=100 / 132$ pins (FIFO only)
VFBGA (very-thin-profile fine-pitch ball grid array)	
GQL $=56$ pins (also includes 48-pin functions)	
PDIP (plastic dual-in-line package)	
$\mathrm{P}=8$ pins	TQFP (plastic thin quad flatpack)
$\mathrm{N}=14 / 16 / 20$ pins	PAH $=52$ pins
$\mathrm{NT}=24 / 28$ pins	PAG $=64$ pins (FB only)
NT-24/28pins	PM $=64$ pins
schedule	PN $=80$ pins
$\boldsymbol{\nu}$ = Now $+=$ Planned	$\begin{aligned} & \text { PCA, } \\ & \text { PCB }=100 \text { pins (FB only) } \\ &=120 \text { pins (FIFO only) }\end{aligned}$

SOIC (small-outline integrated circuit) D $=8 / 14 / 16$ pins $D W=16 / 20 / 24 / 28$ pins
QSOP (quarter-size outline package)
DBQ $=16 / 20 / 24$ pins
SSOP (shrink small-outline package)
DB $=14 / 16 / 20 / 24 / 28 / 30 / 38$ pins
DBQ $=16 / 20 / 24$
$D L=28 / 48 / 56$ pins

TSSOP (thin shrink small-outline package) PW $=8 / 14 / 16 / 20 / 24 / 28$ pins DGG $=48 / 56 / 64$ pins
TVSOP (thin very small-outline package) DGV $=14 / 16 / 20 / 24 / 48 / 56$ pins DBB $=80$ pins
SOT (small-outline transistor)
DBV $=5$ pins
DCK $=5$ pins

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY				LITERATURE REFERENCE
			MIL	PDIP	SOIC	ssop	
SN74AS280	14	9-Bit Odd/Even Parity Generators/Checkers		\checkmark	\checkmark		SDAS038
SN74AS286	14	9-Bit Parity Generators/Checkers with Bus-Driver Parity //O Port	\checkmark	\checkmark	\checkmark		SDAS050
SN74AS298A	16	Quad 2-Input Multiplexers with Storage		\checkmark	\checkmark		SDAS219
SN74AS373	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS083
SN74AS374	20	Octal D-Type Edge-Triggered Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS167
SN74AS533A	20	Octal Inverting Transparent Latches with 3-State Outputs		\checkmark	\checkmark		SDAS270
SN74AS534	20	Octal D-Type Inverting Flip-Flops with 3-State Outputs		\checkmark	\checkmark		SDAS168
SN74AS573A	20	Octal D-Type Transparent Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS048
SN74AS574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS165
SN74AS575	24	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS165
SN74AS576	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS065
SN74AS640	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS122
SN74AS641	20	Octal Bus Transceivers with Open-Collector Outputs		\checkmark	\checkmark		SDAS300
SN74AS645	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS278
SN74AS648	24	Octal Registered Bus Transceivers with 3-State Outputs		\checkmark	\checkmark		SDAS039
SN74AS756	20	Octal Buffers and Line Drivers with Open-Collector Outputs	\checkmark	\checkmark	\checkmark		SDAS040
SN74AS757	20	Octal Buffers and Line Drivers with Open-Collector Outputs		\checkmark	\checkmark		SDAS040
SN74AS760	20	Octal Buffers and Line Drivers with Open-Collector Outputs	\checkmark	\checkmark	\checkmark		SDAS141
SN74AS804B	20	Hex 2-Input NAND Drivers	\checkmark	\checkmark	\checkmark		SDAS022
SN74AS805B	20	Hex 2-Input NOR Drivers	\checkmark	\checkmark	\checkmark		SDAS023
SN74AS808B	20	Hex 2-Input NOR Drivers	\checkmark	\checkmark	\checkmark		SDAS018
SN74AS821A	24	10-Bit Bus-Interface Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS230
SN74AS823A	24	9-Bit Bus-Interface Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS231
SN74AS825A	24	8-Bit Bus-Interface Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS020
SN74AS832B	20	Hex 2-Input OR Drivers	\checkmark	\checkmark	\checkmark		SDAS017
SN74AS841A	24	10-Bit Bus-Interface D-Type Latches with 3-State Outputs		\checkmark	\checkmark		SDAS059
SN74AS867	24	Synchronous 8-Bit Up/Down Counters	\checkmark	\checkmark	\checkmark		SDAS115
SN74AS869	24	Synchronous 8-Bit Up/Down Counters	\checkmark	\checkmark	\checkmark		SDAS115
SN74AS873A	24	Dual 4-Bit D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDAS036
SN74AS874	24	Dual 4-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs		\checkmark	\checkmark		SDAS061
SN74AS876	24	Dual 4-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs		\checkmark	\checkmark		SDAS061
SN74AS885	24	8-Bit Magnitude Comparators	\checkmark	\checkmark	\checkmark		SDAS236
SN74AS1000A	14	Quad 2-Input NAND Buffers/Drivers	\checkmark	\checkmark	\checkmark		SDAS056
SN74AS1004A	14	Hex Inverting Drivers	\checkmark	\checkmark	\checkmark		SDAS074
SN74AS1008A	14	Quad 2-Input AND Buffers/Drivers		\checkmark	\checkmark		SDAS071
SN74AS1032A	14	Quad 2-Input OR Buffers/Drivers	\checkmark	\checkmark	\checkmark		SDAS072
SN74AS1034A	14	Hex Drivers	\checkmark	\checkmark	\checkmark		SDAS053
SN74AS1804	20	Hex 2-Input NAND Drivers		\checkmark			SDAS042
SN74AS4374B	20	Octal Edge-Triggered D-Type Dual-Rank Flip-Flops with 3-State Outputs		\checkmark	\checkmark		SDAS109

AVC

Advanced Very-Low-Voltage CMOS Logic

TI's new AVC logic family provides designers the tools to create advanced high-speed systems with propagation delays of less than 2 ns . Though optimized for 2.5-V systems, AVC logic supports operating voltages between 1.2 V and 3.6 V . The AVC family features Tl's Dynamic Output Control (DOC'm) circuitry, which dynamically lowers circuit output impedance during signal transition for fast rise and fall times, and then raises the impedance after signal transmission to reduce ringing.

Trends in digital electronics design emphasize lower power consumption, lower supply voltages, faster operating speeds, smaller timing budgets, and heavier loads. Many designs are making the transition from 3.3 V to 2.5 V with bus speeds increasing beyond 100 MHz . Signal integrity need not be compromised to meet these design requirements. TI's AVC family is designed to meet the needs of these high-speed, low-voltage systems, including next-generation high-performance workstations, PCs, networking servers, and telecommunications switching equipment.

Key features:

- Sub-2-ns maximum $t_{p d}$ at 2.5 V for AVC16245
- Designed for next-generation, high-performance PCs, workstations, and servers
- DOC circuitry enhances high-speed, low-noise operation
- Supports mixed-voltage systems
- Optimized for 2.5 V ; operable from 1.2 V to 3.6 V
- Bus-hold feature eliminates need for external resistors on unused input pins.
- $\mathrm{I}_{\text {off }}$ supports partial power down.

See www.ti.com/sc/logic for the most current data sheets.

DEVICE SELECTION GUIDE

AVC

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY			LITERATURE REFERENCE
			TSSOP	TVSOP	VFBGA	
SN74AVC16244	48	16-Bit Buffers/Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	SCES150
SN74AVC16245	48	16-Bit Bus Transceivers with 3-State Outputs	\checkmark	\checkmark		SCES142
SN74AVC16334	48	16-Bit Universal Bus Drivers with 3-State Outputs	\checkmark	\checkmark		SCES154
SN74AVC16334A	48	16-Bit Universal Bus Drivers with 3-State Outputs	$+$	$+$		Call
SN74AVC16373	48	16-Bit Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark	SCES156
SN74AVC16374	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark	SCES158
SN74AVC16646	56	16-Bit Bus Transceivers and Registers with 3-State Outputs	+	$+$		SCES181
SN74AVC16722	64	20-Bit D-Type Flip-Flops with 3-State Outputs	\checkmark			SCES166
SN74AVC16827	56	20-Bit Buffers/Drivers with 3-State Outputs	\checkmark	\checkmark		SCES176
SN74AVC16834	56	18-Bit Universal Bus Drivers with 3-State Outputs	\checkmark	\checkmark		SCES183
SN74AVC16835	56	18-Bit Universal Bus Drivers with 3-State Outputs	\checkmark	\checkmark		SCES168

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array) GKE $=96$ pins	PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins	SOIC (small-outline integrated circuit) D $=8 / 14 / 16$ pins	TSSOP (thin shrink small-outline package) PW $=8 / 14 / 16 / 20 / 24 / 28$ pins
GKF $=114$ pins	QFP (quad flatpack)	DW = 16/20/24/28 pins	DGG $=48 / 56 / 64$ pins
VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)	$\begin{aligned} & \text { RC }=52 \text { pins (FB only) } \\ & \text { PH }=80 \text { pins (FIFO only) } \end{aligned}$	QSOP (quarter-size outline package) $D B Q=16 / 20 / 24 \text { pins }$	TVSOP (thin very small-outline package) DGV $=14 / 16 / 20 / 24 / 48 / 56$ pins
PDIP (plastic dual-in-line package)	PQ $=100 / 132$ pins (FIFO only)	SSOP (shrink small-outline package)	DBB $=80$ pins
$\mathrm{P}=8 \mathrm{pins}$	TQFP (plastic thin quad flatpack)	DB $=14 / 16 / 20 / 24 / 28 / 30 / 38$ pins	SOT (small-outline transistor)
$N=14 / 16 / 20$ pins	PAH $=52$ pins	DBQ $=16 / 20 / 24$	DBV $=5$ pins
NT $=24 / 28$ pins	$\begin{array}{ll} \text { PAG } & =64 \text { pins (FB only) } \\ \text { PM } & =64 \text { pins } \end{array}$	DL $=28 / 48 / 56$ pins	DCK $=5$ pins
schedule	PN $=80$ pins		
	PCA, PZ = 100 pins (FB only)		
$\checkmark=$ Now $\boldsymbol{+}$ = Planned	PCB $=120$ pins (FIFO only)		

BCT
 BiCMOS Technology Logic

BCT is a family of 8 -, 9-, and 10-bit drivers, latches, transceivers, and registered transceivers. Designed specifically for bus-interface applications, BCT offers TTL I/O with high speeds, $64-\mathrm{mA}$ output drive, and very low power in the disabled mode. Over 50 BCT functions are in production.

The BCT25xxx series of fast, high-drive bus-interface functions provides incident-wave switching required by large backplane applications. Designed specifically to ensure incident-wave switching down to 25Ω, these low-impedance driver devices can maximize the speed and reliability of heavily loaded systems. Each device of this series delivers 188 mA of IOL drive current.

Also included in TI's BCT family are devices with series damping resistors to reduce overshoot and undershoot that can occur in memory-driving applications.

See www.ti.com/sc/logic for the most current data sheets.

64BCT

64-Series BiCMOS Technology Logic

The 64BCT family offers all the features found in Tl's standard BCT family. In addition, the family is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ and incorporates circuitry to protect the device in live-insertion applications.

See www.ti.com/sc/logic for the most current data sheets.

DEVICE SELECTION GUIDE

BCT

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY				LITERATURE REFERENCE
			MIL	PDIP	SOIC	ssop	
SN74BCT125A	14	Quad Bus Buffers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SCBS032
SN74BCT126A	14	Quad Bus Buffers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SCBS252
SN74BCT240	20	Octal Buffers/Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SCBS004
SN74BCT241	20	Octal Buffers/Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SCBS005
SN74BCT244	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SCBS006
SN74BCT245	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SCBS013
SN74BCT373	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SCBS016
SN74BCT374	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark		SCBS019
SN74BCT540A	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SCBS012
SN74BCT541A	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SCBS011
SN74BCT543	24	Octal Registered Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SCBS026
SN74BCT573	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark		SCBS071
SN74BCT574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SCBS074
SN74BCT623	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SCBS020
SN74BCT640	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SCBS025
SN74BCT756	20	Octal Buffers and Line Drivers with Open-Collector Outputs		\checkmark	\checkmark		SCBS056
SN74BCT757	20	Octal Buffers and Line Drivers with Open-Collector Outputs		\checkmark	\checkmark		SCBS041
SN74BCT760	20	Octal Buffers and Line Drivers with Open-Collector Outputs	\checkmark	\checkmark	\checkmark		SCBS034
SN74BCT2240	20	Octal Buffers and Line/MOS Drivers with 3-State Outputs and Series Damping Resistors	\checkmark	\checkmark	\checkmark	\checkmark	SCBS030
SN74BCT2241	20	Octal Buffers and Line/MOS Drivers with Series Damping Resistors and 3-State Outputs		\checkmark	\checkmark		SCBS035
SN74BCT2244	20	Octal Buffers/Line Drivers with Series Damping Resistors and 3-State Outputs	\checkmark	\checkmark	\checkmark		SCBS017
SN74BCT2245	20	Octal Transceivers and Line MOS Drivers with Series Damping Resistors and 3-State Outputs		\checkmark	\checkmark	\checkmark	SCBS102
SN74BCT2414	20	Dual 2-Line to 4-Line Memory Decoders with On-Chip Supply-Voltage Monitor		\checkmark	\checkmark		SCBS059
SN74BCT2827C	24	10-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs		\checkmark	\checkmark		SCBS007
SN74BCT25244	24	$25-\Omega$ Octal Buffers/Drivers with 3-State Outputs		\checkmark	\checkmark		SCBS064
SN74BCT25245	24	$25-\Omega$ Octal Bus Transceivers with 3-State Outputs		\checkmark	\checkmark		SCBS053
SN74BCT25642	24	$25-\Omega$ Octal Bus Transceivers with Open-Collector Outputs		\checkmark	\checkmark		SCBS047
SN74BCT29821	24	10-Bit Bus-Interface Flip-Flops with 3-State Outputs		\checkmark	\checkmark		SCBS021
SN74BCT29825	24	Octal Bus Interface Flip-Flops with 3-State Outputs		\checkmark	\checkmark		SCBS075
SN74BCT29827B	24	10-Bit Buffers/Drivers with 3-State Outputs		\checkmark	\checkmark		SCBS008
SN74BCT29843	24	9-Bit D-Type Bus-Interface Latches with 3-State Outputs		\checkmark	\checkmark		SCBS256
SN74BCT29863B	24	9-Bit Bus Transceivers with 3-State Outputs		\checkmark	\checkmark		SCBS015
SN74BCT29864B	24	9-Bit Bus Transceivers with 3-State Outputs		\checkmark	\checkmark		SCBS010

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array) GKE $=96$ pins	PLCC (plastic leaded chip carrier) FN $=20 / 28 / 44 / 68 / 84$ pins	SOIC (small-outline integrated circuit) D $=8 / 14 / 16$ pins	TSSOP (thin shrink small-outline package) PW $=8 / 14 / 16 / 20 / 24 / 28$ pins
GKF = 114 pins	QFP (quad flatpack) RC = 52 pins (FB only) PH $=80$ pins (FIFO only) PQ $=100 / 132$ pins (FIFO only)	DW $=16 / 20 / 24 / 28$ pins	DGG $=48 / 56 / 64$ pins
VFBGA (very-thin-profile fine-pitch ball grid array) GQL $=56$ pins (also includes 48 -pin functions)		QSOP (quarter-size outline package) DBQ $=16 / 20 / 24$ pins	TVSOP (thin very small-outline package) DGV $=14 / 16 / 20 / 24 / 48 / 56$ pins DBB $=80$ pins
PDIP (plastic dual-in-line package)		SSOP (shrink small-outline package)	
$\mathrm{P}=8$ pins	TQFP (plastic thin quad flatack)	DB $=14 / 16 / 20 / 24 / 28 / 30 / 38$ pins	SOT (small-outline transistor)
$\mathrm{N}=14 / 16 / 20$ pins	PAH $=52$ pins	DBQ $=16 / 20 / 24$	DBV $=5$ pins
$\mathrm{NT}=24 / 28$ pins	PAG $\quad 64$ pins (FB only)	DL $=28 / 48 / 56$ pins	DCK $=5$ pins
	PM $=64$ pins		
schedule	PN $=80$ pins		
$\boldsymbol{\checkmark}=$ Now $\boldsymbol{+}=$ Planned	PCB $=120$ pins (FIFO only)		

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY		LIterature
			PDIP	Solc	REFERENCE
SN64BCT125A	14	Quad Bus Buffers with 3-State Outputs	\checkmark	\checkmark	SCBS052
SN64BCT126A	14	Quad Bus Buffers with 3-State Outputs	\checkmark	\checkmark	SCBS051
SN64BCT244	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	SCBS027
SN64BCT245	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	SCBS040
SN64BCT757	20	Octal Buffers and Line Drivers with Open-Collector Outputs	\checkmark	\checkmark	SCBS479
SN64BCT25244	24	$25-\Omega$ Octal Buffers/Drivers with 3-State Outputs	\checkmark	\checkmark	SCBS477
SN64BCT25245	24	$25-\Omega$ Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	SCBS060

LFBGA (low-profile fine-pitch ball grid array) GKE $=96$ pins	PLCC (plastic leaded chip carrier) FN $=20 / 28 / 44 / 68 / 84$ pins		SOIC (small-outline integrated circuit)$\begin{aligned} & D=8 / 14 / 16 \text { pins } \\ & D W=16 / 20 / 24 / 28 \text { pins } \end{aligned}$	TSSOP (thin shrink small-outline package) PW $=8 / 14 / 16 / 20 / 24 / 28$ pins DGG $=48 / 56 / 64$ pins
GKF = 114 pins	QFP (quad flatpack) RC $=52$ pins (FB only)			
VFBGA (very-thin-profile fine-pitch ball grid array) GQL $=56$ pins (also includes 48 -pin functions)	PH $=80$ pins (FIFO only) $P Q=100 / 132$ pins (FIFO only)		QSOP (quarter-size outline package) DBQ $=16 / 20 / 24$ pins	TVSOP (thin very small-outline package) DGV $=14 / 16 / 20 / 24 / 48 / 56$ pins$\text { DBB }=80 \text { pins }$
PDIP (plastic dual-in-line package)			$\begin{aligned} & \text { SSOP (shrink small-outline package) } \\ & \text { DB }=141 / 16 / 20 / 24 / 28 / 30 / 38 \text { pins } \\ & \text { DDQ }=16 / 20124 \\ & \text { DL }=28 / 48 / 166 \text { pins } \end{aligned}$	
$\mathrm{P}=8$ pins				SOT (small-outline transistor)$\begin{aligned} & \mathrm{DBV}=5 \text { pins } \\ & \mathrm{DCK}=5 \text { pins } \end{aligned}$
$\mathrm{N}=14 / 16 / 20$ pins				
$\mathrm{NT}=24 / 28$ pins				
schedule				
$\boldsymbol{\checkmark}$ = Now $\boldsymbol{+}$ = Planned				

BTA

Bus-Termination Arrays

TI's BTA family offers a space-saving, efficient, and effective solution to bus-termination requirements. In high-speed digital systems with long transmission lines, reflecting waves on the line can cause voltage undershoots and overshoots that lead to malfunctions at the driven input. A BTA is a series of diodes that clamps a signal on a bus or any other signal trace using high-frequency logic to limit overshoot and undershoot problems.

See www.ti.com/sc/logic for the most current data sheets.

BTA

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY					LITERATURE REFERENCE
			MIL	PDIP	solc	ssop	TSSOP	
SN74F1016	20	16-Bit Schottky Barrier Diode R-C Bus-Termination Arrays			\checkmark			SDFS093
SN74S1050	16	12-Bit Schottky Barrier Diode Bus-Termination Arrays		\checkmark	\checkmark			SDLS015
SN74S1051	16	12-Bit Schottky Barrier Diode Bus-Termination Arrays		\checkmark	\checkmark			SDLS018
SN74S1052	20	16-Bit Schottky Barrier Diode Bus-Termination Arrays		\checkmark	\checkmark			SDLS016
SN74S1053	20	16-Bit Schottky Barrier Diode Bus-Termination Arrays		\checkmark	\checkmark	\checkmark		SDLS017
SN74F1056	16	8-Bit Schottky Barrier Diode Bus-Termination Arrays			\checkmark			SDFS085
SN74ACT1071	14	10-Bit Bus Termination Networks with Bus-Hold Function			\checkmark			SCAS192
SN74ACT1073	20	16-Bit Bus Termination Networks with Bus-Hold Function			\checkmark			SCAS193
CD40117B	14	Programmable Dual 4-Bit Terminators	\checkmark	\checkmark			\checkmark	SCHS101

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array) GKE $=96$ pins	PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins	SOIC (small-outline integrated circuit) D $=8 / 14 / 16$ pins	TSSOP (thin shrink small-outline package) $\text { PW }=8 / 14 / 16 / 20 / 24 / 28 \text { pins }$
GKF $=114$ pins	QFP (quad flatpack) RC $=52$ pins ($F B$ only) PH $=80$ pins (FIFO only) $P Q=100 / 132$ pins (FIFO only)	DW $=16 / 20 / 24 / 28$ pins	DGG $=48 / 56 / 64$ pins
VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48 -pin functions)		QSOP (quarter-size outline package) DBQ = 16/20/24 pins	TVSOP (thin very small-outline package) DGV $=14 / 16 / 20 / 24 / 48 / 56$ pins DBB $=80$ pins
PDIP (plastic dual-in-line package)		SSOP (shrink small-outline package)	
$\mathrm{P}=8$ pins	TQFP (plastic thin quad flatpack)	DB $=14 / 16 / 20 / 24 / 28 / 30 / 38$ pins	SOT (small-outline transistor)
$N=14 / 16 / 20$ pins	PAH $=52$ pins	DBQ $=16 / 20 / 24$	DBV $=5$ pins
$N T=24 / 28$ pins	PAG $=64$ pins (FB only)	DL $=28 / 48 / 56$ pins	DCK $=5$ pins
NT-2428	PM $=64$ pins		
schedule	PN $=80$ pins		
$\boldsymbol{\checkmark}$ = Now $\boldsymbol{+}$ = Planned	$\begin{aligned} & \text { PCA, PZ }=100 \text { pins (FB only) } \\ & \text { PCB }=120 \text { pins (FIFO only) } \end{aligned}$		

CBT

Crossbar Technology Logic

Power and speed are two primary concerns in today's computing market. CBT can address these issues in bus-interface applications. CBT enables a bus-interface device to function as a very fast bus switch, effectively isolating buses when the switch is open and offering very little propagation delay when the switch is closed. These devices can function as high-speed bus interfaces between computer-system components, such as the central processing unit (CPU) and memory. CBT devices also can be used as $5-\mathrm{V}$ to $3.3-\mathrm{V}$ translators, allowing designers to mix $5-\mathrm{V}$ or $3.3-\mathrm{V}$ components in the same system.

The CBT devices are available in advanced packaging, such as the shrink small-outline package (SSOP), thin shrink small-outline package (TSSOP), and thin very small-outline package (TVSOP) for reduced board area.

See www.ti.com/sc/logic for the most current data sheets.

DEVICE SELECTION GUIDE

CBT

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY								LITERATURE REFERENCE
			MIL	LFBGA	SOIC	SOT	SSOP	TSSOP	tvos	vFBga	
SN74CBT16212A	56	24-Bit FET Bus-Exchange Switches	\checkmark				\checkmark	\checkmark	\checkmark		SCDS007
SN74CBTS16212	56	24-Bit FET Bus-Exchange Switches with Schottky Diode Clamping					\checkmark	\checkmark	\checkmark		SCDS036
SN74CBT16213	56	24-Bit FET Bus-Exchange Switches					\checkmark	\checkmark			SCDS026
SN74CBT16214	56	12-Bit 1-of-3 FET Multiplexers/Demultiplexers					\checkmark	\checkmark			SCDS008
SN74CBT16232	56	Synchronous 16-Bit 1-of-2 FET Multiplexers/Demultiplexers					\checkmark	\checkmark			SCDS009
SN74CBT16233	56	16-Bit 1-of-2 FET Multiplexers/Demultiplexers					\checkmark	\checkmark	\checkmark		SCDS010
SN74CBT16244	48	16-Bit FET Bus Switches	\checkmark				\checkmark	\checkmark	\checkmark		SCDS031
SN74CBT16245	48	16-Bit FET Bus Switches					$+$	$+$	$+$		SCDS070
SN74CBTK16245	48	16-Bit FET Bus Switches with Active-Clamp Undershoot-Protection Circuit					$+$	$+$	$+$		SCDS105
SN74CBT16292	56	12-Bit 1-of-2 FET Multiplexers/Demultiplexers with Internal Pulldown Resistors					\checkmark	\checkmark	\checkmark		SCDS053
SN74CBT16390	56	16-Bit to 32-Bit FET Multiplexer/Demultiplexer Bus Switches					\checkmark	\checkmark	\checkmark		SCDS035
SN74CBT16861	48	20-Bit FET Bus Switches					\checkmark	\checkmark	\checkmark	$+$	SCDS068
SN74CBTD16861	48	20-Bit FET Bus Switches with Level Snitting					$+$	+			SCDS069
SN74CBTK16861	48	20-Bit FET Bus Switches with Active-Clamp Undershoot-Protection Circuit					$+$	$+$	$+$		SCDS108
SN74CBTR16861	48	20-Bit FET Bus Switches with Series Damping Resistors					$+$	$+$			SCDS078
SN74CBT32245	96	32-Bit FET Bus Switches		\checkmark							SCDS104
SN74CBTK32245	96	32-Bit FET Bus Switches with Active-Clamp Undershoot-Protection Circuit		$+$							SCDS106
SN74CBT162292	56	12-Bit 1-of-2 Multiplexers/Demultiplexers with Internal Pulldown Resistors					\checkmark	\checkmark	\checkmark		SCDS052
SN74CBT162292A	56	12-Bit 1-of-2 Multiplexers/Demultiplexers with Internal Pulldown Resistors					$+$	$+$	$+$		Call

CBTLV
 Low-Voltage Crossbar Technology Logic

TI developed the SN74CBTLV family of $3.3-\mathrm{V}$ bus switches to complement its existing SN74CBT family of $5-\mathrm{V}$ bus switches. TI was the first to offer these devices, designed for $3.3-\mathrm{V}$, in its continuing drive to provide low-voltage solutions.

CBTLV devices can be used in multiprocessor systems as fast bus connections, bus-exchange switches for crossbar systems, ping-pong memory connections, or bus-byte swapping. They also can be used to replace relays, improving connect/disconnect speed and eliminating relay-reliability problems. The CBTLV family, designed to operate at 3.3 V , furthers the goal of an integrated system operating with LVTTL voltages.

The CBTLV devices are available in industry-leading packaging options, such as the shrink small-outline package (SSOP), thin small-outline package (TSSOP), and thin very small-outline package (TVSOP) for reduced board area.

See www.ti.com/sc/logic for the most current data sheets.

DEVICE SELECTION GUIDE

CBTLV

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY					LITERATURE REFERENCE
			soic	Sot	ssop	TSSOP	TVSOP	
SN74CBTLV1G125	5	Single FET Bus Switches		\checkmark				SCDS057
SN74CBTLV3125	14/16	Quad FET Bus Switches	\checkmark		\checkmark	\checkmark	\checkmark	SCDS037
SN74CBTLV3126	14/16	Quad FET Bus Switches	\checkmark		\checkmark	\checkmark	\checkmark	SCDS038
SN74CBTLV3245A	20	Octal FET Bus Switches	\checkmark			\checkmark	\checkmark	SCDS034
SN74CBTLV3251	16	1-0f-8 FET Multiplexers/Demultiplexers	\checkmark		\checkmark	\checkmark	\checkmark	SCDS054
SN74CBTLV3253	16	Dual 1-of-4 FET Multiplexers/Demultiplexers	\checkmark		\checkmark	\checkmark	\checkmark	SCDS039
SN74CBTLV3257	16	4-Bit 1-of-2 FET Multiplexers/Demultiplexers	\checkmark		\checkmark	\checkmark	\checkmark	SCDS040
SN74CBTLV3383	24	10-Bit FET Bus-Exchange Switches	\checkmark		\checkmark	\checkmark	\checkmark	SCDS047
SN74CBTLV3384	24	10-Bit FET Bus Switches	\checkmark		\checkmark	\checkmark	\checkmark	SCDS059
SN74CBTLV3857	24	10-Bit FET Bus Switches with Internal Pulldown Resistors	\checkmark		\checkmark	\checkmark	\checkmark	SCDS085
SN74CBTLV3861	24	10-Bit FET Bus Switches	\checkmark			\checkmark	\checkmark	SCDS041
SN74CBTLV16210	48	20-Bit FET Bus Switches			\checkmark	\checkmark	\checkmark	SCDS042
SN74CBTLV16211	56	24-Bit FET Bus Switches			\checkmark	\checkmark	\checkmark	SCDS043
SN74CBTLV16212	56	24-Bit FET Bus-Exchange Switches			\checkmark	\checkmark	\checkmark	SCDS044
SN74CBTLV16292	56	12-Bit 1-of-2 FET Multiplexers/Demultiplexers with Internal Pulldown Resistors			\checkmark	\checkmark	\checkmark	SCDS055
SN74CBTLVR16292	56	12-Bit 1-of-2 FET Multiplexers/Demultiplexers with Internal Pulldown Resistors			\checkmark	\checkmark		SCDS056
SN74CBTLV16800	48	20-Bit FET Bus Switches with Precharged Outputs			\checkmark	\checkmark	\checkmark	SCDS045

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array) GKE $=96$ pins	PLCC (plastic leaded chip carrier) FN $=20 / 28 / 44 / 68 / 84$ pins	SOIC (small-outline integrated circuit) D $=8 / 14 / 16$ pins	TSSOP (thin shrink small-outline package) PW $=8 / 14 / 16 / 20 / 24 / 28$ pins
GKF $=114$ pins	QFP (quad flatpack)	DW $=16 / 20 / 24 / 28$ pins	DGG $=48 / 56 / 64$ pins
VFBGA (very-thin-profile fine-pitch ball grid array)	RC $=52$ pins (FB only)	QSOP (quarter-size outline package)	TVSOP (thin very small-outline package)
GQL = 56 pins (also includes 48-pin functions)	PH $=80$ pins (FIFO only)	DBQ $=16 / 20 / 24$ pins	DGV $=14 / 16 / 20 / 24 / 48 / 56$ pins
PDIP (plastic dual-in-line package)	PQ $=100 / 132$ pins (FIFO only)	SSOP (shrink small-outline package)	DBB $=80$ pins
$\mathrm{P}=8 \mathrm{pins}$	TQFP (plastic thin quad flatpack)	DB $=14 / 16 / 20 / 24 / 28 / 30 / 38$ pins	SOT (small-outline transistor)
$N=14 / 16 / 20$ pins	PAH $=52$ pins	DBQ $=16 / 20 / 24$	DBV $=5$ pins
$N \mathrm{~T}=24 / 28$ pins	PAG $=64$ pins (FB only)	DL $=28 / 48 / 56$ pins	DCK $=5$ pins
	PM $=64$ pins		
schedule	PN $=80$ pins		
	PCA, PZ = 100 pins (FB only)		
$\boldsymbol{\checkmark}$ = Now $\boldsymbol{+}$ = Planned	PCB $=120$ pins (FIFO only)		

CD4000

CMOS B-Series Integrated Circuits

The CD4000 family is a CMOS B series of devices with a maximum dc supply-voltage rating of 20 V . The family has a large number of functions, including analog switches, monostable multivibrators, level converters, counters, timers, display drivers, phase-locked loops (PLLs), and other functions. The wide operating voltage range of this family allows use of the CD4000 products in varied applications, including instrumentation, control, and communications.

Key features:

- Wide variety of functions
- High noise immunity
- Low power consumption
- Propagation delay time similar to LSTTL products
- 5-, 10-, and $15-\mathrm{V}$ parametric ratings
- High fanout, typically 10
- Excellent temperature stability

Tl's CD4000 products were acquired from Harris Semiconductor in December 1998.

See www.ti.com/sc/logic for the most current data sheets.

DEVICE SELECTION GUIDE

CD4000

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY				LITERATURE REFERENCE
			MLL	PDIP	SOIC	TSSOP	
CD4001B	14	Quad 2-Input NOR Gates	\checkmark	\checkmark	\checkmark	\checkmark	SCHS015
CD4001UB	14	Quad 2-Input Unbuffered NOR Gates	\checkmark	\checkmark	\checkmark		SCHS016
CD4002B	14	Dual 4-Input NOR Gates	\checkmark	\checkmark		\checkmark	SCHS015
CD4007UB	14	Dual Unbuffered Complementary Pairs Plus Inverter	\checkmark	\checkmark	\checkmark	\checkmark	SCHS018
CD4009UB	16	Hex Inverting Buffers/Converters	\checkmark	\checkmark		\checkmark	SCHS020
CD4010B	16	Hex Buffers/Converters		\checkmark		\checkmark	SCHS020
CD4010UB	16	Hex Buffers/Converters	\checkmark				Call
CD4011B	14	Quad 2-Input NAND Gates	\checkmark	\checkmark	\checkmark	\checkmark	SCHS021
CD4011UB	14	Quad 2-Input Unbuffered NAND Gates	\checkmark	\checkmark	\checkmark	\checkmark	SCHS022
CD4012B	14	Dual 4-Input NAND Gates	\checkmark	\checkmark	\checkmark	\checkmark	SCHS021
CD4013B	14	Dual D-Type Flip-Flops	\checkmark	\checkmark	\checkmark	\checkmark	SCHSO23
CD4014B	16	8-Stage Static Shift Registers	\checkmark	\checkmark		\checkmark	SCHS024
CD4015B	16	Dual 4-Stage Static Shift Registers	\checkmark	\checkmark		\checkmark	SCHS025
CD4016B	14	Quad Bilateral Switches	\checkmark	\checkmark	\checkmark	\checkmark	SCHS026
CD4017B	16	Decade Counter/Divider with 1-of-10 Decoded Outputs	\checkmark	\checkmark		\checkmark	SCHS027
CD4018B	16	Divide-by-N Counters	\checkmark	\checkmark		\checkmark	SCHS028
CD4019B	16	Quad AND/OR Select Gates	\checkmark	\checkmark		\checkmark	SCHS029
CD4020B	16	12-Stage Ripple-Carry Binary Counters/Dividers	\checkmark	\checkmark		\checkmark	SCHS030
CD4021B	16	8-Stage Static Shift Registers	\checkmark	\checkmark		\checkmark	SCHS024
CD4022B	16	Octal Counters/Dividers with 1-of-8 Decoded Outputs	\checkmark	\checkmark		\checkmark	SCHS027
CD4023B	14	Triple 3-Input NAND Gates	\checkmark	\checkmark	\checkmark	\checkmark	SCHS021
CD4024B	14	7-Stage Ripple-Carry Binary Counters/Dividers	\checkmark	\checkmark	\checkmark	\checkmark	SCHS030
CD4025B	14	Triple 3-Input NOR Gates	\checkmark	\checkmark	\checkmark	\checkmark	SCHS015
CD4026B	16	Decade Counters/Drivers with Decoded 7-Segment Display Outputs	\checkmark	\checkmark		\checkmark	SCHS031
CD4027B	16	Dual J-K Master-Slave Flip-Flops	\checkmark	\checkmark	\checkmark	\checkmark	SCHS032
CD4028B	16	BCD-to-Decimal Decoders	\checkmark	\checkmark		\checkmark	SCHS033
CD4029B	16	Presettable Up/Down Binary or BCD-Decade Counters	\checkmark	\checkmark		\checkmark	SCHS034
CD4030B	14	Quad Exclusive-OR Gates	\checkmark	\checkmark	\checkmark	\checkmark	SCHS035
CD4031B	16	64-Stage Static Shift Registers	\checkmark	\checkmark		\checkmark	SCHS036
CD4033B	16	Decade Counters/Drivers with Decoded 7-Segment Display Outputs	\checkmark	\checkmark		\checkmark	SCHS031
CD4034B	24	8-Stage Static Bidirectional Paralle/Serial Input/Output Bus Registers	\checkmark	\checkmark			SCHS037
CD4035B	16	4-Stage Parallel-In/Parallel-Out Shift Registers	\checkmark	\checkmark		\checkmark	SCHS038
CD4040B	16	12-Stage Ripple-Carry Binary Counters/Dividers	\checkmark	\checkmark		\checkmark	SCHS030
CD4041UB	14	Quad True/Complement Buffers	\checkmark	\checkmark		\checkmark	SCHS039
CD4042B	16	Quad Clocked D Latches	\checkmark	\checkmark	\checkmark	\checkmark	SCHS040
CD4043B	16	Quad NOR R/S Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SCHS041
CD4044B	16	Quad NAND R/S Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SCHS041
CD4045B	16	21-Stage Counters	\checkmark	\checkmark			SCHS042
CD4046B	16	Micropower Phase-Locked Loops with VCO	\checkmark	\checkmark		\checkmark	SCHS043
CD4047B	14	Low-Power Monostable/Astable Multivibrators	\checkmark	\checkmark		\checkmark	SCHS044

commercial package description and availability

```
schedule
\begin{tabular}{rl}
\(\boldsymbol{\tau}\) & \(=\) Now \\
\(\boldsymbol{\tau}\) & \(=\) Planned
\end{tabular}\(\quad\) See Appendix A for package information.
```

DEVICE	$\begin{aligned} & \text { NO. } \\ & \text { PINS } \end{aligned}$	DESCRIPTION	AVAILABILITY				LITERATURE REFERENCE
			MIL	PDIP	SOIC	TSSOP	
CD4048B	16	Multifunction Expandable 8-Input Gates	\checkmark	\checkmark			SCHS045
CD4049UB	16	Hex Buffers/Converters	\checkmark	\checkmark	\checkmark	\checkmark	SCHS046
CD4050B	16	Hex Buffers/Converters	\checkmark	\checkmark	\checkmark	\checkmark	SCHS046
CD4051B	16	8-Channel Analog Multiplexers/Demultiplexers with Logic-Level Conversion	\checkmark	\checkmark	\checkmark	\checkmark	SCHS047
CD4052B	16	Dual 4-Channel Analog Multiplexers/Demultiplexers with Logic-Level Conversion	\checkmark	\checkmark	\checkmark	\checkmark	SCHS047
CD4053B	16	Triple 2-Channel Analog Multiplexers/Demultiplexers with Logic-Level Conversion	\checkmark	\checkmark	\checkmark	\checkmark	SCHS047
CD4054B	16	4-Segment Liquid Crystal Display Drivers	\checkmark	\checkmark		\checkmark	SCHS048
CD4055B	16	BCD to 7-Segment Liquid Crystal Decoders/Drivers with Display-Frequency Output	\checkmark	\checkmark		\checkmark	SCHS048
CD4056B	16	BCD to 7-Segment Liquid Crystal Decoders/Drivers with Strobed Latch Function	\checkmark	\checkmark		\checkmark	SCHS048
CD4059A	24	Programmable Divide-by-N Counters	\checkmark	\checkmark			SCHS109
CD4060B	16	14-Stage Binary-Ripple Counters/Dividers and Oscillator	\checkmark	\checkmark		\checkmark	SCHS049
CD4063B	16	4-Bit Magnitude Comparators	\checkmark	\checkmark		\checkmark	SCHS050
CD4066B	14	Quad Bilateral Switches	\checkmark	\checkmark	\checkmark	\checkmark	SCHS051
CD4067B	24	Single 16-Channel Analog Multiplexers/Demultiplexers	\checkmark	\checkmark			SCHS052
CD4068B	14	8-Input NAND/AND Gates	\checkmark	\checkmark		\checkmark	SCHS053
CD4069UB	14	Hex Inverters	\checkmark	\checkmark	\checkmark	\checkmark	SCHS054
CD4070B	14	Quad Exclusive-OR Gates	\checkmark	\checkmark	\checkmark	\checkmark	SCHS055
CD4071B	14	Quad 2-Input OR Gates	\checkmark	\checkmark	\checkmark	\checkmark	SCHS056
CD4072B	14	Dual 4-Input OR Gates	\checkmark	\checkmark		\checkmark	SCHS056
CD4073B	14	Triple 3-Input AND Gates	\checkmark	\checkmark	\checkmark	\checkmark	SCHS057
CD4075B	14	Triple 3-Input OR Gates	\checkmark	\checkmark	\checkmark	\checkmark	SCHS056
CD4076B	16	4-Bit D-Type Registers	\checkmark	\checkmark		\checkmark	SCHS058
CD4077B	14	Quad Exclusive-NOR Gates	\checkmark	\checkmark	\checkmark	\checkmark	SCHS055
CD4078B	14	8-Input NOR/OR Gates	\checkmark	\checkmark	\checkmark	\checkmark	SCHS059
CD4081B	14	Quad 2-Input AND Gates	\checkmark	\checkmark	\checkmark	\checkmark	SCHS057
CD4082B	14	Dual 4-Input AND Gates	\checkmark	\checkmark		\checkmark	SCHS057
CD4085B	14	Dual 2-Wide 2-Input AND-OR-Invert Gates	\checkmark	\checkmark		\checkmark	SCHS060
CD4086B	14	Expandable 4-Wide 2-Input AND-OR-Invert Gates	\checkmark	\checkmark		\checkmark	SCHS061
CD4089B	16	4-Bit Binary Rate Multipliers	\checkmark	\checkmark		\checkmark	SCHS062
CD4093B	14	Quad 2-Input NAND Schmitt Triggers	\checkmark	\checkmark	\checkmark	\checkmark	SCHS115
CD4094B	16	8-Stage Shift-and-Store Bus Registers	\checkmark	\checkmark		\checkmark	SCHS063
CD4097B	24	Differential 8-Channel Analog Multiplexers/Demultiplexers	\checkmark	\checkmark			SCHS052
CD4098B	16	Dual Monostable Multivibrators	\checkmark	\checkmark		\checkmark	SCHS065
CD4099B	16	8-Bit Addressable Latches	\checkmark	\checkmark		\checkmark	SCHS066
CD4502B	16	Strobed Hex Inverters/Buffers	\checkmark	\checkmark		\checkmark	SCHS067
CD4503B	16	Hex Buffers	\checkmark	\checkmark		\checkmark	SCHS068
CD4504B	16	Hex Voltage-Level Shifters for TTL-to-CMOS or CMOS-to-CMOS Operation	\checkmark	\checkmark		\checkmark	SCHS069
CD4508B	24	Dual 4-Bit Latches	\checkmark	\checkmark			SCHS070
CD4510B	16	Presettable BCD Up/Down Counters	\checkmark	\checkmark		\checkmark	SCHS071
CD4511B	16	BCD to 7-Segment Latch Decoder Drivers	\checkmark	\checkmark		\checkmark	SCHS072
CD4512B	16	8-Channel Data Selectors	\checkmark	\checkmark		\checkmark	SCHS073
CD4514B	24	4-Bit Latches/4-to-16 Line Decoders	\checkmark	\checkmark	\checkmark		SCHS074
CD4515B	24	4-Bit Latches/4-to-16 Line Decoders	\checkmark	\checkmark	\checkmark		SCHS074
CD4516B	16	Presettable Binary Up/Down Counters	\checkmark	\checkmark		\checkmark	SCHS071

DEVICE SELECTION GUIDE

CD4000

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY				LITERATURE REFERENCE
			MIL	PDIP	SOIC	TSSOP	
CD4517B	16	Dual 64-Stage Static Shift Registers	\checkmark	\checkmark			SCHS075
CD4518B	16	Dual BCD Up Counters	\checkmark	\checkmark		\checkmark	SCHS076
CD4520B	16	Dual Binary Up Counters	\checkmark	\checkmark		\checkmark	SCHS076
CD4521B	16	24-Stage Frequency Dividers	\checkmark	\checkmark		\checkmark	SCHS078
CD4522B	16	Programmable BCD Divide-by-N Counters	\checkmark	\checkmark			SCHS079
CD4527B	16	BCD Rate Multipliers	\checkmark	\checkmark			SCHS080
CD4532B	16	8-Bit Priority Encoders	\checkmark	\checkmark		\checkmark	SCHS082
CD4536B	16	Programmable Timers	\checkmark	\checkmark		\checkmark	SCHS083
CD4541B	14	Programmable Timers	\checkmark	\checkmark	\checkmark	\checkmark	SCHS085
CD4543B	16	BCD to 7-Segment Latches/Decoders/Drivers for Liquid-Crystal Displays	\checkmark	\checkmark		\checkmark	SCHS086
CD4555B	16	Dual Binary 1-of-4 Decoders/Demultiplexers	\checkmark	\checkmark		\checkmark	SCHS087
CD4556B	16	Dual Binary 1-of-4 Decoders/Demultiplexers	\checkmark	\checkmark			SCHS087
CD4572UB	16	Hex Gates (4 Inverters, 2-Input NOR, 2-Input NAND)	\checkmark	\checkmark		\checkmark	SCHS090
CD4585B	16	4-Bit Magnitude Comparators	\checkmark	\checkmark		\checkmark	SCHS091
CD4724B	16	8-Bit Addressable Latches	\checkmark	\checkmark			SCHS092
CD14538B	16	Dual-Precision Monostable Multivibrators	\checkmark	\checkmark		\checkmark	SCHS093
CD40102B	16	2-Decade BCD Presettable Synchronous Down Counters	\checkmark	\checkmark		\checkmark	SCHS095
CD40103B	16	8-Bit Binary Presettable Synchronous Down Counters	\checkmark	\checkmark		\checkmark	SCHS095
CD40106B	14	Hex Schmitt Triggers	\checkmark	\checkmark	\checkmark	\checkmark	SCHS096
CD40107B	8	Dual 2-Input NAND Buffers/Drivers	\checkmark	\checkmark		\checkmark	SCHS097
CD40109B	16	Quad Low- to High-Voltage Level Shifters	\checkmark	\checkmark		\checkmark	SCHS098
CD40110B	16	Decade Up-Down Counters/Latches/7-Segment Display Drivers	\checkmark	\checkmark			SCHS099
CD40117B	14	Programmable Dual 4-Bit Terminators	\checkmark	\checkmark		\checkmark	SCHS100
CD40147B	16	10-Line to 4-Line BCD Priority Encoders	\checkmark	\checkmark		\checkmark	SCHS102
CD40161B	16	Programmable 4-Bit Binary Counters with Asynchronous Clear	\checkmark	\checkmark		\checkmark	SCHS103
CD40174B	16	Hex D-Type Flip-Flops	\checkmark	\checkmark		\checkmark	SCHS104
CD40175B	16	Quad D-Type Flip-Flops	\checkmark	\checkmark		\checkmark	SCHS105
CD40192B	16	Presettable BCD-Type Up/Down Counters with Dual Clock and Reset	\checkmark	\checkmark		\checkmark	SCHS106
CD40193B	16	Presettable BCD-Type Up/Down Counters with Dual Clock and Reset	\checkmark	\checkmark		\checkmark	SCHS106
CD40194B	16	4-Bit Bidirectional Universal Shift Registers		\checkmark		\checkmark	SCHS107
CD40257B	16	Quad 2-Line to 1-Line Data Selectors/Multiplexers	\checkmark	\checkmark		\checkmark	SCHS108

74F

Fast Logic

74F logic is a general-purpose family of high-speed advanced bipolar logic. TI provides over 50 functions in the 74 F family, including gates, buffers/drivers, bus transceivers, flip-flops, latches, counters, multiplexers, and demultiplexers.

See www.ti.com/sc/logic for the most current data sheets.

DEVICE SELECTION GUIDE

74F

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY				LITERATURE REFERENCE
			MIL	PDIP	SOIC	SSOP	
SN74F258	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs		\checkmark	\checkmark		SDFS067
SN74F260	14	Dual 5-Input NOR Gates		\checkmark	\checkmark		SDFS012
SN74F280B	14	9-Bit Odd/Even Parity Generators/Checkers		\checkmark	\checkmark		SDFS008
SN74F283	16	9-Bit Binary Full Adders with Fast Carry	\checkmark	\checkmark	\checkmark		SDFS069
SN74F299	20	8-Bit Universal Shit/Storage Registers		\checkmark	\checkmark		SDFS071
SN74F373	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SDFS076
SN74F374	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SDFS077
SN74F377A	20	Octal D-Type Flip-Flops with Enable		\checkmark	\checkmark		SDFS018
SN74F520	20	8-Bit Identity Comparators ($\overline{\mathrm{P}=\mathrm{Q}}$) with Input Pullup Resistors		\checkmark	\checkmark		SDFS081
SN74F521	20	8-Bit Identity Comparators ($\overline{\mathrm{P}=\mathrm{Q}}$)	\checkmark	\checkmark	\checkmark		SDFS091
SN74F541	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDFS021
SN74F543	24	Octal Registered Transceivers with 3-State Outputs		\checkmark	\checkmark	\checkmark	SDFS025
SN74F573	20	Octal Transparent D-Type Latches with 3-State Outputs		\checkmark	\checkmark		SDFS011
SN74F574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs		\checkmark	\checkmark		SDFS005
SN74F623	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDFS087
SN74F657	24	Octal Bus Transceivers with Parity Generators/Checkers and 3-State Outputs		\checkmark	\checkmark		SDFS027
SN74F1016	20	16-Bit Schottky Barrier Diode R-C Bus-Termination Arrays			\checkmark		SDFS093
SN74F1056	16	8-Bit Schottky Barrier Diode Bus-Termination Arrays			\checkmark		SDFS085
SN74F2244	20	Octal Buffers/Line Drivers with Series Damping Resistors and 3-State Outputs		\checkmark	\checkmark	\checkmark	SDFS095
SN74F2245	20	Octal Bus Transceivers with Series Damping Resistors and 3-State Outputs		\checkmark	\checkmark	\checkmark	SDFS099
SN74F2373	20	$25-\Omega$ Octal Transparent D-Type Latches with 3-State Outputs		\checkmark	\checkmark	\checkmark	SDFS100

FB+/BTL

FutureBus+/
Backplane Transceiver Logic
The FB+ series of devices is designed for use in double-terminated high-speed bus applications and is fully compatible with IEEE Std 896-1991 (FutureBus+) and IEEE Std 1194.1-1991 (BTL). These transceivers are available in 7-, 8-, 9-, and 18-bit versions for 5-V CMOS or TTL-to-BTL and BTL-to-TTL translations. Other features include BTL drive up to 100 mA , low (5 pF to 6 pF maximum) B-port C_{io}, t_{pd} performance below 5 ns , and B-port BIAS $V_{C C}$ pins for live insertion.

One device, the 18-bit 'FB1653, offers 5-V CMOS, TTL- or LVTTL-to-BTL and BTL-to-LVTTL translations.

See www.ti.com/sc/logic for the most current data sheets.

FB+/BTL

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY			LITERATURE REFERENCE
			MIL	QfP	TQFP	
SN74FB1650	100	18-Bit TTL/BTL Universal Storage Transceivers			\checkmark	SCBS178
SN74FB1651	100	17-Bit TTL/BTL Universal Storage Transceivers with Buffered Clock Lines			\checkmark	SCBS177
SN74FB1653	100	17-Bit LVTTL/BTL Universal Storage Transceivers with Buffered Clock Lines			\checkmark	SCBS702
SN74FB2031	52	9-Bit TTL/BTL Address/Data Transceivers	\checkmark	\checkmark		SCBS176
SN74FB2033A	52	8-Bit TTLBTL Registered Transceivers	\checkmark	\checkmark		SCBS174
SN74FB2033K	52	8-Bit TTL/BTL Registered Transceivers		\checkmark		SCBS472
SN74FB2040	52	8-Bit TTLBTL Transceivers	\checkmark	\checkmark		SCBS173
SN74FB2041A	52	7-Bit TTL/BTL Transceivers		\checkmark		SCBS172

LFBGA (low-profile fine-pitch ball grid array)	PLCC (plastic leaded chip carrier)	SOIC (small-outline integrated circuit)	TSSOP (thin shrink small-outline package)
GKE $=96$ pins	FN = 20/28/44/68/84 pins	D $=8 / 14 / 16$ pins	PW $=8 / 14 / 16 / 20 / 24 / 28$ pins
GKF $=114$ pins	QFP (quad flatpack)	DW $=16 / 20 / 24 / 28 \mathrm{pins}$	DGG $=48 / 56 / 64$ pins
VFBGA (very-thin-profile fine-pitch ball grid array)	RC $=52$ pins (FB only)	QSOP (quarter-size outline package)	TVSOP (thin very small-outline package)
GQL $=56$ pins (also includes 48-pin functions)	PH $=80$ pins (FIFO only)	DBQ $=16 / 20 / 24$ pins	DGV $=14 / 16 / 20 / 24 / 48 / 56$ pins
PDIP (plastic dual-in-line package)	PQ = 100/132 pins (FIFO only)	SSOP (shrink small-outline package)	DBB $=80$ pins
$P=8$ pins	TQFP (plastic thin quad flatpack)	DB $=14 / 16 / 20 / 24 / 28 / 30 / 38$ pins	SOT (small-outline transistor)
$N=14 / 16 / 20$ pins	PAH $=52$ pins	DBQ $=16 / 20 / 24$	DBV $=5$ pins
$N T=24 / 28$ pins	PAG $=64$ pins (FB only)	$D L=28 / 48 / 56$ pins	DCK $=5$ pins
NT 2428 p	PM $=64$ pins		
schedule	PN $=80$ pins		
	PCA, PZ $=100$ pins (FB only)		
$\checkmark=$ Now $\quad+=$ Planned	PCB $=120$ pins (FIFO only)		

FCT

Fast CMOS TTL Logic

The FCT product family is designed for high-current-drive bus-interface applications. The FCT family is fabricated using a CMOS 6- $\mu \mathrm{m}$ technology to provide up to 40-mA or 64-mA current sink capability, with typical propagation delays of 5 ns (CD74FCT245). The family is optimized to operate at 5 V and is pin-function compatible with most standard bipolar and CMOS logic families.

The FCT family of devices has several features for efficient bus interfacing. The family does not have input or output diodes to V_{CC}, and most FCT devices have 3-state outputs. Bus noise is minimized with 1-V, or less, typical ground bounce $\left(\mathrm{V}_{\text {olp }}, 5-\mathrm{V}_{\mathrm{CC}}, 25^{\circ} \mathrm{C}\right)$ and limited output voltage swing (3.5- V typical).

The FCT family includes 8-, 9-, and 10-bit bus-interface devices.

Key features:

- 5-V operation
- 5-ns typical propagation delay (CD74FCT245)
- Low quiescent power consumption
- 1-V typical $\mathrm{V}_{\text {olp }}$

TI's FCT family was acquired from Harris Semiconductor in December 1998.

See www.ti.com/sc/logic for the most current data sheets.

DEVICE SELECTION GUIDE

FCT

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY					LITERATURE REFERENCE
			MLL	PDIP	soic	SSOP	TSSOP	
CY29FCT52CT	24	Octal Registered Transceivers with 3-State Outputs			\checkmark	\checkmark		SCCS010
CY74FCT138AT	16	1-of-8 Decoders			\checkmark	\checkmark		SCCS013
CY74FCT138CT	16	1-of-8 Decoders	\checkmark		\checkmark	\checkmark		SCCS013
CY74FCT138T	16	1-of-8 Decoders				\checkmark		SCCS013
CY74FCT157AT	16	Quad 2-Input Multiplexers			\checkmark	\checkmark		SCCS014
CY74FCT157CT	16	Quad 2-Input Multiplexers			\checkmark	\checkmark		SCCS014
CY74FCT163CT	16	Synchronous 4-Bit Binary Counters			\checkmark	\checkmark		SCCS015
CY74FCT163T	16	Synchronous 4-Bit Binary Counters	\checkmark					SCCS015
CY74FCT191AT	16	Presettable Synchronous 4-Bit Up/Down Binary Counters			\checkmark			SCCS016
CY74FCT191CT	16	Presettable Synchronous 4-Bit Up/Down Binary Counters			\checkmark	\checkmark		SCCS016
CD74FCT240	20	Octal Buffers/Drivers with 3-State Outputs		\checkmark	\checkmark			SCHS270
CY74FCT240AT	20	Octal Buffers/Drivers with 3-State Outputs	\checkmark		\checkmark	\checkmark		SCCS017
CY74FCT240CT	20	Octal Buffers/Drivers with 3-State Outputs			\checkmark	\checkmark		SCCS017
CY74FCT240T	20	Octal Buffers/Drivers with 3-State Outputs			\checkmark	\checkmark		SCCS017
CD74FCT244	20	Octal Buffers and Line Drivers with 3-State Outputs		\checkmark	\checkmark			SCHS270
CD74FCT244AT	20	Octal Buffers and Line Drivers with 3-State Outputs		\checkmark				SCHS270
CY74FCT244AT	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCCS017
CY74FCT244CT	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark		\checkmark	\checkmark		SCCS017
CY74FCT244DT	20	Octal Buffers and Line Drivers with 3-State Outputs			\checkmark	\checkmark		SCCS017
CY74FCT244T	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark		\checkmark	\checkmark		SCCS017
CD74FCT245	20	Octal Bus Transceivers with 3-State Outputs		\checkmark	\checkmark			SCHS271
CY74FCT245AT	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark		SCCS018
CY74FCT245CT	20	Octal Bus Transceivers with 3-State Outputs	\checkmark		\checkmark	\checkmark		SCCS018
CY74FCT245DT	20	Octal Bus Transceivers with 3-State Outputs				\checkmark		SCCS018
CY74FCT245T	20	Octal Bus Transceivers with 3-State Outputs	\checkmark		\checkmark	\checkmark		SCCS018
CY74FCT257AT	16	Quad 1-0f-2 Data Selectors/Multiplexers with 3-State Outputs				\checkmark		SCCS019
CY74FCT257CT	16	Quad 1-0f-2 Data Selectors/Multiplexers with 3-State Outputs			\checkmark	\checkmark		SCCS019
CY74FCT257T	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs				\checkmark		SCCS019
CD74FCT273	20	Octal D-Type Flip-Flops with Clear		\checkmark	\checkmark			SCHS254
CY74FCT273AT	20	Octal D-Type Flip-Flops with Clear	\checkmark		\checkmark	\checkmark		SCCS020
CY74FCT273CT	20	Octal D-Type Flip-Flops with Clear			\checkmark	\checkmark		SCCS020
CY74FCT273T	20	Octal D-Type Flip-Flops with Clear			\checkmark	\checkmark		SCCS020
CD74FCT373	20	Octal Transparent D-Type Latches with 3-State Outputs		\checkmark	\checkmark			SCHS272
CY74FCT373AT	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark		\checkmark	\checkmark		SCCS021
CY74FCT373CT	20	Octal Transparent D-Type Latches with 3-State Outputs			\checkmark	\checkmark		SCCS021
CY74FCT373T	20	Octal Transparent D-Type Latches with 3-State Outputs			\checkmark			SCCS021
CD74FCT374	20	Octal Transparent D-Type Latches with 3-State Outputs		\checkmark	\checkmark			SCHS256
CY74FCT374AT	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark		SCCS022
CY74FCT374CT	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark		\checkmark	\checkmark		SCCS022
CY74FCT374T	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark		\checkmark	\checkmark		SCCS022
CY74FCT377AT	20	Octal D-Type Flip-Flops with Enable			\checkmark	\checkmark		SCCS023
commercial package description and availability								
schedule								
$\begin{aligned} \boldsymbol{\nu} & =\text { Now } \\ \boldsymbol{+} & =\text { Planned } \end{aligned}$	See Appendix A for package information.							

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY					LITERATURE REFERENCE
			MLL	PDIP	SOIC	SSOP	TSSOP	
CY74FCT377CT	20	Octal D-Type Flip-Flops with Enable	\checkmark		\checkmark	\checkmark		SCCS023
CY74FCT377T	20	Octal D-Type Flip-Flops with Enable				\checkmark		SCCS023
CY74FCT399AT	16	Quad 2-Input Multiplexers with Storage			\checkmark			SCCS024
CY74FCT399CT	16	Quad 2-Input Multiplexers with Storage			\checkmark			SCCS024
CY74FCT480AT	24	Dual 8-Bit Parity Generators/Checkers		\checkmark		\checkmark		SCCS025
CY74FCT480BT	24	Dual 8-Bit Parity Generators/Checkers	\checkmark	\checkmark	\checkmark	\checkmark		SCCS025
CY29FCT520AT	24	8-Bit Multi-Level Pipeline Registers		\checkmark	\checkmark			SCCS011
CY29FCT520BT	24	8-Bit Multi-Level Pipeline Registers			\checkmark			SCCS011
CY29FCT520CT	24	8-Bit Multi-Level Pipeline Registers			\checkmark			SCCS011
CD74FCT540	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs		\checkmark	\checkmark			SCHS257
CY74FCT540CT	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs				\checkmark		SCCS029
CD74FCT541	20	Octal Buffers and Line Drivers with 3-State Outputs		\checkmark	\checkmark			SCHS257
CY74FCT541AT	20	Octal Buffers and Line Drivers with 3-State Outputs		\checkmark	\checkmark	\checkmark		SCCS029
CY74FCT541CT	20	Octal Buffers and Line Drivers with 3-State Outputs			\checkmark	\checkmark		SCCS029
CY74FCT541T	20	Octal Buffers and Line Drivers with 3-State Outputs			\checkmark			SCCS029
CD74FCT543	24	Octal Registered Transceivers with 3-State Outputs		\checkmark	\checkmark			SCHS258
CY74FCT543AT	24	Octal Registered Transceivers with 3-State Outputs			\checkmark	\checkmark		SCCS030
CY74FCT543CT	24	Octal Registered Transceivers with 3-State Outputs			\checkmark	\checkmark		SCCS030
CY74FCT543T	24	Octal Registered Transceivers with 3-State Outputs	\checkmark		\checkmark	\checkmark		SCCS030
CD74FCT564	20	Octal Inverting D-Type Flip-Flops with 3-State Outputs		\checkmark	\checkmark			SCHS259
CD74FCT573	20	Octal Transparent D-Type Latches with 3-State Outputs		\checkmark	\checkmark	\checkmark		SCHS260
CD74FCT573AT	20	Octal Transparent D-Type Latches with 3-State Outputs		\checkmark				SCHS260
CY74FCT573AT	20	Octal Transparent D-Type Latches with 3-State Outputs		\checkmark	\checkmark	\checkmark		SCCS021
CY74FCT573CT	20	Octal Transparent D-Type Latches with 3-State Outputs			\checkmark	\checkmark		SCCS021
CY74FCT573T	20	Octal Transparent D-Type Latches with 3-State Outputs			\checkmark	\checkmark		SCCS021
CD74FCT574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs		\checkmark	\checkmark			SCHS259
CY74FCT574AT	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark		\checkmark	\checkmark		SCCS022
CY74FCT574CT	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs			\checkmark	\checkmark		SCCS022
CY74FCT574T	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs			\checkmark	\checkmark		SCCS022
CD74FCT623	20	Octal Bus Transceivers with 3-State Outputs			\checkmark			SCHS296
CY74FCT646AT	24	Octal Registered Bus Transceivers with 3-State Outputs			\checkmark	\checkmark		SCCS031
CY74FCT646CT	24	Octal Registered Bus Transceivers with 3-State Outputs	\checkmark		\checkmark	\checkmark		SCCS031
CY74FCT646T	24	Octal Registered Bus Transceivers with 3-State Outputs			\checkmark	\checkmark		SCCS031
CY74FCT652AT	24	Octal Bus Transceivers and Registers with 3-State Outputs			\checkmark	\checkmark		SCCS032
CY74FCT652CT	24	Octal Bus Transceivers and Registers with 3-State Outputs			\checkmark	\checkmark		SCCS032
CY74FCT652T	24	Octal Bus Transceivers and Registers with 3-State Outputs				\checkmark		SCCS032
CY29FCT818AT	24	Diagnostic Scan Registers	\checkmark					SCCS012
CY29FCT818CT	24	Diagnostic Scan Registers		\checkmark	\checkmark	\checkmark		SCCS012
CD74FCT821A	24	10-Bit Bus-Interface Flip-Flops with 3-State Outputs		\checkmark	\checkmark			SCHS264
CY74FCT821AT	24	10-Bit Bus-Interface Flip-Flops with 3-State Outputs			\checkmark	\checkmark		SCCS033
CY74FCT821BT	24	10-Bit Bus-Interface Flip-Flops with 3-State Outputs		\checkmark	\checkmark			SCCS033
CY74FCT821CT	24	10-Bit Bus-Interface Flip-Flops with 3-State Outputs			\checkmark	\checkmark		SCCS033
CD74FCT822A	24	9-Bit Bus-Interface Flip-Flops with 3-State Outputs		\checkmark				SCHS264
CD74FCT823A	24	9-Bit Bus-Interface Flip-Flops with 3-State Outputs		\checkmark				SCHS265
CY74FCT823AT	24	9-Bit Bus-Interface Flip-Flops with 3-State Outputs		\checkmark	\checkmark	\checkmark		SCCS033

DEVICE SELECTION GUIDE

FCT

DEVICE	No. PINS	DESCRIPTION	AVAILABILITY					LITERATURE REFERENCE
			MIL	PDIP	soic	SSOP	TSSOP	
CY74FCT823BT	24	9-Bit Bus-Interface Flip-Flops with 3-State Outputs		\checkmark				SCCS033
CY74FCT823CT	24	9-Bit Bus-Interface Flip-Flops with 3-State Outputs			\checkmark	\checkmark		SCCS033
CD74FCT824A	24	9-Bit Bus-Interface Flip-Flops with 3-State Outputs		\checkmark				SCHS265
CY74FCT825CT	24	8-Bit Bus-Interface Flip-Flops with 3-State Outputs				\checkmark		SCCS033
CY74FCT827AT	24	10-Bit Buffers/Drivers with 3-State Outputs			\checkmark	\checkmark		SCCS034
CY74FCT827CT	24	10-Bit Buffers/Drivers with 3-State Outputs			\checkmark	\checkmark		SCCS034
CD74FCT841A	24	10-Bit Bus-Interface D-Type Latches with 3-State Outputs		\checkmark	\checkmark			SCHS266
CY74FCT841AT	24	10-Bit Bus-Interface D-Type Latches with 3-State Outputs	\checkmark		\checkmark			SCCS035
CY74FCT841BT	24	10-Bit Bus-Interface D-Type Latches with 3-State Outputs		\checkmark				SCCS035
CY74FCT841CT	24	10-Bit Bus-Interface D-Type Latches with 3-State Outputs			\checkmark	\checkmark		SCCS035
CD74FCT842A	24	10-Bit Bus-Interface D-Type Latches with 3-State Outputs			\checkmark			SCHS267
CD74FCT843A	24	9-Bit Bus-Interface D-Type Latches with 3-State Outputs			\checkmark			SCHS267
CD74FCT844A	24	9-Bit Transparent Latches with 3-State Outputs		\checkmark				SCHS295
CY74FCT2240AT	20	Octal Buffers/Line Drivers with Series Damping Resistors and 3-State Outputs				\checkmark		SCCS036
CY74FCT2240CT	20	Octal Buffers/Line Drivers with Series Damping Resistors and 3-State Outputs			\checkmark	\checkmark		SCCS036
CY74FCT2240T	20	Octal Buffers/Line Drivers with Series Damping Resistors and 3-State Outputs			\checkmark			SCCS036
CY74FCT2244AT	20	Octal Buffers/Line Drivers with Series Damping Resistors and 3-State Outputs			\checkmark	\checkmark		SCCS036
CY74FCT2244CT	20	Octal Buffers/Line Drivers with Series Damping Resistors and 3-State Outputs			\checkmark	\checkmark		SCCS036
CY74FCT2244T	20	Octal Buffers/Line Drivers with Series Damping Resistors and 3-State Outputs			\checkmark	\checkmark		SCCS036
CY74FCT2245AT	20	Octal Bus Transceivers with Series Damping Resistors and 3-State Outputs		\checkmark	\checkmark	\checkmark		SCCS037
CY74FCT2245CT	20	Octal Bus Transceivers with Series Damping Resistors and 3-State Outputs			\checkmark	\checkmark		SCCS037
CY74FCT2245T	20	Octal Bus Transceivers with Series Damping Resistors and 3-State Outputs			\checkmark	\checkmark		SCCS037
CY74FCT2257AT	16	Quad 1-of-2 Data Selectors/Multiplexers with Series Damping Resistors and 3-State Outputs				\checkmark		SCCS038
CY74FCT2257CT	16	Quad 1-of-2 Data Selectors/Multiplexers with Series Damping Resistors and 3-State Outputs			\checkmark	\checkmark		SCCS038
CY74FCT2373AT	20	Octal Transparent D-Type Latches with Series Damping Resistors and 3-State Outputs				\checkmark		SCCS039
CY74FCT2373CT	20	Octal Transparent D-Type Latches with Series Damping Resistors and 3-State Outputs			\checkmark	\checkmark		SCCS039
CY74FCT2373T	20	Octal Transparent D-Type Latches with Series Damping Resistors and 3-State Outputs				\checkmark		SCCS039
CY74FCT2374AT	20	Octal Transparent D-Type Latches with Series Damping Resistors and 3-State Outputs			\checkmark	\checkmark		SCCS040
CY74FCT2374CT	20	Octal Transparent D-Type Latches with Series Damping Resistors and 3-State Outputs			\checkmark	\checkmark		SCCS040
CY74FCT2374T	20	Octal Transparent D-Type Latches with Series Damping Resistors and 3-State Outputs			\checkmark			SCCS040
CY74FCT2541AT	20	Octal Line Drivers/MOS Drivers with 3-State Outputs			\checkmark	\checkmark		SCCS041
CY74FCT2541CT	20	Octal Line Drivers/MOS Drivers with 3-State Outputs			\checkmark	\checkmark		SCCS041
CY74FCT2541T	20	Octal Line Drivers/MOS Drivers with 3-State Outputs			\checkmark	\checkmark		SCCS041
CY74FCT2543AT	24	Octal Registered Transceivers with Series Damping Resistors and 3-State Outputs			\checkmark	\checkmark		SCCS042
CY74FCT2543CT	24	Octal Registered Transceivers with Series Damping Resistors and 3-State Outputs			\checkmark	\checkmark		SCCS042
CY74FCT2543T	24	Octal Registered Transceivers with Series Damping Resistors and 3-State Outputs				\checkmark		SCCS042

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY					LITERATURE REFERENCE
			MIL	PDIP	SOIC	SSOP	TSSOP	
CY74FCT2573AT	20	Octal Transparent D-Type Latches with Series Damping Resistors and 3-State Outputs				\checkmark		SCCS039
CY74FCT2573CT	20	Octal Transparent D-Type Latches with Series Damping Resistors and 3-State Outputs			\checkmark	\checkmark		SCCS039
CY74FCT2573T	20	Octal Transparent D-Type Latches with Series Damping Resistors and 3-State Outputs			\checkmark			SCCS039
CY74FCT2574AT	20	Octal Transparent D-Type Latches with Series Damping Resistors and 3-State Outputs			\checkmark	\checkmark		SCCS040
CY74FCT2574CT	20	Octal Transparent D-Type Latches with Series Damping Resistors and 3-State Outputs			\checkmark	\checkmark		SCCS040
CY74FCT2574T	20	Octal Transparent D-Type Latches with Series Damping Resistors and 3-State Outputs			\checkmark			SCCS040
CY74FCT2646AT	24	Octal Registered Bus Transceivers with Series Damping Resistors and 3-State Outputs				\checkmark		SCCS043
CY74FCT2646CT	24	Octal Registered Bus Transceivers with Series Damping Resistors and 3-State Outputs				\checkmark		SCCS043
CY74FCT2652AT	24	Octal Bus Transceivers and Registers with Series Damping Resistors and 3-State Outputs				\checkmark		SCCS044
CY74FCT2652CT	24	Octal Bus Transceivers and Registers with Series Damping Resistors and 3-State Outputs				\checkmark		SCCS044
CY74FCT2827AT	24	10-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs				\checkmark		SCCS045
CY74FCT2827CT	24	10-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs				\checkmark		SCCS045
CD74FCT2952A	24	Octal Bus Transceivers and Registers with 3-State Outputs			\checkmark			SCBS720
CY74FCT16240AT	48	16-Bit Buffers/Drivers with 3-State Outputs				$+$		SCCS027
CY74FCT16240ET	48	16-Bit Buffers/Drivers with 3-State Outputs				$+$		SCCS027
CY74FCT16244AT	48	16-Bit Buffers/Drivers with 3-State Outputs				$+$	$+$	SCCS028
CY74FCT16244CT	48	16-Bit Buffers/Drivers with 3-State Outputs				$+$	$+$	SCCS028
CY74FCT16244ET	48	16-Bit Buffers/Drivers with 3-State Outputs				$+$	$+$	SCCS028
CY74FCT16244T	48	16-Bit Buffers/Drivers with 3-State Outputs				\checkmark	$+$	SCCS028
CY74FCT16245AT	48	16-Bit Bus Transceivers with 3-State Outputs				$+$	$+$	SCCS026
CY74FCT16245CT	48	16-Bit Bus Transceivers with 3-State Outputs				$+$	$+$	SCCS026
CY74FCT16245ET	48	16-Bit Bus Transceivers with 3-State Outputs				$+$	$+$	SCCS026
CY74FCT16245T	48	16-Bit Bus Transceivers with 3-State Outputs				$+$	$+$	SCCS026
CY74FCT16373AT	48	16-Bit Transparent D-Type Latches with 3-State Outputs				$+$	$+$	SCCS054
CY74FCT16373CT	48	16-Bit Transparent D-Type Latches with 3-State Outputs				$+$	$+$	SCCS054
CY74FCT16373ET	48	16-Bit Transparent D-Type Latches with 3-State Outputs				$+$	$+$	SCCS054
CY74FCT16374AT	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs				$+$	$+$	SCCS055
CY74FCT16374CT	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs				$+$	$+$	SCCS055
CY74FCT16374ET	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs				$+$	$+$	SCCS055
CY74FCT16374T	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs				$+$		SCCS055
CY74FCT16500CT	56	18-Bit Universal Bus Transceivers with 3-State Outputs				$+$	$+$	SCCS056
CY74FCT16501AT	56	18-Bit Universal Bus Transceivers with 3-State Outputs				$+$		SCCS057
CY74FCT16501ET	56	18-Bit Universal Bus Transceivers with 3-State Outputs				$+$	$+$	SCCS057
CY74FCT16543AT	56	16-Bit Registered Transceivers with 3-State Outputs					$+$	SCCS059
CY74FCT16543CT	56	16-Bit Registered Transceivers with 3-State Outputs				$+$		SCCS059
CY74FCT16543ET	56	16-Bit Registered Transceivers with 3-State Outputs				$+$	$+$	SCCS059
CY74FCT16543T	56	16-Bit Registered Transceivers with 3-State Outputs				$+$		SCCS059

DEVICE SELECTION GUIDE

FCT

DEVICE	No. PINS	DESCRIPTION	AVAILABILITY					LITERATURE REFERENCE
			MIL	PDIP	SOIC	SSOP	TSSOP	
CY74FCT16646AT	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				+		SCCS060
CY74FCT16646CT	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				$+$		SCCS060
CY74FCT16646ET	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				$+$		SCCS060
CY74FCT16646T	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				$+$		SCCS060
CY74FCT16652AT	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				+		SCCS061
CY74FCT16652CT	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				$+$		SCCS061
CY74FCT16652ET	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				$+$	$+$	SCCS061
CY74FCT16823AT	56	18-Bit D-Type Flip-Flops with 3-State Outputs					$+$	SCCS062
CY74FCT16823CT	56	18-Bit D-Type Flip-Flops with 3-State Outputs				$+$	$+$	SCCS062
CY74FCT16823ET	56	18-Bit D-Type Flip-Flops with 3-State Outputs				$+$	$+$	SCCS062
CY74FCT16827AT	56	20-Bit Buffers/Drivers with 3-State Outputs				$+$		SCCS064
CY74FCT16827CT	56	20-Bit Buffers/Drivers with 3-State Outputs				$+$	$+$	SCCS064
CY74FCT16827ET	56	20-Bit Buffers/Drivers with 3-State Outputs				+	$+$	SCCS064
CY74FCT16841AT	56	20-Bit Bu- Interface D-Type Latches with 3-State Outputs				$+$		SCCS067
CY74FCT16841CT	56	20-Bit Bus-Interface D-Type Latches with 3-State Outputs				$+$		SCCS067
CY74FCT16952AT	56	16-Bit Registered Transceivers with 3-State Outputs				$+$		SCCS065
CY74FCT16952CT	56	16-Bit Registered Transceivers with 3-State Outputs					$+$	SCCS065
CY74FCT16952ET	56	16-Bit Registered Transceivers with 3-State Outputs				+		SCCS065
CY74FCT162240CT	48	16-Bit Buffers/Drivers with 3-State Outputs				$+$	+	SCCS027
CY74FCT162240ET	48	16-Bit Buffers/Drivers with 3-State Outputs				$+$	$+$	SCCS027
CY74FCT162244AT	48	16-Bit Buffers/Drivers with 3-State Outputs				$+$	$+$	SCCS028
CY74FCT162244CT	48	16-Bit Buffers/Drivers with 3-State Outputs				+	$+$	SCCS028
CY74FCT162244ET	48	16-Bit Buffers/Drivers with 3-State Outputs				$+$	$+$	SCCS028
CY74FCT162244T	48	16-Bit Buffers/Drivers with 3-State Outputs				$+$	$+$	SCCS028
CY74FCT162H244AT	48	16-Bit Buffers/Drivers with Bus Hold and 3-State Outputs					$+$	SCCS028
CY74FCT162H244CT	48	16-Bit Buffers/Drivers with Bus Hold and 3-State Outputs				$+$		SCCS028
CY74FCT162H244ET	48	16-Bit Buffers/Drivers with Bus Hold and 3-State Outputs				$+$	$+$	SCCS028
CY74FCT162245AT	48	16-Bit Bus Transceivers with 3-State Outputs				$+$	$+$	SCCS026
CY74FCT162245CT	48	16-Bit Bus Transceivers with 3-State Outputs				$+$	$+$	SCCS026
CY74FCT162245ET	48	16-Bit Bus Transceivers with 3-State Outputs				+	+	SCCS026
CY74FCT162245T	48	16-Bit Bus Transceivers with 3-State Outputs				$+$	$+$	SCCS026
CY74FCT162H245AT	48	16-Bit Bus Transceivers with Bus Hold and 3-State Outputs				$+$	$+$	SCCS026
CY74FCT162H245CT	48	16-Bit Bus Transceivers with Bus Hold and 3-State Outputs				$+$	$+$	SCCS026
CY74FCT162H245ET	48	16-Bit Bus Transceivers with Bus Hold and 3-State Outputs				$+$	$+$	SCCS026
CY74FCT162373AT	48	16-Bit Transparent D-Type Latches with 3-State Outputs				$+$	+	SCCS054
CY74FCT162373CT	48	16-Bit Transparent D-Type Latches with 3-State Outputs				$+$	$+$	SCCS054
CY74FCT162373ET	48	16-Bit Transparent D-Type Latches with 3-State Outputs				$+$	$+$	SCCS054
CY74FCT162374AT	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs				$+$	$+$	SCCS055
CY74FCT162374CT	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs				$+$	$+$	SCCS055
CY74FCT162374ET	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs				$+$	$+$	SCCS055
CY74FCT162374T	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs				$+$		SCCS055
CY74FCT162500AT	56	18-Bit Universal Bus Transceivers with 3-State Outputs				$+$		SCCS056
CY74FCT162500CT	56	18-Bit Universal Bus Transceivers with 3-State Outputs				$+$		SCCS056
CY74FCT162501AT	56	18-Bit Universal Bus Transceivers with 3-State Outputs				$+$	$+$	SCCS057
CY74FCT162501CT	56	18-Bit Universal Bus Transceivers with 3-State Outputs				$+$	$+$	SCCS057

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY					LITERATURE REFERENCE
			MIL	PDIP	SOIC	SSOP	TSSOP	
CY74FCT162501ET	56	18-Bit Universal Bus Transceivers with 3-State Outputs				$+$	$+$	SCCS057
CY74FCT162H501CT	56	18-Bit Universal Bus Transceivers with Bus Hold and 3-State Outputs				$+$	$+$	SCCS057
CY74FCT162H501ET	56	18-Bit Universal Bus Transceivers with Bus Hold and 3-State Outputs				+	+	SCCS057
CY74FCT162543AT	56	16-Bit Registered Transceivers with 3-State Outputs					$+$	SCCS059
CY74FCT162543CT	56	16-Bit Registered Transceivers with 3-State Outputs				+	+	SCCS059
CY74FCT162543ET	56	16-Bit Registered Transceivers with 3-State Outputs				$+$	$+$	SCCS059
CY74FCT162543T	56	16-Bit Registered Transceivers with 3-State Outputs				$+$		SCCS059
CY74FCT162H543CT	56	16-Bit Registered Transceivers with Bus Hold and 3-State Outputs					+	SCCS059
CY74FCT162646AT	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				$+$	$+$	SCCS060
CY74FCT162646CT	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				$+$	$+$	SCCS060
CY74FCT162646ET	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				+	+	SCCS060
CY74FCT162652AT	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				$+$		SCCS061
CY74FCT162652CT	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				$+$	+	SCCS061
CY74FCT162652ET	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				$+$	$+$	SCCS061
CY74FCT162823AT	56	18-Bit D-Type Flip-Flops with 3-State Outputs					$+$	SCCS062
CY74FCT162823CT	56	18-Bit D-Type Flip-Flops with 3-State Outputs				+	$+$	SCCS062
CY74FCT162823ET	56	18-Bit D-Type Flip-Flops with 3-State Outputs				$+$	$+$	SCCS062
CY74FCT162827AT	56	20-Bit Buffers/Drivers with 3-State Outputs				$+$		SCCS064
CY74FCT162827BT	56	20-Bit Buffers/Drivers with 3-State Outputs				$+$		SCCS064
CY74FCT162827CT	56	20-Bit Buffers/Drivers with 3-State Outputs					$+$	SCCS064
CY74FCT162827ET	56	20-Bit Buffers/Drivers with 3-State Outputs				$+$	$+$	SCCS064
CY74FCT162841CT	56	20-Bit Bus-Interface D-Type Latches with 3-State Outputs				+	$+$	SCCS067
CY74FCT162952AT	56	16-Bit Registered Transceivers with 3-State Outputs					$+$	SCCS065
CY74FCT162952BT	56	16-Bit Registered Transceivers with 3-State Outputs				$+$		SCCS065
CY74FCT162952ET	56	16-Bit Registered Transceivers with 3-State Outputs				$+$		SCCS065
CY74FCT162H952AT	56	16-Bit Registered Transceivers with Bus Hold and 3-State Outputs					$+$	SCCS065
CY74FCT162H952CT	56	16-Bit Registered Transceivers with Bus Hold and 3-State Outputs				+		SCCS065
CY74FCT162H952ET	56	16-Bit Registered Transceivers with Bus Hold and 3-State Outputs					$+$	SCCS065
CY74FCT163244A	48	16-Bit Buffers/Drivers with 3-State Outputs				$+$	$+$	SCCS046
CY74FCT163244C	48	16-Bit Buffers/Drivers with 3-State Outputs				$+$	$+$	SCCS046
CY74FCT163H244C	48	16-Bit Buffers/Drivers with Bus Hold and 3-State Outputs				$+$	$+$	SCCS046
CY74FCT163245A	48	16-Bit Bus Transceivers with 3-State Outputs				$+$	$+$	SCCS051
CY74FCT163245C	48	16-Bit Bus Transceivers with 3-State Outputs				$+$	$+$	SCCS051
CY74FCT163H245A	48	16-Bit Bus Transceivers with Bus Hold and 3-State Outputs				$+$		SCCS051
CY74FCT163H245C	48	16-Bit Bus Transceivers with Bus Hold and 3-State Outputs				$+$	$+$	SCCS051
CY74FCT163373C	48	16-Bit Transparent D-Type Latches with 3-State Outputs				$+$	$+$	SCCS053
CY74FCT163374A	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs					+	SCCS050
CY74FCT163374C	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs				+	+	SCCS050
CY74FCT163H374C	48	16-Bit Edge-Triggered D-Type Flip-Flops with Bus Hold and 3-State Outputs				$+$	$+$	SCCS050
CY74FCT163500A	56	18-Bit Universal Bus Transceivers with 3-State Outputs				$+$		SCCS066
CY74FCT163500C	56	18-Bit Universal Bus Transceivers with 3-State Outputs				$+$	+	SCCS066
CY74FCT163501C	56	18-Bit Universal Bus Transceivers with 3-State Outputs				$+$	$+$	SCCS047
CY74FCT163H501C	56	18-Bit Universal Bus Transceivers with Bus Hold and 3-State Outputs				+	+	SCCS047
CY74FCT163543A	56	16-Bit Registered Transceivers with 3-State Outputs				+		SCCS063
CY74FCT163543C	56	16-Bit Registered Transceivers with 3-State Outputs				$+$	$+$	SCCS063

DEVICE SELECTION GUIDE
FCT

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY					LITERATURE REFERENCE
			MIL	PDIP	solc	SSOP	TSSOP	
CY74FCT163646C	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				$+$	$+$	SCCS058
CY74FCT163652A	56	16-Bit Bus Transceivers and Registers with 3-State Outputs					$+$	SCCS052
CY74FCT163652C	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				$+$	$+$	SCCS052
CY74FCT163827A	56	20-Bit Buffers/Drivers with 3-State Outputs				$+$		SCCS049
CY74FCT163827C	56	20-Bit Buffers/Drivers with 3-State Outputs				$+$		SCCS049
CY74FCT163952C	56	16-Bit Registered Transceivers with 3-State Outputs				$+$	$+$	SCCS048
CY74FCT163H952C	56	16-Bit Registered Transceivers with Bus Hold and 3-State Outputs				$+$	$+$	SCCS048

FIFO

First-In, First-Out Memories
Today's competitive environment creates a constant need for greater system performance. One common method to optimize system performance involves the use of a first in, first out (FIFO) memory to eliminate the data bottlenecks common between digital signal processors (DSPs), high-speed processors, industry-standard buses, memory devices, and analog front ends (AFEs). TI offers a wide range of FIFO devices designed for use in a variety of systems including real-time DSP applications, telecommunications, internetworking, instrumentation, and high-bandwidth computing. Tl's high-performance FIFO products provide the speed and features necessary to enhance your system's performance.

Visit the TI FIFO home page at http://www.ti.com/sc/fifo for a comprehensive overview of TI's FIFO product line, new product releases, data sheets, application reports, and pricing.

FIFOs

DEVICE	NO. PINS	$\begin{aligned} & \text { CLOCK } \\ & \text { (MHz) } \end{aligned}$	DESCRIPTION	AVAILABILITY							LITERATURE REFERENCE
				MIL	PDIP	soic	SSOP	PLCC	QFP	TQFP	
36-Bit Synchronous FIFOs											
SN74ABT3611	132, 120	67	$64 \times 36,5-\mathrm{V}$ Synchronous FIFOs						\checkmark	\checkmark	SCBS127
SN74ABT3613	132, 120	67	$64 \times 36,5-\mathrm{V}$ Synchronous FIFO						\checkmark	\checkmark	SCBS128
SN74ABT3612	132, 120	67	$64 \times 36 \times 2,5-\mathrm{V}$ Synchronous Bidirectional FIFOs						\checkmark	\checkmark	SCBS129
SN74ABT3614	132, 120	67	$64 \times 36 \times 2,5$-V Synchronous Bidirectional FIFOs	\checkmark					\checkmark	\checkmark	SCBS126
SN74ACT3622	132, 120	67	$256 \times 36 \times 2,5$-V Synchronous Bidirectional FIFOs						\checkmark	\checkmark	SCAS247
SN74ACT3631	132, 120	67	$512 \times 36,5-\mathrm{V}$ Synchronous FIFOs						\checkmark	\checkmark	SCAS246
SN74ACT3632	132, 120	67	$512 \times 36 \times 2,5$-V Synchronous Bidirectional FIFOs	\checkmark					\checkmark	\checkmark	SCAS224
SN74ACT3641	132, 120	67	$1 \mathrm{~K} \times 36,5$-V Synchronous FIFOs	\checkmark					\checkmark	\checkmark	SCAS338
SN74ACT3651	132, 120	67	$2 \mathrm{~K} \times 36,5$ - S Synchronous FIFOs						\checkmark	\checkmark	SCAS439
SN74ALVC3631	132, 120	100	$512 \times 36,3.3$-V Synchronous FIFOs						\checkmark	\checkmark	SDMS025
SN74ALVC3641	132, 120	100	$1 \mathrm{~K} \times 36,3.3$-V Synchronous FIFOs						\checkmark	\checkmark	SDMS025
SN74ALVC3651	132, 120	100	$2 \mathrm{~K} \times 36,3.3-\mathrm{V}$ Synchronous FIFOs						\checkmark	\checkmark	SDMS025
32-Bit Synchronous FIFOs											
SN74ACT3638	132, 120	67	$512 \times 32 \times 2,5$-V Synchronous Bidirectional FIFOs						\checkmark	\checkmark	SCAS228
18-Bit Synchronous FIFOs											
SN74ACT7813	56	67	$64 \times 18,5-\mathrm{V}$ Synchronous FIFOs				\checkmark				SCAS199
SN74ACT7805	56	67	$256 \times 18,5-\mathrm{V}$ Synchronous FIFOs				\checkmark				SCAS201
SN74ACT7803	56	67	$512 \times 18,5$-V Synchronous FIFOs				\checkmark				SCAS191
SN74ABT7819	80	100	$512 \times 18 \times 2,5$-V Synchronous Bidirectional FIFOs	\checkmark					\checkmark	\checkmark	SCBS125
SN74ACT7811	68,80	67	$1 \mathrm{~K} \times 18,5$-V Synchronous FIFOs	\checkmark				\checkmark		\checkmark	SCAS151
SN74ACT7881	68,80	67	$1 \mathrm{~K} \times 18,5-\mathrm{V}$ Synchronous FIFOs	\checkmark				\checkmark		\checkmark	SCAS227
SN74ACT7882	68,80	67	$2 \mathrm{~K} \times 18,5-\mathrm{V}$ Synchronous FIFOs					\checkmark		\checkmark	SCAS445
SN74ALVC7813	56	50	$64 \times 18,3.3$-V Synchronous FIFOs				\checkmark				SCAS594
SN74ALVC7805	56	50	$256 \times 18,3.3-\mathrm{V}$ Synchronous FIFOs				\checkmark				SCAS593
SN74ALVC7803	56	50	$512 \times 18,3.3$-V Synchronous FIFOs				\checkmark				SCAS436

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array) GKE $=96$ pins	PLCC (plastic leaded chip carrier) $\mathrm{FN}=20 / 28 / 44 / 68 / 84$ pins	SOIC (small-outline integrated circuit) D $=8 / 14 / 16$ pins	TSSOP (thin shrink small-outline package) PW $=8 / 14 / 16 / 20 / 24 / 28$ pins
GKF $=114$ pins	QFP (quad flatpack)	DW $=16 / 20 / 24 / 28 \mathrm{pins}$	DGG $=48 / 56 / 64$ pins
VFBGA (very-thin-profile fine-pitch ball grid array) GQL $=56$ pins (also includes 48 -pin functions)	RC $=52$ pins (FB only) PH $=80$ pins (FIFOs only)	QSOP (quarter-size outline package) $\text { DBQ }=16 / 20 / 24 \text { pins }$	TVSOP (thin very small-outline package) DGV $=14 / 16 / 20 / 24 / 48 / 56$ pins
PDIP (plastic dual-in-line package)	PQ $=100 / 132$ pins (FIFOs only)	SSOP (shrink small-outline package)	DBB $=80$ pins
$\mathrm{P}=8 \mathrm{pins}$	TQFP (plastic thin quad flatpack)	DB $=14 / 16 / 20 / 24 / 28 / 30 / 38$ pins	SOT (small-outline transistor)
$N=14 / 16 / 20$ pins	PAH $=52$ pins	DBQ $=16 / 20 / 24$	DBV $=5$ pins
$N T=24 / 28$ pins	PAG $=64$ pins (FB only)	DL $=28 / 48 / 56$ pins	DCK $=5$ pins
	PM $=64$ pins		
schedule	PN $=80$ pins		
	PCA, PZ = 100 pins (FB only)		
$\boldsymbol{\checkmark}$ = Now $\boldsymbol{+}$ = Planned	PCB $=120$ pins (FIFOs only)		

FIFOs

DEVICE	NO. PINS	$\begin{aligned} & \text { CLOCK } \\ & \text { (MHz) } \end{aligned}$	DESCRIPTION	AVAILABILITY							LITERATURE REFERENCE
				MIL	PDIP	SOIC	SSOP	PLCC	QFP	TQFP	
18-Bit Asynchronous FIFOs											
SN74ACT7814	56	50	$64 \times 18,5-\mathrm{V}$ Asynchronous FIFOs				\checkmark				SCAS209
SN74ACT7806	56	50	$256 \times 18,5 \mathrm{~V}$ Asynchronous FIFOs				\checkmark				SCAS438
SN74ACT7804	56	50	$512 \times 18,5-\mathrm{V}$ Asynchronous FIFOs				\checkmark				SCAS204
SN74ABT7820	80	67	$512 \times 18 \times 2,5$-V Asynchronous Bidirectional FIFOs	\checkmark					\checkmark	\checkmark	SCAS206
SN74ACT7802	80	40	$1 \mathrm{~K} \times 18,5-\mathrm{V}$ Asynchronous FIFOs					\checkmark		\checkmark	SCAS187
SN74ALVC7814	56	40	$64 \times 18,3.3$-V Asynchronous FIFOs				\checkmark				SCAS592
SN74ALVC7806	56	40	$256 \times 18,3.3$-V Asynchronous FIFOs				\checkmark				SCAS591
SN74ALVC7804	56	40	$512 \times 18,3.3-\mathrm{V}$ Asynchronous FIFOs				\checkmark				SCAS437
9-Bit FIFOs											
SN74ACT2235	44, 64	50	$1 \mathrm{~K} \times 9 \times 2,5$-V Asynchronous Bidirectional FIFOs					\checkmark		\checkmark	SCAS148
SN74ACT7807	44, 64	67	$2 \mathrm{~K} \times 9,5$-V Synchronous FIFOs					\checkmark		\checkmark	SCAS200
SN74ACT7808	44,64	50	$2 \mathrm{~K} \times 9,5$-V Asynchronous FIFOs					\checkmark		\checkmark	SCAS205
1-Bit Telecommunication FIFOs											
SN74ACT2226	24	22	$64 \times 1 \times 2,5-\mathrm{V}$ Independent Synchronous FIFOs			\checkmark					SCAS219
SN74ACT2227	28	60	$64 \times 1 \times 2,5-\mathrm{V}$ Independent Synchronous FIFOs			\checkmark					SCAS220
SN74ACT2228	24	22	$256 \times 1 \times 2,5-\mathrm{V}$ Independent Synchronous FIFOs			\checkmark					SCAS219
SN74ACT2229	28	60	$256 \times 1 \times 2,5-\mathrm{V}$ Independent Synchronous FIFOs			\checkmark					SCAS220
Mature Products											
SN74LS224A	16	10	$16 \times 4,5$-V Synchronous FIFOs	\checkmark	\checkmark						SDLS023
SN74ALS232B	16, 16, 20	40	$16 \times 4,5$-V Asynchronous FIFOs		\checkmark	\checkmark		\checkmark			SCAS251
SN74ALS236	16	30	$16 \times 4,5$-V Asynchronous FIFOs		\checkmark						SDAS107
CD40105B	16	3	$16 \times 4,5$-V Asynchronous FIFOs	\checkmark	\checkmark						SCHS096
CD74HC40105	16	12	$16 \times 4,5$-V Asynchronous FIFOs	\checkmark	\checkmark	\checkmark					SCHS222
CD74HCT40105	16	12	$16 \times 4,5$-V Asynchronous FIFOs	\checkmark	\checkmark	\checkmark					SCHS222
SN74S225	20	10	$16 \times 5,5$-V Asynchronous FIFOs		\checkmark						SDLS207
SN74ALS229B	20	40	$16 \times 5,5$-V Asynchronous FIFOs		\checkmark	\checkmark					SDAS090
SN74ALS233B	20	40	$16 \times 5,5$-V Asynchronous FIFOs		\checkmark	\checkmark		\checkmark			SCAS253

GTL

Gunning Transceiver Logic

GTL devices are high-speed transceivers operating at LVTTL logic levels on the card and at GTL/GTL+ signal levels on the bus. The devices are designed with faster edge rates for applications in which the backplane length/number of slots is limited, and hot insertion is not a requirement. GTL devices are best suited for use in point-to-point applications or in lightly loaded backplanes. The devices operate at the JEDEC JESD8-3 GTL or at the higher threshold-voltage/lower noise-margin GTL+ signal levels. Use GTLP devices in applications that require a slower edge rate, as in 21-slot backplanes.

GTL family features:

- 3.3-V or $3.3-15-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation with 5 -V-tolerant LVTTL I/Os (except 'GTL1655) permits the devices to act as $5-\mathrm{V}$ CMOS/TTL or $3.3-\mathrm{V}$ LVTTL-to-GTL+/GTL and GTL+/GTL-to-3.3-V LVTTL translators.
- Output edge control ($\mathrm{OEC}^{\mathrm{TM}}$) reduces line reflections, electromagnetic interference (EMI), and improves overall signal integrity.
- B-port drive of 50 mA and 100 mA ('GTL1655 only) allows the designer flexibility in matching the device to the application.
- $\mathrm{I}_{\text {off }}$ circuitry prevents damage during partial power-down situations.
- Power-up 3-state (PU3S) and BIAS V ${ }_{C C}$ circuitry ('GTL1655 only) permit true live-insertion capability.
- Bus-hold circuitry (A port only) eliminates floating inputs by holding them at the last valid logic state. No external pullup or pulldown resistors are needed for unused or undriven inputs, which reduces power, cost, and board layout time. There is no bus-hold circuitry on the B port (GTL/GTL+ side) because this would defeat the purpose of the open-drain output that takes on the high-impedance state to allow the bus to be pulled to the logic high state via the termination resistors.

See http://www.ti.com/sc/gtl for further information. TI provides a wide range of design assistance, including application support, application reports, free samples, demonstration backplane, and HSPICE/IBIS simulation models.

DEVICE SELECTION GUIDE

GTL

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY			LITERATURE REFERENCE
			MIL	ssop	TSSOP	
SN74GTL1655	64	16-Bit LVTTL-to-GTL/GTL+ Universal Bus Transceivers with Live Insertion			\checkmark	SCBS696
SN74GTL16612	56	18-Bit LVTTL-to-GTL/GTL+ Universal Bus Transceivers	\checkmark	\checkmark	\checkmark	SCBS480
SN74GTL16616	56	17-Bit LVTTL-to-GTL/GTL+ Universal Bus Transceivers with Buffered Clock Outputs		\checkmark	\checkmark	SCBS481
SN74GTL16622A	64	18-Bit LVTTL-to-GTL/GTL+ Registered Bus Transceivers			\checkmark	SCBS673
SN74GTL16923		18-Bit LVTTL-to-GTL/GTL+ Registered Bus Transceivers			\checkmark	SCBS674

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array) GKE $=96$ pins	PLCC (plastic leaded chip carrier) $\mathrm{FN}=20 / 28 / 44 / 68 / 84 \text { pins }$	SOIC (small-outline integrated circuit) $\mathrm{D}=8 / 14 / 16 \text { pins }$	TSSOP (thin shrink small-outline package) PW $=8 / 14 / 16 / 20 / 24 / 28$ pins
GKF = 114 pins	QFP (quad flatpack) RC $=52$ pins ($F B$ only) PH $=80$ pins (FIFO only) $P Q=100 / 132$ pins (FIFO only)	DW = 16/20/24/28 pins	DGG $=48 / 56 / 64$ pins
VFBGA (very-thin-protile fine-pitch ball grid array) GQL = 56 pins (also includes 48 -pin functions)		QSOP (quarter-size outline package) $\mathrm{DBQ}=16 / 20 / 24 \text { pins }$	TVSOP (thin very small-outine package) DGV $=14 / 16 / 20 / 24 / 48 / 56$ pins DBB $=80$ pins
PDIP (plastic dual-in-line package)		SSOP (shrink small-outline package)	
$\mathrm{P}=8 \mathrm{pins}$	TQFP (plastic thin quad flatpack)	DB $=14 / 16 / 20 / 24 / 28 / 30 / 38$ pins	SOT (small-outline transistor)
$N=14 / 16 / 20$ pins	PAH $=52$ pins	DBQ $=16 / 20 / 24$	DBV $=5$ pins
$\mathrm{NT}=24 / 28$ pins	PAG $=64$ pins (FB only)	DL $=28 / 48 / 56$ pins	DCK $=5$ pins
, 2428 pins	PM $=64$ pins		
schedule	PN $=80$ pins		
$\checkmark=$ Now $\boldsymbol{+}$ = Planned	$\begin{aligned} & \text { PCA, PZ }=100 \text { pins (FB only) } \\ & \text { PCB }=120 \text { pins (FIFO only) } \end{aligned}$		

GTLP
 Gunning Transceiver Logic Plus

GTLP devices are high-speed CMOS transceivers specifically designed for heavily loaded parallel backplane applications. The reduced output swing ($<1 \mathrm{~V}$), reduced input threshold levels, differential input, and output edge control OECTM ${ }^{\text {TM }}$ and TI-OPCTM ${ }^{\text {TM }}$ overshoot protection circuitry on the GTLP rising and falling edges reduces EMI and improves overall signal integrity, allowing higher backplane clock frequencies. This increases the bandwidth for manufacturers developing improved data-communication solutions.

GTLP solves high-performance parallel backplane designers' needs:

- Offers higher backplane speeds (60 MHz to 160 MHz) for increased data-throughput requirements, lower EMI, and lower power consumption.
- I ${ }_{\text {off }}$, power-up 3-state (PU3S), and BIAS V_{CC} circuitry support true live-insertion capability for easy internal precharging of the backplane I/O pins for applications in which active backplane data cannot be suspended or disturbed during card insertion or removal.
- Compatible with existing parallel backplane technologies, GTLP provides an alternative to more complex serial technologies.

GTLP family features:

- 3.3-V V_{CC} with 5 -V-tolerant LVTTL I/Os permits GTLP devices to act as 5-V CMOS, TTL, or LVTTL-to-GTLP and GTLP-to-LVTTL or TTL translators.
- A-port (LVTTL side) balanced drive of $\pm 24 \mathrm{~mA}$
- B-port (GTLP side) open drain sinks either 50 mA or 100 mA of current, allowing the designer flexibility in matching the best device to backplane length, slot spacing, and termination resistance.
- Edge-rate control (ERC) circuitry allows either fast or slow edge rates.
- One-third the static power consumption of BiCMOS logic devices
- A-port bus-hold circuitry (GTLPH only) eliminates floating inputs by holding them at the last valid logic state.

See http://www.ti.com/sc/gtlp for further information. TI provides a wide range of design assistance, including application reports and support, free samples, demonstration backplane, and HSPICE/IBIS simulation models.

Migration Path From GTLPH16912

MEDIUM-DRIVE UNIVERSAL BUS TRANSCEIVER '16601 Pinout - 18 Bits With OE, LE, CLK, and CE Controls

Migration Path From GTLPH16945
MEDIUM-DRIVE BUS TRANSCEIVER
'16245 Pinout - 2×8 Bits With Separate DIR and OE Controls

GTLP

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY						LITERATURE REFERENCE
			LFBGA	Solc	ssop	TSSOP	TVSOP	vFbga	
SN74GTLPH306	24	8-Bit LVTTL-to-GTLP Bus Transceivers		$+$		+	+		SCES284
SN74GTLP817	24	GTLP-to-LVTTL 1-to-6 Fanout Drivers		$+$		$+$	$+$		SCES285
SN74GTLP1394	16	2-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Bus Transceivers with Selectable Parity		+		$+$	$+$		SCES286
SN74GTLPH1612	64	18-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Universal Bus Transceivers				$+$			SCES287
SN74GTLPH1616	64	17-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Universal Bus Transceivers with Buffered Clock				$+$			Call
SN74GTLPH1645	56	16-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Bus Transceivers				$+$	$+$	$+$	SCES290
SN74GTLPH1655	64	16-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Universal Bus Transceivers				$+$			SCES294
SN74GTLPH3245	114	32-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Bus Transceivers	$+$						SCES291
SN74GTLPH16612	56	18-Bit LVTTL to GTLP Universal Bus Transceivers			\checkmark	\checkmark			SCES326
SN74GTLPH16912	56	18-Bit LVTTL-to-GTLP Universal Bus Transceivers				$+$	$+$		SCES288
SN74GTLPH16916	56	17-Bit LVTTL-to-GTLP Universal Bus Transceivers with Buffered Clock				$+$	$+$		Call
SN74GTLPH16945	48	16-Bit LVTTL-to-GTLP Bus Transceivers				$+$	$+$	$+$	SCES292
SN74GTLPH32945	96	32-Bit LVTTL-to-GTLP Bus Transceivers	$+$						SCES293

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array) GKE $=96$ pins	PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins	SOIC (small-outline integrated circuit) D $=8 / 14 / 16$ pins	TSSOP (thin shrink small-outline package) PW $=8 / 14 / 16 / 20 / 24 / 28$ pins
GKF = 114 pins	QFP (quad flatpack) RC $=52$ pins (FB only) PH $=80$ pins (FIFO only) $P Q=100 / 132$ pins (FIFO only)	DW $=16 / 20 / 24 / 28$ pins	DGG $=48 / 56 / 64$ pins
VFBGA (very-thin-profile fine-pitch ball grid array) GQL $=56$ pins (also includes 48-pin functions)		QSOP (quarter-size outline package) DBQ $=16 / 20 / 24$ pins $D B Q=16 / 20 / 24 \text { pins }$	TVSOP (thin very small-outine package) DGV $=14 / 16 / 20 / 24 / 48 / 56$ pins DBB $=80$ pins
PDIP (plastic dual-in-line package)		SSOP (shrink small-outline package)	
$\mathrm{P}=8 \mathrm{pins}$	TQFP (plastic thin quad flatpack)	DB $=14 / 16 / 20 / 24 / 28 / 30 / 38$ pins	SOT (small-outline transistor)
$\mathrm{N}=14 / 16 / 20 \mathrm{pins}$	PAH $=52 \mathrm{p}$ ins	DBQ $=16 / 20 / 24$	DBV $=5$ pins
$\mathrm{NT}=24 / 28$ pins	PAG $=64$ pins (FB only)	$D L=28 / 48 / 56$ pins	DCK $=5$ pins
schedule	PN $=80$ pins		
$\checkmark=$ Now $+=$ Planned	$\begin{aligned} & \text { PCA, } \\ & \text { PCB }=100 \text { pins (FB only) } \\ & \text { PCB }\end{aligned}$		

SN74GTLP1394

Specifically designed for use with the Texas Instruments TSB14C01A 1394 backplane layer controller family to transmit 1394 backplane serial bus across parallel backplanes

- The 1394 backplane serial bus plays a supportive role in backplane systems, providing a means for diagnostics, system enhancement, and peripheral monitoring.
- High-performance, multi-slot, parallel-backplane-optimized GTLP edge rates easily support data transfer rates of 25 Mbps (S25), 50 Mbps (S50), and 100 Mbps (S100).
- GTLP vs LVDS solutions
- Single-chip solution
- Easier to implement
- GTLP vs BTL/FB+ solutions
- Better signal integrity
- More cost effective
- Less power consumption

SN74GTLP1394 main features include:

- LVTTL to GTLP bidirectional translator
- High GTLP drive (100 mA)
- TI-OPC ${ }^{\text {TM }}$ overshoot protection circuitry
- BIAS $V_{C C}$ supports true live insertion.
- 3.3-V V_{CC} with $5-\mathrm{V}$ tolerance
- $\quad \$ 3.75$ in lots of 1000
- 16-pin SOIC (D \& DR), TSSOP (PWR), and TVSOP (DGVR) packages
www.ti.com/sc/1394

64-Bit Data Bus 32- to 64-Bit Address Bus

www.ti.com/sc/gtlp

HC/HCT High-Speed CMOS Logic

Tl offers a full family of HC/HCT devices for low-power, medium- to low-speed applications. The recent addition of products acquired from Harris Semiconductor has added a wide range of additional functions. Over 250 HC and HCT device types are available, including gates, latches, flip-flops, buffers/drivers, counters, multiplexers, transceivers, and registered transceivers. The HC/HCT family is a popular, reliable logic family with $6-\mathrm{mA}$ output current drive at $5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}(\mathrm{HC} / \mathrm{HCT})$ and $20-\mu \mathrm{A}$ output current drive 3.3-V V_{CC} (HC only).

While HCMOS can be used in most new designs, TI recommends Advanced High-Speed CMOS (AHC) as a reliable and effortless migration path from the HC family. AHC delivers the same low noise as HC, with half the static power consumption of HC , at a competitive price.

The HC family offers CMOS inputs and outputs, while the HCT family offers TTL inputs with CMOS outputs.

See www.ti.com/sc/logic for the most current data sheets.

DEVICE SELECTION GUIDE

HC

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY					LITERATURE REFERENCE
			MLL	PDIP	SOIC	SSOP	TSSOP	
CD74HC00	14	Quad 2-Input NAND Gates	\checkmark	\checkmark	\checkmark			SCHS116
SN74HC00	14	Quad 2-Input NAND Gates	\checkmark	\checkmark	\checkmark		\checkmark	SCLS181
CD74HC02	14	Quad 2-Input NOR Gates	\checkmark	\checkmark	\checkmark			SCHS125
SN74HC02	14	Quad 2-Input NOR Gates	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCLS076
CD74HC03	14	Quad 2-Input NAND Gates with Open-Drain Outputs	\checkmark	\checkmark	\checkmark			SCHS126
SN74HC03	14	Quad 2-Input NAND Gates with Open-Drain Outputs	\checkmark	\checkmark	\checkmark			SCLS077
CD74HC04	14	Hex Inverters	\checkmark	\checkmark	\checkmark			SCHS117
SN74HC04	14	Hex Inverters	\checkmark	\checkmark	\checkmark		\checkmark	SCLS078
CD74HCU04	14	Hex Unbuffered Inverters	\checkmark	\checkmark	\checkmark			SCHS127
SN74HCU04	14	Hex Unbuffered Inverters	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCLS079
SN74HC05	14	Hex Inverters with Open-Drain Outputs	\checkmark	\checkmark	\checkmark			SCLS080
CD74HC08	14	Quad 2-Input AND Gates	\checkmark	\checkmark	\checkmark			SCHS118
SN74HC08	14	Quad 2-Input AND Gates	\checkmark	\checkmark	\checkmark		\checkmark	SCLS081
CD74HC10	14	Triple 3-Input NAND Gates	\checkmark	\checkmark	\checkmark			SCHS128
SN74HC10	14	Triple 3-Input NAND Gates	\checkmark	\checkmark	\checkmark			SCLS083
CD74HC11	14	Triple 3-Input AND Gates	\checkmark	\checkmark	\checkmark			SCHS273
SN74HC11	14	Triple 3-Input AND Gates	\checkmark	\checkmark	\checkmark			SCLS084
CD74HC14	14	Hex Schmitt-Trigger Inverters	\checkmark	\checkmark	\checkmark			SCHS129
SN74HC14	14	Hex Schmitt-Trigger Inverters	\checkmark	\checkmark	\checkmark		\checkmark	SCLS085
CD74HC20	14	Dual 4-Input NAND Gates	\checkmark	\checkmark	\checkmark			SCHS130
SN74HC20	14	Dual 4-Input NAND Gates	\checkmark	\checkmark	\checkmark			SCLS086
CD74HC21	14	Dual 4-Input AND Gates	\checkmark	\checkmark	\checkmark			SCHS131
SN74HC21	14	Dual 4-Input AND Gates	\checkmark	\checkmark	\checkmark			SCLS087
CD74HC27	14	Triple 3-Input NOR Gates	\checkmark	\checkmark	\checkmark			SCHS132
SN74HC27	14	Triple 3-Input NOR Gates	\checkmark	\checkmark	\checkmark			SCLS088
CD74HC30	14	8-Input NAND Gates	\checkmark	\checkmark	\checkmark		\checkmark	SCHS121
CD74HC32	14	Quad 2-Input OR Gates	\checkmark	\checkmark	\checkmark			SCHS274
SN74HC32	14	Quad 2-Input OR Gates	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCLS200
CD74HC42	16	4-Line BCD-to-10-Line Decimal Decoders	\checkmark	\checkmark	\checkmark			SCHS133
SN74HC42	16	4-Line BCD-to-10-Line Decimal Decoders	\checkmark	\checkmark	\checkmark			SCLS091
CD74HC73	14	Dual J-K Edge-Triggered Flip-Flops with Reset	\checkmark	\checkmark	\checkmark			SCHS134
CD74HC74	14	Dual D-Type Flip-Flops with Set and Reset	\checkmark	\checkmark	\checkmark			SCHS124
SN74HC74	14	Dual D-Type Flip-Flops with Set and Reset	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCLS094
CD74HC75	16	Dual 2-Bit Bistable Transparent Latches	\checkmark	\checkmark	\checkmark		\checkmark	SCHS135
CD74HC85	16	4-Bit Magnitude Comparators	\checkmark	\checkmark	\checkmark		\checkmark	SCHS136

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)	PLCC (plastic leaded chip carrier)
GKE $=96$ pins	FN $=20 / 28 / 44 / 68 / 84$ pins
GKF $=114$ pins	QFP (quad flatpack)
VFBGA (very-thin-profile fine-pitch ball grid array)	RC $=52$ pins (FB only)
GQL $=56$ pins (also includes 48-pin functions)	PH $=80$ pins (FIFO only)
PDIP (plastic dual-in-line package)	PQ $=100 / 132$ pins (FIFO only)
P $=8$ pins	TQFP (plastic thin quad flatpack)
N =14/16/20 pins	PAH $=52$ pins
NT $=24 / 28$ pins	PAG $=64$ pins (FB only)
schedule	PM $=64$ pins
$\boldsymbol{V}=$ Now + = Planned	PN $=80$ pins

SOIC (small-outline integrated circuit) D $=8 / 14 / 16$ pins DW $=16 / 20 / 24 / 28 \mathrm{pins}$
QSOP (quarter-size outline package)
DBQ $=16 / 20 / 24$ pins
SSOP (shrink small-outline package)
DB $=14 / 16 / 20 / 24 / 28 / 30 / 38$ pins
$D B Q=16 / 20 / 24$
$D L=28 / 48 / 56$ pins

TSSOP (thin shrink small-outline package) PW $=8 / 14 / 16 / 20 / 24 / 28$ pins
DGG $=48 / 56 / 64$ pins
TVSOP (thin very small-outline package)
DGV $=14 / 16 / 20 / 24 / 48 / 56$ pins
DBB $=80$ pins
SOT (small-outline transistor)
DBV $=5$ pins
DCK $=5$ pins

See Appendix A for package information on CD54/74HC devices.

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY					LITERATURE REFERENCE
			MIL	PDIP	SOIC	SSOP	TSSOP	
CD74HC86	14	Quad 2-Input Exclusive-OR Gates	\checkmark	\checkmark	\checkmark			SCHS137
SN74HC86	14	Quad 2-Input Exclusive-OR Gates	\checkmark	\checkmark	\checkmark		\checkmark	SCLS100
CD74HC93	14	4-Bit Binary Ripple Counters		\checkmark	\checkmark			SCHS138
CD74HC107	14	Dual Negative-Edge-Triggered J-K Flip-Flops with Reset	\checkmark	\checkmark	\checkmark			SCHS139
CD74HC109	16	Dual Positive-Edge-Triggered J-K Flip Flops with Set and Reset	\checkmark	\checkmark	\checkmark			SCHS140
SN74HC109	16	Dual Positive-Edge-Triggered J-K Flip Flops with Set and Reset	\checkmark	\checkmark	\checkmark			SCLS098
CD74HC112	16	Dual Negative-Edge-Triggered J-K Flip-Flops with Set and Reset	\checkmark	\checkmark	\checkmark			SCHS141
SN74HC112	16	Dual Negative-Edge-Triggered J-K Flip-Flops with Set and Reset	\checkmark	\checkmark	\checkmark			SCLS099
CD74HC123	16	Dual Retriggerable Monostable Multivibrators with Reset	\checkmark	\checkmark	\checkmark			SCHS142
CD74HC125	14	Quad Bus Buffers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS143
SN74HC125	14	Quad Bus Buffers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark		SCLS104
CD74HC126	14	Quad Bus Buffers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS144
SN74HC126	14	Quad Bus Buffers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark		SCLS103
CD74HC132	14	Quad 2-Input NAND Gates with Schmitt-Trigger Inputs	\checkmark	\checkmark	\checkmark			SCHS145
SN74HC132	14	Quad 2-Input NAND Gates with Schmitt-Trigger Inputs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCLS034
CD74HC137	16	3-to-8 Line Decoders/Demultiplexers with Address Latches		\checkmark				SCHS146
CD74HC138	16	3-to-8 Line Inverting Decoders/Demultiplexers	\checkmark	\checkmark	\checkmark			SCHS147
SN74HC138	16	3-to-8 Line Inverting Decoders/Demultiplexers	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCLS107
CD74HC139	16	Dual 2-to-4 Line Decoders/Demultiplexers	\checkmark	\checkmark	\checkmark			SCHS148
SN74HC139	16	Dual 2-to-4 Line Decoders/Demultiplexers	\checkmark	\checkmark	\checkmark		\checkmark	SCLS108
CD74HC147	16	10-to-4 Line Priority Encoders	\checkmark	\checkmark	\checkmark			SCHS149
SN74HC148	16	8-to-3 Line Priority Encoders	\checkmark	\checkmark	\checkmark			SCLS109
CD74HC151	16	1-of-8 Data Selectors/Multiplexers	\checkmark	\checkmark	\checkmark			SCHS150
SN74HC151	16	1-of-8 Data Selectors/Multiplexers	\checkmark	\checkmark	\checkmark			SCLS110
CD74HC153	16	Dual 1-0f-4 Data Selectors/Multiplexers	\checkmark	\checkmark	\checkmark			SCHS151
SN74HC153	16	Dual 1-0f-4 Data Selectors/Multiplexers	\checkmark	\checkmark	\checkmark			SCLS112
CD74HC154	24	4-to-16 Line Decoders/Demultiplexers	\checkmark	\checkmark	\checkmark			SCHS152
CD74HC157	16	Quad 2-to-4 Line Data Selectors/Multiplexers	\checkmark	\checkmark	\checkmark			SCHS153
SN74HC157	16	Quad 2-to-4 Line Data Selectors/Multiplexers	\checkmark	\checkmark	\checkmark			SCLS113
CD74HC158	16	Quad 2-to-4 Line Data Selectors/Multiplexers	\checkmark	\checkmark	\checkmark			SCHS153
SN74HC158	16	Quad 2-to-4 Line Data Selectors/Multiplexers	\checkmark	\checkmark	\checkmark			SCLS296
CD74HC161	16	Synchronous 4-Bit Binary Counters	\checkmark	\checkmark	\checkmark			SCHS154
SN74HC161	16	Synchronous 4-Bit Binary Counters	\checkmark	\checkmark	\checkmark			SCLS297
CD74HC163	16	Synchronous 4-Bit Binary Counters	\checkmark	\checkmark	\checkmark			SCHS154
SN74HC163	16	Synchronous 4-Bit Binary Counters	\checkmark	\checkmark	\checkmark			SCLS298
CD74HC164	14	8-Bit Serial-In, Parallel-Out Shift Registers	\checkmark	\checkmark	\checkmark			SCHS155
SN74HC164	14	8-Bit Serial-In, Parallel-Out Shift Registers	\checkmark	\checkmark	\checkmark			SCLS115
CD74HC165	16	8-Bit Parallel-In, Serial-Out Shift Registers	\checkmark	\checkmark	\checkmark			SCHS156
SN74HC165	16	8-Bit Parallel-In, Serial-Out Shitt Registers	\checkmark	\checkmark	\checkmark		\checkmark	SCLS116
CD74HC166	16	8-Bit Parallel-Load Shift Registers	\checkmark	\checkmark	\checkmark			SCHS157
SN74HC166	16	8-Bit Parallel-Load Shift Registers	\checkmark	\checkmark	\checkmark			SCLS117
CD74HC173	16	Quad D-Type Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS158
CD74HC174	16	Hex D-Type Flip-Flops with Clear	\checkmark	\checkmark	\checkmark			SCHS159
SN74HC174	16	Hex D-Type Flip-Flops with Clear	\checkmark	\checkmark	\checkmark			SCLS119

DEVICE SELECTION GUIDE

HC

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY					LITERATURE REFERENCE
			MIL	PDIP	SOIC	SSOP	TSSOP	
CD74HC175	16	Quad D-Type Flip-Flops with Clear	\checkmark	\checkmark	\checkmark			SCHS160
SN74HC175	16	Quad D-Type Flip-Flops with Clear	\checkmark	\checkmark	\checkmark		\checkmark	SCLS299
CD74HC190	16	Presettable Synchronous 4-Bit Up/Down BCD Decade Counters	\checkmark	\checkmark				SCHS275
CD74HC191	16	Presettable Synchronous 4-Bit Up/Down Binary Counters	\checkmark	\checkmark	\checkmark			SCHS162
SN74HC191	16	Presettable Synchronous 4-Bit Up/Down Binary Counters	\checkmark	\checkmark	\checkmark			SCLS121
CD74HC192	16	BCD Presettable Synchronous 4-Bit Up/Down Decade Counters	\checkmark	\checkmark				SCHS163
CD74HC193	16	Presettable Synchronous 4-Bit Up/Down Binary Counters	\checkmark	\checkmark	\checkmark			SCHS163
SN74HC193	16	Presettable Synchronous 4-Bit Up/Down Binary Counters	\checkmark	\checkmark	\checkmark			SCLS122
CD74HC194	16	4-Bit Bidirectional Universal Shift Registers	\checkmark	\checkmark	\checkmark			SCHS164
CD74HC195	16	4-Bit Parallel Access Shift Registers	\checkmark	\checkmark	\checkmark			SCHS165
CD74HC221	16	Dual Monostable Multivibrators with Schmitt-Trigger Inputs	\checkmark	\checkmark	\checkmark			SCHS166
CD74HC237	16	3-to-8 Line Decoders/Demultiplexers with Address Latches	\checkmark	\checkmark	\checkmark			SCHS146
CD74HC238	16	3-to-8 Line Decoders/Demultiplexers	\checkmark	\checkmark	\checkmark			SCHS147
CD74HC240	20	Octal Buffers/Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS167
SN74HC240	20	Octal Buffers/Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		\checkmark	SCLS128
SN74HC240A	20	Octal Buffers/Drivers with 3-State Outputs		\checkmark			\checkmark	Call
CD74HC241	20	Octal Buffers/Drivers with 3-State Outputs		\checkmark	\checkmark			SCHS167
SN74HC241	20	Octal Buffers/Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCLS300
CD74HC243	14	Quad Bus-Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS168
CD74HC244	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS167
SN74HC244	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCLS130
CD74HC245	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS119
SN74HC245	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCLS131
CD74HC251	16	1-0f-8 Data Selectors/Multiplexers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS169
SN74HC251	16	1-0f-8 Data Selectors/Multiplexers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark		SCLS132
CD74HC253	16	Dual 1-0f-4 Data Selectors/Multiplexers with 3-State Outputs		\checkmark	\checkmark			SCHS170
SN74HC253	16	Dual 1-0f-4 Data Selectors/Multiplexers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark		SCLS133
CD74HC257	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS171
SN74HC257	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs	\checkmark	\checkmark	\checkmark		\checkmark	SCLS224
CD74HC258	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs			\checkmark			SCHS276
SN74HC258	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs		\checkmark	\checkmark			SCLS224
CD74HC259	16	8-Bit Addressable Latches	\checkmark	\checkmark	\checkmark			SCHS173
SN74HC259	16	8-Bit Addressable Latches	\checkmark	\checkmark	\checkmark		\checkmark	SCLS134
SN74HC266	14	Quad 2-Input Exclusive-NOR Gates with Open-Drain Outputs		\checkmark	\checkmark			SCLS135
CD74HC273	20	Octal D-Type Flip-Flops with Clear	\checkmark	\checkmark	\checkmark			SCHS174
SN74HC273	20	Octal D-Type Flip-Flops with Clear	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCLS136
CD74HC280	14	9-Bit Odd/Even Parity Generators/Checkers	\checkmark	\checkmark	\checkmark			SCHS175
CD74HC283	16	9-Bit Binary Full Adders with Fast Carry	\checkmark	\checkmark	\checkmark			SCHS176
CD74HC297	16	Digital Phase-Locked Loops	\checkmark	\checkmark				SCHS177
CD74HC299	20	8-Bit Universal ShittStorage Registers	\checkmark	\checkmark	\checkmark			SCHS178
CD74HC354	20	8-Line to 1-Line Data Selectors/Multiplexers/Registers	\checkmark	\checkmark				SCHS179
CD74HC365	16	Hex Buffers/Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS180
SN74HC365	16	Hex Buffers/Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCLS308
CD74HC366	16	Hex Inverting Buffers/Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS180

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY					LITERATURE REFERENCE
			MIL	PDIP	SOIC	SSOP	TSSOP	
CD74HC367	16	Hex Buffers/Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS181
SN74HC367	16	Hex Buffers/Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCLS309
CD74HC368	16	Hex Inverting Buffers/Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS181
SN74HC368	16	Hex Inverting Buffers/Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCLS310
CD74HC373	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS182
SN74HC373	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCLS140
CD74HC374	20	Octal D-Type Edge-Triggered Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS183
SN74HC374	20	Octal D-Type Edge-Triggered Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCLS141
CD74HC377	20	Octal D-Type Flip-Flops with Enable	\checkmark	\checkmark	\checkmark			SCHS184
SN74HC377	20	Octal D-Type Flip-Flops with Enable	\checkmark	\checkmark	\checkmark			SCLS307
CD74HC390	16	Dual 4-Bit Decade Counters		\checkmark	\checkmark			SCHS185
CD74HC393	14	Dual 4-Bit Binary Counters	\checkmark	\checkmark	\checkmark			SCHS186
SN74HC393	14	Dual 4-Bit Binary Counters	\checkmark	\checkmark	\checkmark	\checkmark		SCLS143
CD74HC423	16	Dual Retriggerable Monostable Multivibrators with Reset		\checkmark	\checkmark			SCHS142
CD74HC533	20	Octal Inverting Transparent Latches with 3-State Outputs	\checkmark	\checkmark				SCHS187
CD74HC534	20	Octal D-Type Inverting Flip-Flops with 3-State Outputs	\checkmark	\checkmark				SCHS188
CD74HC540	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS189
SN74HC540	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCLS007
CD74HC541	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS189
SN74HC541	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCLS305
CD74HC563	20	Octal Inverting Transparent Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS187
SN74HC563	20	Octal Inverting Transparent Latches with 3-State Outputs		\checkmark	\checkmark			SCLS145
CD74HC564	20	Octal D-Type Inverting Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS188
CD74HC573	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS182
SN74HC573A	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark		\checkmark	SCLS147
CD74HC574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS183
SN74HC574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark		\checkmark	SCLS148
SN74HC590A	16	8-Bit Binary Counters with 3-State Output Registers	\checkmark	\checkmark	\checkmark			SCLS039
SN74HC594	16	8 -Bit Shift Registers with Output Registers		\checkmark	\checkmark			SCLS040
SN74HC595	16	8 -Bit Shift Registers with 3-State Output Registers	\checkmark	\checkmark	\checkmark			SCLS041
CD74HC597	16	8 -Bit Shift Registers with Input Latches	\checkmark	\checkmark	\checkmark			SCHS191
SN74HC623	20	Octal Bus Transceivers with 3-State Outputs		\checkmark	\checkmark			SCLS149
CD74HC640	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS192
SN74HC640	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCLS303
SN74HC645	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCLS304
CD74HC646	24	Octal Registered Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS193
SN74HC646	24	Octal Registered Bus Transceivers with 3-State Outputs		\checkmark	\checkmark			SCLS150
CD74HC652	24	Octal Bus Transceivers and Registers with 3-State Outputs		\checkmark				SCHS194
SN74HC652	24	Octal Bus Transceivers and Registers with 3-State Outputs		\checkmark	\checkmark			SCLS151
CD74HC670	16	4-by-4 Register Files with 3-State Outputs	\checkmark	\checkmark	\checkmark			SCHS195
SN74HC682	20	8-Bit Magnitude Comparators		\checkmark	\checkmark			SCLS018
SN74HC684	20	8-Bit Magnitude Comparators		\checkmark	\checkmark			SCLS340
CD74HC688	20	8-Bit Magnitude Comparators	\checkmark	\checkmark	\checkmark		\checkmark	SCHS196
SN74HC688	20	8-Bit Magnitude Comparators	\checkmark	\checkmark	\checkmark		\checkmark	SCLS010

DEVICE SELECTION GUIDE

HC

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY					LITERATURE REFERENCE
			MLL	PDIP	SOIC	SSOP	TSSOP	
CD74HC4002	14	Dual 4-Input NOR Gates	\checkmark	\checkmark	\checkmark		\checkmark	SCHS197
CD74HC4015	16	Dual 4-Stage Static Shift Registers	\checkmark	\checkmark	\checkmark			SCHS198
CD74HC4016	14	Quad Bilateral Switches		\checkmark	\checkmark			SCHS199
CD74HC4017	16	Decade Counters/Dividers with 1-of-10 Decoded Outputs	\checkmark	\checkmark	\checkmark		\checkmark	SCHS200
CD74HC4020	16	12-Stage Ripple-Carry Binary Counters/Dividers	\checkmark	\checkmark	\checkmark			SCHS201
SN74HC4020	16	12-Stage Ripple-Carry Binary Counters/Dividers	\checkmark	\checkmark	\checkmark			SCLS158
CD74HC4024	14	7-Stage Ripple-Carry Binary Counters/Dividers	\checkmark	\checkmark	\checkmark		\checkmark	SCHS202
CD74HC4040	16	12-Stage Ripple-Carry Binary Counters/Dividers	\checkmark	\checkmark	\checkmark			SCHS203
SN74HC4040	16	12-Stage Ripple-Carry Binary Counters/Dividers	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCLS160
CD74HC4046A	16	Micropower Phase-Locked Loops with VCO	\checkmark	\checkmark	\checkmark		\checkmark	SCHS204
CD74HC4049	16	Hex Buffers/Converters	\checkmark	\checkmark	\checkmark		\checkmark	SCHS205
CD74HC4050	16	Hex Buffers/Converters	\checkmark	\checkmark	\checkmark		\checkmark	SCHS205
CD74HC4051	16	8-Channel Analog Multiplexers/Demultiplexers with Logic Level Conversion	\checkmark	\checkmark	\checkmark		\checkmark	SCHS122
CD74HC4052	16	Dual 4-Channel Analog Multiplexers/Demultiplexers with Logic Level Conversion	\checkmark	\checkmark	\checkmark			SCHS122
CD74HC4053	16	Triple 2-Channel Analog Multiplexers/Demultiplexers with Logic Level Conversion	\checkmark	\checkmark	\checkmark		\checkmark	SCHS122
CD74HC4059	24	Programmable Divide-by-N Counters	\checkmark	\checkmark	\checkmark			SCHS206
CD74HC4060	16	14-Stage Binary-Ripple Counters/Dividers and Oscillators	\checkmark	\checkmark	\checkmark			SCHS207
SN74HC4060	16	14-Stage Binary-Ripple Counters/Dividers and Oscillators		\checkmark	\checkmark			SCLS161
CD74HC4066	14	Quad Bilateral Switches	\checkmark	\checkmark	\checkmark			SCHS208
SN74HC4066	14	Quad Bilateral Switches		\checkmark	\checkmark	\checkmark	\checkmark	SCLS325
CD74HC4067	24	Single 16-Channel Analog Multiplexers/Demultiplexers	\checkmark	\checkmark	\checkmark	\checkmark		SCHS209
CD74HC4075	14	Triple 3-Input OR Gates	\checkmark	\checkmark	\checkmark		\checkmark	SCHS210
CD74HC4094	16	8-Stage Shift-and-Store Bus Registers	\checkmark	\checkmark	\checkmark		\checkmark	SCHS211
CD74HC4316	16	Quad Analog Switches with Level Translation	\checkmark	\checkmark	\checkmark		\checkmark	SCHS212
CD74HC4351	20	Analog 1-of-8 Multiplexers/Demultiplexers with Latch	\checkmark	\checkmark	\checkmark			SCHS213
CD74HC4352	20	Analog Dual 1-0f-4 Multiplexers/Demultiplexers with Latch	\checkmark	\checkmark				SCHS213
CD74HC4511	16	BCD to 7-Segment Latch Decoder Drivers	\checkmark	\checkmark	\checkmark		\checkmark	SCHS214
CD74HC4514	24	4-Bit Latches/4-to-16 Line Decoders	\checkmark	\checkmark	\checkmark			SCHS215
CD74HC4515	24	4-Bit Latches/4-to-16 Line Decoders	\checkmark	\checkmark	\checkmark			SCHS215
CD74HC4518	16	Dual BCD Up Counters		\checkmark				SCHS216
CD74HC4520	16	Dual Binary Up Counters	\checkmark	\checkmark	\checkmark			SCHS216
CD74HC4538	16	Dual Retriggerable Precision Monostable Multivibrators	\checkmark	\checkmark	\checkmark		\checkmark	SCHS123
CD74HC4543	16	BCD to 7-Segment Latches/Decoders/Drivers for Liquid-Crystal Displays		\checkmark				SCHS217
SN74HC7001	14	Quad 2-Input AND Gates with Schmitt-Trigger Inputs		\checkmark	\checkmark			SCLS035
SN74HC7002	14	Quad 2-Input NOR Gates with Schmitt-Trigger Inputs		\checkmark	\checkmark			SCLS033
SN74HC7032	14	Quad 2-Input OR Gates with Schmitt-Trigger Inputs		\checkmark	\checkmark			SCLS036
CD74HC7046A	16	Phase-Locked Loops with VCO and Lock Detector		\checkmark	\checkmark			SCHS218
CD74HC7266	14	Quad 2-Input Exclusive NOR Gates	\checkmark	\checkmark	\checkmark			SCHS219
CD74HC40103	16	8-Bit Binary Presettable Synchronous Down Counters	\checkmark	\checkmark	\checkmark			SCHS221

DEVICE SELECTION GUIDE

HCT

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY						LITERATURE REFERENCE
			MIL	PDIP	SOIC	SSOP	TSSOP	TVSOP	
CD74HCT132	14	Quad 2-Input NAND Gates with Schmitt-Trigger Inputs	\checkmark	\checkmark	\checkmark				SCHS145
CD74HCT137	16	3-to-8 Line Decoders/Demultiplexers with Address Latches		\checkmark	\checkmark				SCHS146
CD74HCT138	16	3-to-8 Line Inverting Decoders/Demultiplexers	\checkmark	\checkmark	\checkmark				SCHS147
SN74HCT138	16	3-to-8 Line Inverting Decoders/Demultiplexers	\checkmark	\checkmark	\checkmark		\checkmark		SCLS171
CD74HCT139	16	Dual 2-to-4 Line Decoders/Demultiplexers	\checkmark	\checkmark	\checkmark				SCHS148
SN74HCT139	16	Dual 2-to-4 Line Decoders/Demultiplexers		\checkmark	\checkmark	\checkmark	\checkmark		SCLS066
CD74HCT147	16	10-to-4 Line Priority Encoders		\checkmark					SCHS149
CD74HCT151	16	1-0f-8 Data Selectors/Multiplexers	\checkmark	\checkmark	\checkmark				SCHS150
CD74HCT153	16	Dual 1-0f-4 Data Selectors/Multiplexers	\checkmark	\checkmark	\checkmark				SCHS151
CD74HCT154	24	4-to-16 Line Decoders/Demultiplexers	\checkmark	\checkmark	\checkmark				SCHS152
CD74HCT157	16	Quad 2-to-4 Line Data Selectors/Multiplexers	\checkmark	\checkmark	\checkmark				SCHS153
SN74HCT157	16	Quad 2-to-4 Line Data Selectors/Multiplexers		\checkmark	\checkmark				SCLS071
CD74HCT158	16	Quad 2-to-4 Line Data Selectors/Multiplexers	\checkmark	\checkmark					SCHS153
CD74HCT161	16	Synchronous 4-Bit Binary Counters	\checkmark	\checkmark	\checkmark				SCHS154
CD74HCT163	16	Synchronous 4-Bit Binary Counters	\checkmark	\checkmark	\checkmark				SCHS154
CD74HCT164	14	8-Bit Serial-In, Parallel-Out Shitt Registers	\checkmark	\checkmark	\checkmark				SCHS155
CD74HCT165	16	8-Bit Parallel-In, Serial-Out Shift Registers	\checkmark	\checkmark	\checkmark				SCHS156
CD74HCT166	16	8-Bit Parallel-Load Shift Registers	\checkmark	\checkmark	\checkmark				SCHS157
CD74HCT173	16	Quad D-Type Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark				SCHS158
CD74HCT174	16	Hex D-Type Flip-Flops with Clear	\checkmark	\checkmark	\checkmark				SCHS159
CD74HCT175	16	Quad D-Type Flip-Flops with Clear	\checkmark	\checkmark	\checkmark				SCHS160
CD74HCT191	16	Presettable Synchronous 4-Bit Up/Down Binary Counters	\checkmark	\checkmark	\checkmark				SCHS162
CD74HCT193	16	Presettable Synchronous 4-Bit Up/Down Binary Counters	\checkmark	\checkmark					SCHS163
CD74HCT194	16	4-Bit Bidirectional Universal Shift Registers		\checkmark					SCHS164
CD74HCT221	16	Dual Monostable Multivibrators with Schmitt-Trigger Inputs		\checkmark	\checkmark				SCHS166
CD74HCT237	16	3-to-8 Line Decoders/Demultiplexers with Address Latches		\checkmark					SCHS146
CD74HCT238	16	3-to-8 Line Decoders/Demultiplexers	\checkmark	\checkmark	\checkmark				SCHS147
CD74HCT240	20	Octal Buffers/Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark				SCHS167
SN74HCT240	20	Octal Buffers/Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		\checkmark		SCLS174
CD74HCT241	20	Octal Buffers/Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark				SCHS167
CD74HCT243	14	Quad Bus-Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark				SCHS168
CD74HCT244	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark				SCHS167
SN74HCT244	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		SCLS175
CD74HCT245	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark				SCHS119
SN74HCT245	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		SCLS020
CD74HCT251	16	1-0f-8 Data Selectors/Multiplexers with 3-State Outputs	\checkmark	\checkmark	\checkmark				SCHS169
CD74HCT253	16	Dual 1-of-4 Data Selectors/Multiplexers with 3-State Outputs		\checkmark	\checkmark				SCHS170
CD74HCT257	16	Quad 1-0f-2 Data Selectors/Multiplexers with 3-State Outputs	\checkmark	\checkmark	\checkmark				SCHS171
SN74HCT257	16	Quad 1-0f-2 Data Selectors/Multiplexers with 3-State Outputs		\checkmark	\checkmark				SCLS072
CD74HCT258	16	Quad 1-0f-2 Data Selectors/Multiplexers with 3-State Outputs	\checkmark	\checkmark					SCHS172
CD74HCT259	16	8-Bit Addressable Latches	\checkmark	\checkmark	\checkmark				SCHS173
CD74HCT273	20	Octal D-Type Flip-Flops with Clear	\checkmark	\checkmark	\checkmark				SCHS174
SN74HCT273	20	Octal D-Type Flip-Flops with Clear		\checkmark	\checkmark	\checkmark	\checkmark		SCLS068
CD74HCT280	14	9-Bit Odd/Even Parity Generators/Checkers	\checkmark	\checkmark					SCHS175

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY						LITERATURE REFERENCE
			MIL	PDIP	SOIC	SSOP	TSSOP	TVSOP	
CD74HCT283	16	9-Bit Binary Full Adders with Fast Carry	\checkmark	\checkmark	\checkmark				SCHS176
CD74HCT297	16	Digital Phase-Locked Loops		\checkmark					SCHS177
CD74HCT299	20	8-Bit Universal Shitt/Storage Registers	\checkmark	\checkmark	\checkmark				SCHS178
CD74HCT354	20	8-Line to 1-Line Data Selectors/Multiplexers/Registers		\checkmark					SCHS179
CD74HCT356	20	8-Line to 1-Line Data Selectors/Multiplexers/Registers		\checkmark	\checkmark				SCHS277
CD74HCT365	16	Hex Buffers/Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark				SCHS180
CD74HCT367	16	Hex Buffers/Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark				SCHS181
CD74HCT368	16	Hex Inverting Buffers/Line Drivers with 3-State Outputs		\checkmark	\checkmark				SCHS181
CD74HCT373	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark				SCHS182
SN74HCT373	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark		\checkmark		SCLS009
CD74HCT374	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark				SCHS183
SN74HCT374	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark			SCLS005
CD74HCT377	20	Octal D-Type Flip-Flops with Enable	\checkmark	\checkmark	\checkmark				SCHS184
SN74HCT377	20	Octal D-Type Flip-Flops with Enable		\checkmark	\checkmark				SCLS067
CD74HCT390	16	Dual 4-Bit Decade Counters	\checkmark	\checkmark	\checkmark				SCHS185
CD74HCT393	14	Dual 4-Bit Binary Counters	\checkmark	\checkmark	\checkmark				SCHS186
CD74HCT423	16	Dual Retriggerable Monostable Multivibrators with Reset	\checkmark	\checkmark	\checkmark				SCHS142
CD74HCT533	20	Octal Inverting Transparent Latches with 3-State Outputs	\checkmark	\checkmark					SCHS187
CD74HCT534	20	Octal Inverting D-Type Flip-Flops with 3-State Outputs	\checkmark	\checkmark					SCHS188
CD74HCT540	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark				SCHS189
SN74HCT540	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs		\checkmark	\checkmark				SCLS008
CD74HCT541	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark				SCHS189
SN74HCT541	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark			SCLS306
CD74HCT563	20	Octal Inverting Transparent Latches with 3-State Outputs		\checkmark	\checkmark				SCHS187
CD74HCT564	20	Octal Inverting D-Type Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark				SCHS188
CD74HCT573	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark				SCHS182
SN74HCT573	20	Octal Transparent D-Type Latches with 3-State Outputs		\checkmark	\checkmark				SCLS176
CD74HCT574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark				SCHS183
SN74HCT574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs		\checkmark	\checkmark		\checkmark		SCLS177
CD74HCT597	16	8-Bit Shift Registers with Input Latches		\checkmark	\checkmark				SCHS191
SN74HCT623	20	Octal Bus Transceivers with 3-State Outputs		\checkmark	\checkmark				SCLS016
CD74HCT640	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark				SCHS192
SN74HCT645	20	Octal Bus Transceivers with 3-State Outputs		\checkmark	\checkmark				SCLS019
CD74HCT646	24	Octal Registered Bus Transceivers with 3-State Outputs			\checkmark				SCHS278
SN74HCT646	24	Octal Registered Bus Transceivers with 3-State Outputs		\checkmark	\checkmark				SCLS178
CD74HCT652	24	Octal Bus Transceivers and Registers with 3-State Outputs			\checkmark				SCHS194
SN74HCT652	24	Octal Bus Transceivers and Registers with 3-State Outputs		\checkmark	\checkmark				SCLS179
CD74HCT670	16	4-by-4 Register Files with 3-State Outputs		\checkmark	\checkmark				SCHS195
CD74HCT688	20	8-Bit Magnitude Comparators	\checkmark	\checkmark	\checkmark				SCHS196
CD74HCT4020	16	12-Stage Ripple-Carry Binary Counters/Dividers	\checkmark	\checkmark	\checkmark				SCHS201
CD74HCT4024	14	7-Stage Ripple-Carry Binary Counters/Dividers	\checkmark		\checkmark				SCHS202
CD74HCT4040	16	12-Stage Ripple-Carry Binary Counters/Dividers	\checkmark	\checkmark	\checkmark				SCHS203
CD74HCT4046A	16	Micropower Phase-Locked Loops with VCO	\checkmark	\checkmark	\checkmark				SCHS204
CD74HCT4051	16	8-Channel Analog Multiplexers/Demultiplexers with Logic Level Conversion	\checkmark	\checkmark	\checkmark				SCHS122

DEVICE SELECTION GUIDE

HCT

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY						LITERATURE REFERENCE
			MLL	PDIP	solc	Ssop	TSSOP	TVSOP	
CD74HCT4052	16	Dual 4-Channel Analog Multiplexers/Demultiplexers with Logic Level Conversion		\checkmark	\checkmark				SCHS122
CD74HCT4053	16	Triple 2-Channel Analog Multiplexers/Demultiplexers with Logic Level Conversion		\checkmark	\checkmark		\checkmark		SCHS122
CD74HCT4060	16	14-Stage Binary-Ripple Counters/Dividers and Oscillators	\checkmark	\checkmark	\checkmark				SCHS207
CD74HCT4066	14	Quad Bilateral Switches		\checkmark	\checkmark				SCHS208
CD74HCT4067	24	Single 16-Channel Analog Multiplexers/Demultiplexers			\checkmark				SCHS209
CD74HCT4075	14	Triple 3-Input OR Gates	\checkmark	\checkmark					SCHS210
CD74HCT4094	16	8-Stage Shift-and-Store Bus Registers		\checkmark	\checkmark				SCHS211
CD74HCT4316	16	Quad Analog Switches with Level Translation		\checkmark	\checkmark				SCHS212
CD74HCT4351	20	Analog 1-of-8 Multiplexers/Demultiplexers with Latch		\checkmark					SCHS213
CD74HCT4511	16	BCD to 7-Segment Latch Decoder Drivers		\checkmark					SCHS279
CD74HCT4514	24	4-Bit Latches/4-to-16 Line Decoders		\checkmark					SCHS280
CD74HCT4515	24	4-Bit Latches/4-to-16 Line Decoders		\checkmark					Call
CD74HCT4520	16	Dual Binary Up Counters		\checkmark	\checkmark				SCHS216
CD74HCT4538	16	Dual Retriggerable Precision Monostable Multivibrators	\checkmark	\checkmark	\checkmark				SCHS123
CD74HCT4543	16	BCD to 7-Segment Latches/Decoders/Drivers for Liquid-Crystal Displays		\checkmark					SCHS281
CD74HCT7046A	16	Phase-Locked Loops with VCO and Lock Detector		\checkmark	\checkmark				SCHS218
CD74HCT40103	16	8-Bit Binary Presettable Synchronous Down Counters		\checkmark	\checkmark				SCHS221

IEEE Std 1149.1 (JTAG) Boundary-Scan Logic

The IEEE Std 1149.1 (JTAG) boundary-scan logic family of octal, Widebus™, and scan-support functions incorporates circuitry that allows these devices and the electronic systems in which they are used to be tested without reliance on traditional probing techniques.

Bus-interface logic devices are available in BCT, ABT, and LVT technologies in 8-, 18-, and 20-bit options of the standard buffers, latches, and transceivers. The universal bus transceiver (UBT ${ }^{\text {m }}$), which can functionally replace $50+$ standard bus-interface devices, is featured at Widebus widths (18 bits and 20 bits). Package options for these devices include plastic dual in-line package (PDIP), small-outline integrated circuit (SOIC), shrink small-outline package (SSOP), thin shrink small-outline package (TSSOP), and thin quad flatpack (TQFP). The scan-support functions include devices for controlling the test bus, performing at-speed functional testing, and partitioning the scan path into smaller, more manageable segments.

Over 40 devices, composed of a wide selection of BCT and ABT octals, ABT and LVT Widebus, and scan-support functions, are available. Bus-hold and series-damping-resistor features also are available.

See www.ti.com/sc/jtag for the most current data sheets.

\dagger " H " indicates bus hold

TI IEEE Std 1149.1-Compliant Device Family and Function Cross-Reference
Octal Bus-Interface Logic With JTAG Test Access Port (TAP)

FUNCTION	PACKAGE	PINS	BITS	ABT	BH	\mathbf{R}	BCT	BH	R
240	DW/NT	24	8				SN74BCT8240A	N	N
244	DW/NT	24	8				SN74BCT8244A	N	N
245	DW	24	8	SN74ABT8245	N	N	SN74BCT8245A	N	N
	NT	24	8				SN74BCT8245A	N	N
373	DW/NT	24	8				SN74BCT8373A	N	N
374	DW/NT	24	8				SN74BCT8374A	N	N
543	DL/DW	28	8	SN74ABT8543	N	N			
646	DL/DW	28	8	SN74ABT8646	N	N			
652	DL/DW	28	8	SN74ABT8652	N	N			
952	DL/DW	28	8	SN74ABT8952	N	N			

TQFP Bus-Interface Logic With JTAG TAP

FUNCTION	PACKAGE	PINS	BITS	ABT	BH	R	LVT	BH	R
16646	PM	64	2×9	SN74ABTH18646	Y	Y	SN74LVTH18646A	Y	Y
16652	PM	64	2×9	SN74ABTH18652	Y	Y	SN74LVTH18652A	Y	Y
16501	PM	64	2×9	SN74ABTH18502	Y	Y	SN74LVTH18502A	Y	Y
16601	PM	64	20	SN74ABTH18504	Y	Y	SN74LVTH18504A	Y	Y

Widebus ${ }^{\text {TM }}$ Bus-Interface Logic With JTAG TAP

FUNCTION	PACKAGE	PINS	BITS	ABT	BH	R	LVT	BH	R
16245	DGG/DL	56	2×9	SN74ABT18245A	N	N			
16640	DGG/DL	56	2×9	SN74ABT18640	N	N			
16501	DGG	64	2×9				SN74LVTH18512	B	Y
16601	DGG	64	20				SN74LVTH18514	Y	P

JTAG Scan-Support Products

FUNCTION	PACKAGE	PINS	ABT	BH	R	ACT	BH	R	LVT	BH	R
8980	DW	24	Embedded Test Bus Controller						SN74LVT8980	N	N
8990	FN	44				SN74ACT8990	N	N	Test Bus Controller		
8996	DW/PW	24	SN74ABT8996	N	N	10-Bit Addressable Scan Ports			SN74LVT8996	N	N
8997	DW	28				SN74ACT8997	N	N	Scan Path	inker	

$\mathrm{B}=$ both non-bus-hold and bus-hold version
$\mathrm{BH}=$ bus hold
$\mathrm{N}=\mathrm{no}$
$\mathrm{P}=$ preview
R = series-damping-resistor option
$\mathrm{Y}=\mathrm{yes}$

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY							LITERATURE REFERENCE
			MLL	PDIP	PLCC	SOIC	SSOP	TQFP	TSSOP	
SN74BCT8240A	24	Scan Test Devices with Octal Buffers	\checkmark	\checkmark		\checkmark				SCBS067
SN74BCT8244A	24	Scan Test Devices with Octal Buffers	\checkmark	\checkmark		\checkmark				SCBS042
SN74ABT8245	24	Scan Test Devices with Octal Transceivers	\checkmark			\checkmark				SCBS124
SN74BCT8245A	24	Scan Test Devices with Octal Transceivers	\checkmark	\checkmark		\checkmark				SCBS043
SN74BCT8373A	24	Scan Test Devices with Octal D-Type Latches	\checkmark	\checkmark		\checkmark				SCBS044
SN74BCT8374A	24	Scan Test Devices with Octal Edge-Triggered D-Type Flip-Flops	\checkmark	\checkmark		\checkmark				SCBS045
SN74ABT8543	28	Scan Test Devices with Octal Registered Bus Transceivers	\checkmark			\checkmark	\checkmark			SCBS120
SN74ABT8646	28	Scan Test Devices with Octal Bus Transceivers and Registers	\checkmark			\checkmark	\checkmark			SCBS123
SN74ABT8652	28	Scan Test Devices with Octal Bus Transceivers and Registers	\checkmark			\checkmark	\checkmark			SCBS122
SN74ABT8952	28	Scan Test Devices with Octal Registered Bus Transceivers				\checkmark	\checkmark			SCBS121
SN74LVT8980	24	Scan Test Bus Controllers with 8-Bit Generic Host Interfaces	\checkmark			\checkmark				SCBS676
SN74ACT8990	44	Test Bus Controllers IEEE Std 1149.1 (JTAG) TAP Masters with 16 -Bit Generic Host Interfaces	\checkmark		\checkmark					SCBS190
SN74ABT8996	24	10-Bit Addressable Scan Ports Multidrop-Addressable IEEE Std 1149.1 (JTAG) TAP Transceivers	\checkmark			\checkmark			\checkmark	SCBS489
SN74LVT8996	24	10-Bit Addressable Scan Ports Multidrop-Addressable IEEE Std 1149.1 (JTAG) TAP Transceivers				\checkmark			\checkmark	SCBS686
SN74ACT8997	28	Scan Path Linkers with 4-Bit Identification Buses Scan-Controlled IEEE Std 1149.1 (JTAG) TAP Concatenators	\checkmark			\checkmark				SCBS157
SN74ABT18245A	56	Scan Test Devices with 18-Bit Bus Transceivers	\checkmark				\checkmark		\checkmark	SCBS110
SN74ABT18502	64	Scan Test Devices with 18-Bit Universal Bus Transceivers	\checkmark					\checkmark		SCBS109
SN74ABTH18502A	64	Scan Test Devices with 18-Bit Universal Bus Transceivers	\checkmark					\checkmark		SCBS164
SN74LVTH18502A	64	Scan Test Devices with 18-Bit Universal Bus Transceivers	\checkmark					\checkmark		SCBS668
SN74ABT18504	64	Scan Test Devices with 20-Bit Universal Bus Transceivers	\checkmark					\checkmark		SCBS108
SN74ABTH18504A	64	Scan Test Devices with 20-Bit Universal Bus Transceivers						\checkmark		SCBS165
SN74LVTH18504A	64	Scan Test Devices with 20-Bit Universal Bus Transceivers						\checkmark		SCBS667
SN74LVT18512	64	Scan Test Devices with 18-Bit Universal Bus Transceivers							\checkmark	SCBS711
SN74LVTH18512	64	Scan Test Devices with 18-Bit Universal Bus Transceivers							\checkmark	SCBS671
SN74LVTH18514	64	Scan Test Devices with 20-Bit Universal Bus Transceivers							\checkmark	SCBS670
SN74ABT18640	56	Scan Test Devices with 18-Bit Inverting Bus Transceivers					\checkmark		\checkmark	SCBS267
SN74ABT18646	64	Scan Test Devices with 18-Bit Transceivers and Registers	\checkmark					\checkmark		SCBS131
SN74ABTH18646A	64	Scan Test Devices with 18-Bit Transceivers and Registers	\checkmark					\checkmark		SCBS166
SN74LVTH18646A	64	Scan Test Devices with 18-Bit Transceivers and Registers	\checkmark					\checkmark		SCBS311
SN74ABT18652	64	Scan Test Devices with 18-Bit Transceivers and Registers						\checkmark		SCBS132
SN74ABTH18652A	64	Scan Test Devices with 18-Bit Transceivers and Registers						\checkmark		SCBS167

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array) GKE $=96$ pins	PLCC (plastic leaded chip carrier) FN $=20 / 28 / 44 / 68 / 84$ pins	SOIC (small-outline integrated circuit) D $=8 / 14 / 16$ pins	TSSOP (thin shrink small-outline package) $\text { PW }=8 / 14 / 16 / 20 / 24 / 28 \text { pins }$
GKF $=114$ pins	QFP (quad flatpack)	DW $=16 / 20 / 24 / 28$ pins	DGG $=48 / 56 / 64$ pins
VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)	$\begin{aligned} & \text { RC }=52 \text { pins (FB only) } \\ & \text { PH }=80 \text { pins (FIFO only) } \end{aligned}$	QSOP (quarter-size outline package) $\mathrm{DBQ}=16 / 20 / 24 \text { pins }$	TVSOP (thin very small-outline package) DGV $=14 / 16 / 20 / 24 / 48 / 56$ pins
PDIP (plastic dual-in-line package)	PQ = 100/132 pins (FIFO only)	SSOP (shrink small-outline package)	DBB $=80$ pins
$\mathrm{P}=8 \mathrm{pins}$	TQFP (plastic thin quad flatpack)	DB $=14 / 16 / 20 / 24 / 28 / 30 / 38$ pins	SOT (small-outline transistor)
$N=14 / 16 / 20$ pins	PAH $=52$ pins	DBQ $=16 / 20 / 24$	DBV $=5$ pins
NT $=24 / 28$ pins	$\begin{array}{ll} \text { PAG } & =64 \text { pins (FB only) } \\ \text { PM } & =64 \text { pins } \end{array}$	DL $=28 / 48 / 56$ pins	DCK $=5$ pins
schedule	PN $=80$ pins		
$\boldsymbol{\checkmark}$ = Now $\boldsymbol{+}$ = Planned	$\begin{aligned} & \text { PCA, PZ }=100 \text { pins (FB only) } \\ & \text { PCB }=120 \text { pins (FIFO only) } \end{aligned}$		

DEVICE SELECTION GUIDE
IEEE STD 1149.1 (JTAG) BOUNDARY-SCAN LOGIC

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY							LITERATURE REFERENCE
			MIL	PDIP	PLCC	SOIC	SSOP	TQFP	TSSOP	
SN74LVTH18652A	64	Scan Test Devices with 18-Bit Transceivers and Registers						\checkmark		SCBS312
SN74ABTH182502A	64	Scan Test Devices with 18-Bit Universal Bus Transceivers						\checkmark		SCBS164
SN74LVTH182502A	64	Scan Test Devices with 18-Bit Universal Bus Transceivers						\checkmark		SCBS668
SN74ABTH182504A	64	Scan Test Devices with 20-Bit Universal Bus Transceivers						\checkmark		SCBS165
SN74LVTH182504A	64	Scan Test Devices with 20-Bit Universal Bus Transceivers						\checkmark		SCBS667
SN74LVTH182512	64	Scan Test Devices with 18-Bit Universal Bus Transceivers							\checkmark	SCBS671
SN74ABTH182646A	64	Scan Test Devices with 18-Bit Transceivers and Registers						\checkmark		SCBS166
SN74LVTH182646A	64	Scan Test Devices with 18-Bit Transceivers and Registers						\checkmark		SCBS311
SN74ABTH182652A	64	Scan Test Devices with 18-Bit Transceivers and Registers						\checkmark		SCBS167
SN74LVTH182652A	64	Scan Test Devices with 18-Bit Transceivers and Registers						\checkmark		SCBS312

Little Logic

Tl's little-logic products are sized to meet smaller packaging needs in today's products. Designers needing to simplify board layout and routing can use little logic to aid in their design and cost-reduction efforts. With continued miniaturization of portable electronics, this product is the ideal choice for applications in which board area is limited.

Additionally, little-logic devices can be used to minimize the impact of ASIC design-error fixes by limiting the need for board redesign, enabling faster time to market and reduced costs.

Little-logic products are offered in the following technology families:

- LVC (low-voltage CMOS technology logic) with $1.65-\mathrm{V}$ to $5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation and $\mathrm{I}_{\text {off }}$ circuitry
- AHC/AHCT (advanced high-speed CMOS logic) with $2-\mathrm{V}$ to $5.5-\mathrm{V}$ operation in CMOS- and TTL-compatible versions
- CBT/CBTD (crossbar technology logic) with $4.5-\mathrm{V}$ to $5.5-\mathrm{V}$ operation with output voltage translation with integrated level-shifting diode
- CBTLV (1G125)

Single gates are available in SOT 23-5 and SC-70 packages. Dual gates will be offered in SM-8 and US-8 packages.

See www.ti.com/sc/logic for the most current data sheets.

DEVICE SELECTION GUIDE

LITTLE LOGIC

DEVICE	No. PINS	DESCRIPTION	AVAILABILITY SOT	LITERATURE REFERENCE
SN74AHC1G00	5	Single 2-Input NAND Gates	\checkmark	SCLS313
SN74AHCT1G00	5	Single 2-Input NAND Gates	\checkmark	SCLS316
SN74LVC1G00	5	Single 2-Input NAND Gates	$+$	SCES212
SN74AHC1G02	5	Single-2-Input NOR Gates	\checkmark	SCLS342
SN74AHCT1G02	5	Single-2-Input NOR Gates	\checkmark	SCLS341
SN74LVC1G02	5	Single-2-Input NOR Gates	$+$	SCES213
SN74AHC1G04	5	Single Inverters	\checkmark	SCLS318
SN74AHC1GU04	5	Single Inverters	\checkmark	SCLS343
SN74LVC1G04	5	Single Inverters	$+$	SCES214
SN74LVC1GU04	5	Single Inverters	\checkmark	SCES215
SN74LVC1G06	5	Single Inverting Buffers/Drivers with Open-Drain Outputs	\checkmark	SCES295
SN74LVC1G07	5	Single Buffers/Drivers with Open-Drain Outputs	\checkmark	SCES296
SN74AHC1G08	5	Single 2-Input AND Gates	\checkmark	SCLS314
SN74AHCT1G08	5	Single 2-Input AND Gates	\checkmark	SCLS315
SN74LVC1G08	5	Single 2-Input AND Gates	$+$	SCES217
SN74AHC1G14	5	Single Schmitt-Trigger Inverters	\checkmark	SCLS321
SN74AHCT1G14	5	Single Schmitt-Trigger Inverters	\checkmark	SCLS322
SN74LVC1G14	5	Single Schmitt-Trigger Inverters	$+$	SCES218
SN74AHC1G32	5	Single 2-Input OR Gates	\checkmark	SCLS317
SN74AHCT1G32	5	Single 2-Input OR Gates	\checkmark	SCLS320
SN74LVC1G32A	5	Single 2-Input OR Gates	$+$	SCES135
SN74CBT1G66	5	Single FET Bus Switches	+	SCDS110
SN74LVC1G66	5	Single Bilateral Switches	$+$	SCES323
SN74LVC1G79	5	Single Edge-Triggered D-Type Flip-Flops	$+$	SCES220
SN74LVC1G80	5	Single Edge-Triggered D-Type Flip-Flops	$+$	SCES221
SN74AHC1G86	5	Single 2-Input Exclusive-OR Gates	\checkmark	SCLS323
SN74AHCT1G86	5	Single 2-Input Exclusive-OR Gates	\checkmark	SCLS324
SN74LVC1G86	5	Single 2-Input Exclusive-OR Gates	$+$	SCES222
SN74AHC1G125	5	Single Bus Buffers with 3-State Outputs	\checkmark	SCLS377
SN74AHCT1G125	5	Single Bus Buffers with 3-State Outputs	\checkmark	SCLS378
SN74CBT1G125	5	Single FET Bus Switches	\checkmark	SCDS046
SN74CBTD1G125	5	Single FET Bus Switches with Level Shifting	\checkmark	SCDS063
SN74CBTLV1G125	5	Single FET Bus Switches	\checkmark	SCDS057
SN74LVC1G125	5	Single Bus Buffers with 3-State Outputs	$+$	SCES223

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array) GKE $=96$ pins	PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins	SOIC (small-outline integrated circuit) D $=8 / 14 / 16$ pins	TSSOP (thin shrink small-outline package PW $=8 / 14 / 16 / 20 / 24 / 28$ pins
GKF $=114$ pins	QFP (quad flatpack)	DW $=16 / 20 / 24 / 28$ pins	DGG $=48 / 56 / 64$ pins
VFBGA (very-thin-profile fine-pitch ball grid array) GQL $=56$ pins (also includes 48 -pin functions)	RC $=52$ pins (FB only) PH $=80$ pins (FIFO only)	QSOP (quarter-size outline package) $\text { DBQ }=16 / 20 / 24 \text { pins }$	TVSOP (thin very small-outline package) DGV $=14 / 16 / 20 / 244 / 48 / 56$ pins
PDIP (plastic dual-in-line package)	PQ $=100 / 132$ pins (FIFO only)	SSOP (shrink small-outline package)	DBB $=80$ pins
$\mathrm{P}=8$ pins	TQFP (plastic thin quad flatack)	DB $=14 / 16 / 20 / 24 / 28 / 30 / 38$ pins	SOT (small-outline transistor)
$\mathrm{N}=14 / 16 / 20$ pins	PAH $=52$ pins	DBQ $=16 / 20 / 24$	DBV $=5$ pins
$\mathrm{NT}=24 / 28$ pins	PAG $=64$ pins (FB only)	DL $=28 / 48 / 56$ pins	DCK $=5$ pins
	PM $=64$ pins		
schedule	PN $=80$ pins		
$\boldsymbol{\checkmark}$ = Now $\dagger=$ Planned	$\begin{aligned} & \text { PCA, PZ }=100 \text { pins (FB only) } \\ & \text { PCB }=120 \text { pins (FIFO only) } \end{aligned}$		

LITTLE LOGIC

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY SOT	LITERATURE REFERENCE
SN74AHC1G126	5	Single Bus Buffers with 3-State Outputs	\checkmark	SCLS379
SN74AHCT1G126	5	Single Bus Buffers with 3-State Outputs	\checkmark	SCLS380
SN74LVC1G126	5	Single Bus Buffers with 3-State Outputs	$+$	SCES224
SN74LVC1G240	5	Single Buffers/Drivers with 3-State Outputs	$+$	SCES305
SN74CBT1G384	5	Single FET Bus Switches	\checkmark	SCDS065

LS
 Low-Power Schottky Logic

With a wide array of functions, Tl's LS family continues to offer replacement alternatives for mature systems. This classic line of devices was at the cutting edge of performance when introduced, and it continues to deliver excellent value for many of today's designs. As the world leader in logic products, TI is committed to being the last major supplier at every price-performance node.

See www.ti.com/sc/logic for the most current data sheets.

DEVICE SELECTION GUIDE

LS

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY				LITERATURE REFERENCE
			MLL	PDIP	SOIC	SSOP	
SN74LS00	14	Quad 2-Input NAND Gates	\checkmark	\checkmark	\checkmark	\checkmark	SDLS025
SN74LS00	8	Quad 2-Input NAND Gates	\checkmark				SDLS026
SN74LS02	14	Quad 2-Input NOR Gates	\checkmark	\checkmark	\checkmark		SDLS027
SN74LS03	14	Quad 2-Input NAND Gates with Open-Collector Outputs	\checkmark	\checkmark	\checkmark		SDLS028
SN74LS04	14	Hex Inverters	\checkmark	\checkmark	\checkmark		SDLS029
SN74LS05	14	Hex Inverters with Open-Collector Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SDLS030
SN74LS06	14	Hex Inverter Buffers/Drivers with Open-Collector Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SDLS020
SN74LS07	14	Hex Buffers/Drivers with Open-Collector Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SDLS021
SN74LS08	14	Quad 2-Input AND Gates	\checkmark	\checkmark	\checkmark	\checkmark	SDLS033
SN74LS09	14	Quad 2-Input AND Gates with Open-Collector Outputs	\checkmark	\checkmark	\checkmark		SDLS034
SN74LS10	14	Triple 3-Input NAND Gates	\checkmark	\checkmark	\checkmark		SDLS035
SN74LS11	14	Triple 3-Input AND Gates	\checkmark	\checkmark	\checkmark		SDLS131
SN74LS14	14	Hex Schmitt-Trigger Inverters	\checkmark	\checkmark	\checkmark	\checkmark	SDLS049
SN74LS19A	14	Hex Schmitt-Trigger Inverters		\checkmark	\checkmark		SDLS138
SN74LS20	14	Dual 4-Input NAND Gates	\checkmark	\checkmark	\checkmark		SDLS079
SN74LS21	14	Dual 4-Input AND Gates	\checkmark	\checkmark	\checkmark		SDLS139
SN74LS26	14	Quad 2-Input NAND Gates	\checkmark	\checkmark	\checkmark		SDLS087
SN74LS27	14	Triple 3-Input NOR Gates	\checkmark	\checkmark	\checkmark		SDLS089
SN74LS30	14	8-Input NAND Gates	\checkmark	\checkmark	\checkmark		SDLS099
SN74LS31	16	Hex Delay Elements for Generating Delay Lines	\checkmark	\checkmark	\checkmark		SDLS157
SN74LS32	14	Quad 2-Input OR Gates	\checkmark	\checkmark	\checkmark		SDLS100
SN74LS33	14	Quad 2-Input NOR Gates	\checkmark	\checkmark	\checkmark		SDLS101
SN74LS37	14	Quad 2-Input NAND Gates	\checkmark	\checkmark			SDLS103
SN74LS38	14	Quad 2-Input NAND Gates	\checkmark	\checkmark	\checkmark		SDLS105
SN74LS42	16	4-Line BCD to 10-Line Decimal Decoders	\checkmark	\checkmark	\checkmark		SDLS109
SN74LS47	16	BCD to 7-Segment Decoders/Drivers	\checkmark	\checkmark	\checkmark		SDLS111
SN74LS51	14	Dual 2-Wide 2-Input, 2-Wide 3-Input AND-OR-Invert Gates	\checkmark	\checkmark	\checkmark		SDLS113
SN74LS73A	14	Dual J-K Edge-Triggered Flip-Flops with Reset	\checkmark	\checkmark	\checkmark		SDLS118
SN74LS74A	14	Dual D-Type Flip-Flops with Set and Reset	\checkmark	\checkmark	\checkmark		SDLS119
SN74LS75	16	4-Bit Bistable Latches	\checkmark	\checkmark	\checkmark		SDLS120
SN74LS85	16	4-Bit Magnitude Comparators	\checkmark	\checkmark	\checkmark		SDLS123
SN74LS86A	14	Quad 2-Input Exclusive-OR Gates	\checkmark	\checkmark	\checkmark		SDLS124
SN74LS90	14	Decade Counters	\checkmark	\checkmark	\checkmark		SDLS940
SN74LS92	14	Divide-by-12 Counters	\checkmark	\checkmark	\checkmark		SDLS940
SN74LS93	14	4-Bit Binary Counters	\checkmark	\checkmark	\checkmark		SDLS940

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array) GKE $=96$ pins	PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins	SOIC (small-outline integrated circuit) D $=8 / 14 / 16$ pins
GKF = 114 pins	QFP (quad flatpack) RC $=52$ pins ($F B$ only) PH $=80$ pins (FIFO only) PQ = 100/132 pins (FIFO only)	$D W=16 / 20 / 24 / 28$ pins
VFBGA (very-thin-profile fine-pitch ball grid array) GQL $=56$ pins (also includes 48-pin functions)		QSOP (quarter-size outline package) DBQ $=16 / 20 / 24$ pins
PDIP (plastic dual-in-line package)		$\begin{aligned} & \text { SSOP (shrink small-outline package) } \\ & \text { DB }=14 / 166 / 20 / 24 / 28 / 30 / 38 \text { pins } \\ & \text { DBQ }=16 / 20 / 24 \\ & D L=28 / 48 / 56 \text { pins } \end{aligned}$
$\mathrm{P}=8 \mathrm{pins}$		
$\mathrm{N}=14 / 16 / 20$ pins		
$\mathrm{NT}=24 / 28$ pins		
schedule		
$\boldsymbol{\nu}$ = Now $+=$ Planned		

[^3]| DEVICE | NO. PINS | DESCRIPTION | AVAILABILITY | | | | LITERATURE REFERENCE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | MIL | PDIP | SOIC | SSOP | |
| SN74LS96 | 16 | 5-Bit Shift Registers | \checkmark | \checkmark | \checkmark | | SDLS946 |
| SN74LS107A | 14 | Dual Negative-Edge-Triggered J-K Flip-Flops with Reset | \checkmark | \checkmark | \checkmark | | SDLS036 |
| SN74LS109A | 16 | Dual Positive-Edge-Triggered J-K Flip Flops with Set and Reset | \checkmark | \checkmark | \checkmark | | SDLS037 |
| SN74LS112A | 16 | Dual Negative-Edge-Triggered J-K Flip-Flops with Set and Reset | \checkmark | \checkmark | \checkmark | | SDLS011 |
| SN74LS122 | 14 | Retriggerable Monostable Multivibrators | | \checkmark | \checkmark | | SDLS043 |
| SN74LS123 | 16 | Dual Retriggerable Monostable Multivibrators with Reset | \checkmark | \checkmark | \checkmark | | SDLS043 |
| SN74LS125A | 14 | Quad Bus Buffers with 3-State Outputs | \checkmark | \checkmark | \checkmark | | SDLS044 |
| SN74LS126A | 14 | Quad Bus Buffers with 3-State Outputs | | \checkmark | \checkmark | | SDLS044 |
| SN74LS132 | 14 | Quad 2-Input NAND Gates with Schmitt-Trigger Inputs | \checkmark | \checkmark | \checkmark | | SDLS047 |
| SN74LS136 | 14 | Quad Exclusive-OR Gates with Open-Collector Outputs | \checkmark | \checkmark | \checkmark | | SDLS048 |
| SN74LS138 | 16 | 3-to-8 Line Inverting Decoders/Demultiplexers | \checkmark | \checkmark | \checkmark | | SDLS014 |
| SN74LS139A | 16 | Dual 2-to-4 Line Decoders/Demultiplexers | \checkmark | \checkmark | \checkmark | | SDLS013 |
| SN74LS145 | 16 | BCD-to-Decimal Decoders/Driver | \checkmark | \checkmark | \checkmark | | SDLS051 |
| SN74LS148 | 16 | 8-to-3 Line Priority Encoders | \checkmark | \checkmark | \checkmark | | SDLS053 |
| SN74LS151 | 16 | 1-of-8 Data Selectors/Multiplexers | \checkmark | \checkmark | \checkmark | | SDLS054 |
| SN74LS153 | 16 | Dual 1-of-4 Data Selectors/Multiplexers | \checkmark | \checkmark | \checkmark | | SDLS055 |
| SN74LS155A | 16 | Dual 2-to-4 Line Decoders/Demultiplexers | \checkmark | \checkmark | \checkmark | | SDLS057 |
| SN74LS156 | 16 | Dual 2-to-4 Line Decoders/Demultiplexers with Open-Collector Outputs | \checkmark | \checkmark | \checkmark | | SDLS057 |
| SN74LS157 | 16 | Quad 2-to-4 Line Data Selectors/Multiplexers | \checkmark | \checkmark | \checkmark | | SDLS058 |
| SN74LS158 | 16 | Quad 2-to-4 Line Data Selectors/Multiplexers | \checkmark | \checkmark | \checkmark | | SDLS058 |
| SN74LS161A | 16 | Synchronous 4-Bit Binary Counters | \checkmark | \checkmark | \checkmark | | SDLS060 |
| SN74LS163A | 16 | Synchronous 4-Bit Binary Counters | \checkmark | \checkmark | \checkmark | | SDLS060 |
| SN74LS164 | 14 | 8-Bit Serial-In, Parallel-Out Shift Registers | \checkmark | \checkmark | \checkmark | | SDLS061 |
| SN74LS165A | 16 | 8-Bit Parallel-In, Serial-Out Shift Registers | \checkmark | \checkmark | \checkmark | | SDLS062 |
| SN74LS166A | 16 | 8-Bit Parallel-Load Shift Registers | \checkmark | \checkmark | \checkmark | | SDLS063 |
| SN74LS169B | 16 | Synchronous 4-Bit Up/Down Binary Counters | \checkmark | \checkmark | \checkmark | | SDLS134 |
| SN74LS170 | 16 | 4-by-4 Register Files with Open-Collector Outputs | \checkmark | \checkmark | \checkmark | | SDLS065 |
| SN74LS173A | 16 | Quad D-Type Flip-Flops with 3-State Outputs | \checkmark | \checkmark | \checkmark | | SDLS067 |
| SN74LS174 | 16 | Hex D-Type Flip-Flops with Clear | \checkmark | \checkmark | \checkmark | | SDLS068 |
| SN74LS175 | 16 | Quad D-Type Flip-Flops with Clear | \checkmark | \checkmark | \checkmark | | SDLS068 |
| SN74LS181 | 24 | Arithmetic Logic Units/Function Generators | \checkmark | \checkmark | | | SDLS136 |
| SN74LS191 | 16 | Presettable Synchronous 4-Bit Up/Down Binary Counters | \checkmark | \checkmark | \checkmark | | SDLS072 |
| SN74LS193 | 16 | Presettable Synchronous 4-Bit Up/Down Binary Counters | \checkmark | \checkmark | \checkmark | | SDLS074 |
| SN74LS194A | 16 | 4-Bit Bidirectional Universal Shift Registers | \checkmark | \checkmark | \checkmark | | SDLS075 |
| SN74LS221 | 16 | Dual Monostable Multivibrators with Schmitt-Trigger Inputs | \checkmark | \checkmark | \checkmark | | SDLS213 |
| SN74LS240 | 20 | Octal Buffers/Drivers with 3-State Outputs | \checkmark | \checkmark | \checkmark | | SDLS144 |
| SN74LS241 | 20 | Octal Buffers/Drivers with 3-State Outputs | \checkmark | \checkmark | \checkmark | | SDLS144 |
| SN74LS243 | 14 | Quad Bus-Transceivers with 3-State Outputs | \checkmark | \checkmark | \checkmark | \checkmark | SDLS145 |
| SN74LS244 | 20 | Octal Buffers and Line Drivers with 3-State Outputs | \checkmark | \checkmark | \checkmark | \checkmark | SDLS144 |
| SN74LS245 | 20 | Octal Bus Transceivers with 3-State Outputs | \checkmark | \checkmark | \checkmark | \checkmark | SDLS146 |
| SN74LS247 | 16 | BCD to 7-Segment Decoders/Drivers with Open-Collector Outputs | | \checkmark | \checkmark | | SDLS083 |
| SN74LS251 | 16 | 1-of-8 Data Selectors/Multiplexers with 3-State Outputs | \checkmark | \checkmark | \checkmark | | SDLS085 |
| SN74LS253 | 16 | Dual 1-of-4 Data Selectors/Multiplexers with 3-State Outputs | \checkmark | \checkmark | \checkmark | | SDLS147 |
| SN74LS257B | 16 | Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs | \checkmark | \checkmark | \checkmark | | SDLS148 |

DEVICE SELECTION GUIDE

LS

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY				LITERATURE REFERENCE
			MLL	PDIP	SOIC	SSOP	
SN74LS258B	16	Quad 1-0f-2 Data Selectors/Multiplexers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDLS148
SN74LS259B	16	8-Bit Addressable Latches	\checkmark	\checkmark	\checkmark		SDLS086
SN74LS266	14	Quad 2-Input Exclusive-NOR Gates with Open-Collector Outputs	\checkmark	\checkmark	\checkmark		SDLS151
SN74LS273	20	Octal D-Type Flip-Flops with Clear	\checkmark	\checkmark	\checkmark		SDLS090
SN74LS279A	16	Quad $\overline{\text { ST}}$ - Latches	\checkmark	\checkmark	\checkmark		SDLS093
SN74LS280	14	9-Bit Odd/Even Parity Generators/Checkers	\checkmark	\checkmark	\checkmark		SDLS152
SN74LS283	16	9-Bit Binary Full Adders with Fast Carry	\checkmark	\checkmark	\checkmark		SDLS095
SN74LS292	16	Programmable Frequency Dividers/Digital Timers		\checkmark			SDLS153
SN74LS293	14	4-Bit Binary Counters	\checkmark	\checkmark	\checkmark		SDLS097
SN74LS294	16	Programmable Frequency Dividers/Digital Timers		\checkmark			SDLS153
SN74LS297	16	Digital Phase-Locked Loops		\checkmark			SDLS155
SN74LS298	16	Quad 2-Input Multiplexers with Storage	\checkmark	\checkmark	\checkmark		SDLS098
SN74LS299	20	8-Bit Universal Shitt/Storage Registers	\checkmark	\checkmark	\checkmark		SDLS156
SN74LS321	16	Crystal-Controlled Oscillators	\checkmark	\checkmark			SDLS158
SN74LS348	16	8-Line to 3-Line Priority Encoders	\checkmark	\checkmark	\checkmark		SDLS161
SN74LS365A	16	Hex Buffers/Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDLS102
SN74LS367A	16	Hex Buffers/Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDLS102
SN74LS368A	16	Hex Inverting Buffers/Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDLS102
SN74LS373	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDLS165
SN74LS374	20	Octal D-Type Edge-Triggered Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDLS165
SN74LS375	16	4-Bit Bistable Latches	\checkmark	\checkmark	\checkmark		SDLS166
SN74LS377	20	Octal D-Type Flip-Flops with Enable	\checkmark	\checkmark	\checkmark		SDLS167
SN74LS378	16	Hex D-Type Flip-Flops with Enable	\checkmark	\checkmark	\checkmark		SDLS167
SN74LS390	16	Dual 4-Bit Decade Counters	\checkmark	\checkmark	\checkmark		SDLS107
SN74LS393	14	Dual 4-Bit Binary Counters	\checkmark	\checkmark	\checkmark		SDLS107
SN74LS395A	16	4-Bit Cascadable Shift Registers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDLS172
SN74LS399	16	Quad 2-Input Multiplexers with Storage	\checkmark	\checkmark	\checkmark		SDLS174
SN74LS423	16	Dual Retriggerable Monostable Multivibrators with Reset		\checkmark	\checkmark		SDLS175
SN74LS442	20	Quad Tridirectional Bus Transceivers with 3-State Outputs		\checkmark			SDLS176
SN74LS465	20	Octal Buffers with 3-State Outputs		\checkmark	\checkmark		SDLS179
SN74LS540	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDLS180
SN74LS541	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDLS180
SN74LS590	16	8-Bit Binary Counters with 3-State Output Registers	\checkmark	\checkmark	\checkmark		SDLS003
SN74LS592	16	8-Bit Binary Counters with Input Registers	\checkmark	\checkmark	\checkmark		SDLS004
SN74LS593	20	8-Bit Binary Counters with Input Registers and 3-State //O Ports	\checkmark	\checkmark	\checkmark		SDLS004
SN74LS594	16	8 -Bit Shift Registers with Output Registers		\checkmark			SDLS005
SN74LS595	16	8-Bit Shift Registers with 3-State Output Registers	\checkmark	\checkmark	\checkmark		SDLS006
SN74LS596	16	8-Bit Shift Registers with 3-State Output Latches		\checkmark			SDLS006
SN74LS597	16	8 -Bit Shift Registers with Input Latches	\checkmark	\checkmark	\checkmark		SDLS007
SN74LS598	20	8-Bit Shift Registers with Input Latches and 3-State I/O Ports	\checkmark	\checkmark	\checkmark		SDLS007
SN74LS599	16	8 -Bit Shift Registers with Output Registers		\checkmark			SDLS005
SN74LS623	20	Octal Bus Transceivers with 3-State Outputs		\checkmark	\checkmark		SDLS185
SN74LS624	14	Single Voltage-Controlled Oscillators	\checkmark	\checkmark	\checkmark		SDLS186
SN74LS628	14	Single Voltage-Controlled Oscillators	\checkmark	\checkmark	\checkmark		SDLS186

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY				LITERATURE REFERENCE
			MIL	PDIP	SOIC	Ssop	
SN74LS629	16	Dual Voltage-Controlled Oscillators	\checkmark	\checkmark	\checkmark		SDLS186
SN74LS640	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDLS189
SN74LS640-1	20	Octal Bus Transceivers with 3-State Outputs		\checkmark	\checkmark		SDLS189
SN74LS641	20	Octal Bus Transceivers with Open-Collector Outputs		\checkmark	\checkmark		SDLS189
SN74LS641-1	20	Octal Bus Transceivers with Open-Collector Outputs		\checkmark	\checkmark		SDLS189
SN74LS642	20	Octal Bus Transceivers with Open-Collector Outputs		\checkmark	\checkmark		SDLS189
SN74LS642-1	20	Octal Bus Transceivers with Open-Collector Outputs		\checkmark	\checkmark		SDLS189
SN74LS645	20	Octal Bus Transceivers with 3-State Outputs	ν	\checkmark	\checkmark		SDLS189
SN74LS645-1	20	Octal Bus Transceivers with 3-State Outputs		\checkmark	\checkmark		SDLS189
SN74LS646	24	Octal Registered Bus Transceivers with 3-State Outputs		\checkmark	\checkmark		SDLS190
SN74LS648	24	Octal Registered Bus Transceivers with 3-State Outputs		\checkmark	\checkmark		SDLS190
SN74LS652	24	Octal Bus Transceivers and Registers with 3-State Outputs		\checkmark	\checkmark		SDLS191
SN74LS669	16	Synchronous 4-Bit Up/Down Binary Counters	\checkmark	\checkmark	\checkmark		SDLS192
SN74LS670	16	4-by-4 Register Files with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDLS193
SN74LS673	24	16-Bit Serial In/Out with 16-Bit Parallel-Out Storage Registers	\checkmark	\checkmark	\checkmark		SDLS195
SN74LS674	24	16-Bit Serial In/Out with 16-Bit Parallel-Out Storage Registers	\checkmark	\checkmark	\checkmark		SDLS195
SN74LS682	20	8-Bit Magnitude Comparators	\checkmark	\checkmark	\checkmark		SDLS008
SN74LS684	20	8-Bit Magnitude Comparators	\checkmark	\checkmark	\checkmark		SDLS008
SN74LS688	20	8-Bit Magnitude Comparators	\checkmark	\checkmark	\checkmark		SDLS008
SN74LS697	20	Synchronous 4-Bit Up/Down Binary Counters with Output Registers and Multiplexed 3-State Outputs	\checkmark	\checkmark	\checkmark		SDLS199

LV

Low-Voltage CMOS Technology Logic

TI's entire LV family has been redesigned for better flexibility in your 3.3-V or $5-\mathrm{V}$ system. New LV-A devices (e.g., 'LV00A, 'LV02A) have improved operating characteristics and new features, such as 5-V tolerance, faster performance, and partial power down.

The LV-A series of devices has expanded its voltage operation range ($2-\mathrm{V}$ to $5.5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$), while still having a static power consumption of only $20 \mu \mathrm{~A}$ for both bus-interface and gate functions. The LV family now has propagation delays of 5.4 ns typical at 3.3 V (SN74LV244A) and provides 8 mA of current drive. With an $\mathrm{I}_{\text {off }}$ specification of only $5 \mu \mathrm{~A}$, these devices have the capability of partially powering down. In addition, the typical output V_{OH} undershoot $\left(\mathrm{V}_{\mathrm{OHV}}\right)$ has been improved to $>2.3 \mathrm{~V}$ at $3.3-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ for quieter operation.

New key features:

- Support mixed-mode voltage operation on all ports
- I off for partial power down
- 14 ns maximum at $3.3-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ for buffers

The LV family is offered in the octal footprints with advanced packaging, such as small-outline integrated circuit (SOIC), shrink small-outline package (SSOP), and thin shrink small-outline package (TSSOP).

See www.ti.com/sc/logic for the most current data sheets.

DEVICE SELECTION GUIDE

LV

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY				LITERATURE REFERENCE
			PDIP SOIC	SSOP	TSSOP	TVSOP	
SN74LV00A	14	Quad 2-Input NAND Gates	\checkmark	\checkmark	\checkmark	\checkmark	SCLS389
SN74LV02A	14	Quad 2-Input NOR Gates	\checkmark	\checkmark	\checkmark	\checkmark	SCLS390
SN74LV04A	14	Hex Inverters	\checkmark	\checkmark	\checkmark	\checkmark	SCLS388
SN74LVU04A	14	Hex Unbuffered Inverters	\checkmark	\checkmark	\checkmark	\checkmark	SCES130
SN74LV05A	14	Hex Inverters with Open-Drain Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SCLS391
SN74LV06A	14	Hex Inverter Buffers/Drivers with Open-Drain Outputs	+	+	+	+	SCES336
SN74LV07A	14	Hex Buffers/Drivers with Open-Drain Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SCES337
SN74LV08A	14	Quad 2-Input AND Gates	\checkmark	\checkmark	\checkmark	\checkmark	SCLS387
SN74LV14A	14	Hex Schmitt-Trigger Inverters	\checkmark	\checkmark	\checkmark	\checkmark	SCLS386
SN74LV32A	14	Quad 2-Input OR Gates	\checkmark	\checkmark	\checkmark	\checkmark	SCLS385
SN74LV74A	14	Dual D-Type Flip-Flops with Set and Reset	\checkmark	\checkmark	\checkmark	\checkmark	SCLS381
SN74LV86A	14	Quad 2-Input Exclusive-OR Gates	\checkmark	\checkmark	\checkmark	\checkmark	SCLS392
SN74LV123A	16	Dual Retriggerable Monostable Multivibrators with Reset	\checkmark	\checkmark	\checkmark	\checkmark	SCLS393
SN74LV125A	14	Quad Bus Buffers with 3-State Outputs	\checkmark		\checkmark	\checkmark	SCES124
SN74LV126A	14	Quad Bus Buffers with 3-State Outputs	$+$	$+$	$+$	$+$	SCES131
SN74LV132A	14	Quad 2-Input NAND Gates with Schmitt-Trigger Inputs	\checkmark	\checkmark	\checkmark	\checkmark	SCLS394
SN74LV138A	16	3-to-8 Line Inverting Decoders/Demultiplexers	\checkmark	\checkmark	\checkmark	\checkmark	SCLS395
SN74LV139A	16	Dual 2-to-4 Line Decoders/Demultiplexers	\checkmark	\checkmark	\checkmark	\checkmark	SCLS396
SN74LV164A	14	8-Bit Serial-In, Parallel-Out Shitt Registers	\checkmark	\checkmark	\checkmark	\checkmark	SCLS403
SN74LV165A	16	8-Bit Parallel-In, Serial-Out Shitt Registers	\checkmark	\checkmark	\checkmark	\checkmark	SCLS402
SN74LV174A	16	Hex D-Type Flip-Flops with Clear	\checkmark	\checkmark	\checkmark	\checkmark	SCLS401
SN74LV175A	16	Quad D-Type Flip-Flops with Clear	\checkmark	\checkmark	\checkmark	\checkmark	SCLS400
SN74LV221A	16	Dual Monostable Multivibrators with Schmitt-Trigger Inputs	\checkmark	\checkmark	\checkmark	\checkmark	SCLS450
SN74LV240A	20	Octal Buffers/Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SCLS384
SN74LV244A	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SCLS383
SN74LV245A	20	Octal Bus Transceivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SCLS382
SN74LV273A	20	Octal D-Type Flip-Flops with Clear	\checkmark	\checkmark	\checkmark	\checkmark	SCLS399
SN74LV367A	16	Hex Buffers/Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SCLS398
SN74LV373A	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SCLS407
SN74LV374A	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SCLS408
SN74LV540A	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SCLS409
SN74LV541A	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SCLS410
SN74LV573A	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SCLS411
SN74LV574A	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark	\checkmark	SCLS412
SN74LV594A	16	8 -Bit Shift Registers with Output Registers	\checkmark	\checkmark	\checkmark		SCLS413

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array) GKE $=96$ pins	PLCC (plastic leaded chip carrier) $\mathrm{FN}=20 / 28 / 44 / 68 / 84 \text { pins }$	SOIC (small-outline integrated circuit) D $=8 / 14 / 16$ pins	TSSOP (thin shrink small-outline package) PW $=8 / 14 / 16 / 20 / 24 / 28$ pins
GKF $=114$ pins	QFP (quad flatpack)	DW $=16 / 20 / 24 / 28 \mathrm{pins}$	DGG $=48 / 56 / 64$ pins
VFBGA (very-thin-profile fine-pitch ball grid array)	RC $=52$ pins (FB only)	QSOP (quarter-size outline package)	TVSOP (thin very small-outline package)
GQL = 56 pins (also includes 48-pin functions)	PH $=80$ pins (FIFO only)	DBQ $=16 / 20 / 24$ pins	DGV $=14 / 16 / 20 / 24 / 48 / 56$ pins
PDIP (plastic dual-in-line package)	PQ = 100/132 pins (FIFO only)	SSOP (shrink small-outline package)	DBB $=80$ pins
$\mathrm{P}=8$ pins	TQFP (plastic thin quad flatpack)	DB $=14 / 16 / 20 / 24 / 28 / 30 / 38$ pins	SOT (small-outline transistor)
$N=14 / 16 / 20$ pins	PAH $=52$ pins	DBQ $=16 / 20 / 24$	DBV $=5$ pins
NT $=24 / 28$ pins	$\begin{array}{ll} \text { PAG } & =64 \text { pins (FB only) } \\ \text { PM } & =64 \text { pins } \end{array}$	DL $=28 / 48 / 56$ pins	DCK $=5$ pins
schedule	PN $=80$ pins		
schedul	PCA, PZ $=100$ pins (FB only)		
$\boldsymbol{\checkmark}$ = Now $\boldsymbol{+}$ = Planned	PCB $=120$ pins (FIFO only)		

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY					LITERATURE REFERENCE
			PDIP	SOIC	SSOP	TSSOP	TVSOP	
SN74LV595A	16	8-Bit Shift Registers with 3-State Output Registers		\checkmark	\checkmark	\checkmark		SCLS414
SN74LV4040A	16	12-Stage Ripple-Carry Binary Counters/Dividers	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCES226
SN74LV4051A	16	8-Channel Analog Multiplexers/Demultiplexers with Logic Level Conversion	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCLS428
SN74LV4052A	16	Dual 4-Channel Analog Multiplexers/Demultiplexers with Logic Level Conversion	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCLS429
SN74LV4053A	16	Triple 2-Channel Analog Multiplexers/Demultiplexers with Logic Level Conversion	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCLS430
SN74LV4066A	14	Quad Bilateral Switches	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SCLS427
SN74LV161284	48	19-Bit Bus Interfaces			\checkmark	\checkmark		SCLS426

LVC

Low-Voltage CMOS Technology Logic

TI's LVC products are specially designed for 3-V power supplies.
The LVC family is a high-performance version with $0.8-\mu$ CMOS process technology, $24-\mathrm{mA}$ current drive, and 6.5 -ns maximum propagation delays for driver operations. The LVC family includes both bus-interface and gate functions, with 60 different functions planned.

The LVC family is offered in the octal and Widebus ${ }^{\text {TM }}$ footprints, with all of the advanced packaging such as small-outline integrated circuit (SOIC), shrink small-outline package (SSOP), thin shrink small-outline package (TSSOP), very small-outline package (TVSOP), and selected devices in MicroStar BGA ${ }^{\text {TM }}$ (LFBGA) packages.

All LVC devices are available with $5-\mathrm{V}$ tolerant inputs and outputs.
An extensive line of single gates is planned in the LVC family.
See www.ti.com/sc/logic for the most current data sheets.

DEVICE SELECTION GUIDE

LVC

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY								LITERATURE REFERENCE
			LFBGA	PDIP	SOIC	SOT	SSOP	TSSOP	TVSOP	VFBGA	
SN74LVC157A	16	Quad 2-to-4 Line Data Selectors/Multiplexers			\checkmark		\checkmark	\checkmark			SCAS292
SN74LVC240A	20	Octal Buffers/Drivers with 3-State Outputs			\checkmark		\checkmark	\checkmark	\checkmark		SCAS293
SN74LVCZ240A	20	Octal Buffers/Drivers with 3-State Outputs		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		SCES273
SN74LVC244A	20	Octal Buffers and Line Drivers with 3-State Outputs		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		SCAS414
SN74LVCH244A	20	Octal Buffers and Line Drivers with 3-State Outputs			\checkmark		\checkmark	\checkmark	\checkmark		SCES009
SN74LVCZ244A	20	Octal Buffers and Line Drivers with 3-State Outputs		\checkmark	\checkmark		\checkmark	\checkmark			SCES274
SN74LVC245A	20	Octal Bus Transceivers with 3-State Outputs		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		SCAS218
SN74LVCH245A	20	Octal Bus Transceivers with 3-State Outputs			\checkmark		\checkmark	\checkmark	\checkmark		SCES008
SN74LVCZ245A	20	Octal Bus Transceivers with 3-State Outputs		\checkmark	\checkmark		\checkmark	\checkmark			SCES275
SN74LVC257A	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs			\checkmark		\checkmark	\checkmark			SCAS294
SN74LVC373A	20	Octal Transparent D-Type Latches with 3-State Outputs		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		SCAS295
SN74LVC374A	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		SCAS296
SN74LVC540A	20	Inverting Octal Buffers and Line Drivers with 3 -State Outputs			\checkmark		\checkmark	\checkmark	\checkmark		SCAS297
SN74LVC541A	20	Octal Buffers and Line Drivers with 3-State Outputs			\checkmark		\checkmark	\checkmark	\checkmark		SCAS298
SN74LVC543A	24	Octal Registered Transceivers with 3-State Outputs			\checkmark		\checkmark	\checkmark			SCAS299
SN74LVC573A	20	Octal Transparent D-Type Latches with 3-State Outputs		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		SCAS300
SN74LVC574A	20	Octal Edge-Triggered D-Type Flip-Flops with 3 -State Outputs		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		SCAS301
SN74LVC646A	24	Octal Registered Bus Transceivers with 3-State Outputs			\checkmark		\checkmark				SCAS302
SN74LVC652A	24	Octal Bus Transceivers and Registers with 3 -State Outputs			\checkmark		\checkmark	\checkmark			SCAS303
SN74LVC821A	24	10-Bit Bus-Interface Flip-Flops with 3-State Outputs			\checkmark		\checkmark	\checkmark	\checkmark		SCAS304
SN74LVC823A	24	9-Bit Bus-Interface Flip-Flops with 3-State Outputs			\checkmark		\checkmark	\checkmark	\checkmark		SCAS305
SN74LVC827A	24	10-Bit Buffers/Drivers with 3-State Outputs			\checkmark		\checkmark	\checkmark	\checkmark		SCAS306
SN74LVC828A	24	10-Bit Buffers/Drivers with 3-State Outputs			\checkmark		\checkmark	\checkmark	\checkmark		SCAS347
SN74LVC841A	24	10-Bit Bus-Interface D-Type Latches with 3-State Outputs			\checkmark		\checkmark	\checkmark	\checkmark		SCAS307
SN74LVC861A	24	10-Bit Transceivers with 3-State Outputs			\checkmark		\checkmark	\checkmark	\checkmark		SCAS309
SN74LVC863A	24	9-Bit Bus Transceivers with 3-State Outputs			\checkmark		\checkmark	\checkmark	\checkmark		SCAS310
SN74LVC2244A	20	Octal Buffers/Line Drivers with Series Damping Resistors and 3 -State Outputs			\checkmark		\checkmark	\checkmark	\checkmark		SCAS572
SN74LVCR2245A	20	Octal Bus Transceivers with Series Damping Resistors and 3 -State Outputs			\checkmark		\checkmark	\checkmark	\checkmark		SCAS581
SN74LVC2952A	24	Octal Bus Transceivers and Registers with 3 -State Outputs			\checkmark		\checkmark	\checkmark			SCAS311
SN74LVCC3245A	24	Octal Bus Transceivers with Adjustable Output Voltage and 3-State Outputs			\checkmark		\checkmark	\checkmark			SCAS585
SN74LVC4245A	24	Octal Bus Transceivers and 3.3 -V to 5 -V Shifters with 3 -State Outputs			\checkmark		\checkmark	\checkmark			SCAS375
SN74LVCC4245A	24	Octal Dual-Supply Bus Transceivers with Configurable Output Voltage and 3-State Outputs			\checkmark		\checkmark	\checkmark			SCAS584

DEVICE SELECTION GUIDE

LVC

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY								LITERATURE REFERENCE
			LFBGA	PDIP	soic	Sot	ssop	TSSOP	TVSOP	VFBGA	
SN74LVCH16240A	48	16-Bit Buffers/Drivers with 3-State Outputs					\checkmark	\checkmark			SCAS566
SN74LVCZ16240A	48	16-Bit Buffers/Drivers with 3-State Outputs					\checkmark	\checkmark			SCES276
SN74LVC16244A	48	16-Bit Buffers/Drivers with 3-State Outputs					\checkmark	\checkmark	\checkmark	\checkmark	SCES061
SN74LVCH16244A	48	16-Bit Buffers/Drivers with 3-State Outputs					\checkmark	\checkmark	\checkmark	\checkmark	SCAS313
SN74LVCZ16244A	48	16-Bit Buffers/Drivers with 3-State Outputs					\checkmark	\checkmark			SCES277
SN74LVC16245A	48	16-Bit Bus Transceivers with 3-State Outputs					\checkmark	\checkmark	\checkmark		SCES062
SN74LVCH16245A	48	16-Bit Bus Transceivers with 3-State Outputs					\checkmark	\checkmark	\checkmark	\checkmark	SCES063
SN74LVCHR16245A	48	16-Bit Bus Transceivers with 3-State Outputs					\checkmark	\checkmark	\checkmark		SCAS582
SN74LVCZ16245A	48	16-Bit Bus Transceivers with 3-State Outputs					+				SCES278
SN74LVC16373	48	16-Bit Transparent D-Type Latches with 3 -State Outputs					\checkmark	\checkmark			SCAS315
SN74LVCH16373A	48	16-Bit Transparent D-Type Latches with 3 -State Outputs					\checkmark	\checkmark	\checkmark	\checkmark	SCAS568
SN74LVC16374	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3 -State Outputs					\checkmark	\checkmark			SCAS316
SN74LVCH16374A	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3 -State Outputs					\checkmark	\checkmark	\checkmark	\checkmark	SCAS565
SN74LVCH16540A	48	16-Bit Buffers/Drivers with 3-State Outputs					\checkmark	\checkmark	\checkmark		SCAS569
SN74LVCH16541A	48	16-Bit Buffers/Drivers with 3-State Outputs					\checkmark	\checkmark	\checkmark		SCAS567
SN74LVC16543	56	16-Bit Registered Transceivers with 3-State Outputs					\checkmark				Call
SN74LVCH16543A	56	16-Bit Registered Transceivers with 3-State Outputs					\checkmark	\checkmark	\checkmark		SCAS317
SN74LVC16646	56	16-Bit Bus Transceivers and Registers with 3-State Outputs					\checkmark				Call
SN74LVCH16646A	56	16-Bit Bus Transceivers and Registers with 3-State Outputs					\checkmark	\checkmark	\checkmark		SCAS318
SN74LVC16652	56	16-Bit Bus Transceivers and Registers with 3-State Outputs					\checkmark				Call
SN74LVCH16652A	56	16-Bit Bus Transceivers and Registers with 3 -State Outputs					\checkmark	\checkmark	\checkmark		SCAS319
SN74LVCH16901	64	18-Bit Universal Bus Transceivers with Parity Generators/Checkers						\checkmark			SCES145
SN74LVCH16952A	56	16-Bit Registered Transceivers with 3-State Outputs					\checkmark	\checkmark	\checkmark		SCAS320
SN74LVC32244	96	32-Bit Buffers/Drivers with 3-State Outputs	\checkmark								SCES342
SN74LVCH32244A	96	32-Bit Buffers/Drivers with 3-State Outputs	\checkmark								SCAS617
SN74LVC32245	96	32-Bit Bus Transceivers with 3-State Outputs	$+$								SCES343
SN74LVCH32245A	96	32-Bit Bus Transceivers with 3-State Outputs	\checkmark								SCAS616
SN74LVCH32373A	96	32-Bit Transparent D-Type Latches with 3-State Outputs	\checkmark								SCAS618
SN74LVCH32374A	96	32-Bit Edge-Triggered D-Type Flip-Flops with 3 -State Outputs	\checkmark								SCAS619
SN74LVC161284	48	19-Bit Bus Interfaces					\checkmark	\checkmark			SCAS583
SN74LVC162240	48	16-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs					\checkmark	\checkmark			Call
SN74LVCH162244A	48	16-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs					\checkmark	\checkmark	\checkmark		SCAS545
SN74LVCR162245	48	16-Bit Bus Transceivers with Series Damping Resistors and 3-State Outputs					\checkmark	\checkmark			SCES047

LVT

Low-Voltage BiCMOS Technology Logic

LVT is a $5-\mathrm{V}$ tolerant, $3.3-\mathrm{V}$ product using the latest $0.72-\mu$ BiCMOS technology with performance specifications ideal for workstation, networking, and telecommunications applications. LVT delivers 3.5 -ns propagation delays at $3.3 \mathrm{~V}(28 \%$ faster than ABT at 5 V$)$, current drive of 64 mA , and pin-for-pin compatibility with existing ABT families.

LVT operates at LVTTL signal levels in telecom and networking high-performance system point-to-point or distributed backplane applications. LVT is an excellent migration path from ABT.

In addition to popular octal and Widebus ${ }^{\text {TM }}$ bus-interface devices, TI also offers the universal bus transceiver (UBTTM) and selected functions in Widebus $+^{T M}$ in this low-voltage family.

Performance characteristics of the LVT family are:

- 3.3-V operation with $5-\mathrm{V}$ tolerant I / Os - Permits use in a mixed-voltage environment.
- Speed - Provides high-performance with maximum propagation delays of 3.5 ns at 3.3 V for buffers.
- Drive - Provides up to 64 mA of drive at $3.3-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$, yet consumes less than $330 \mu \mathrm{~W}$ of standby power.

Additional features include:

- Live insertion - LVT devices incorporate $\mathrm{I}_{\text {off }}$ and power-up 3-state (PU3S) circuitry to protect the devices in live-insertion applications and make them ideally suited for hot-insertion applications. I off prevents the devices from being damaged during partial power down, and PU3S forces the outputs to the high-impedance state during power up and power down.
- Bus hold - Eliminates floating inputs by holding them at the last valid logic state. This eliminates the need for external pullup and pulldown resistors.
- Damping-resistor option - TI implements series damping resistors on selected devices, which not only reduces overshoot and undershoot, but also matches the line impedance, minimizing ringing.
- Packaging - LVT devices are available in small-outline integrated circuit (SOIC), shrink small-outline package (SSOP), thin shrink small-outline package (TSSOP), thin very small-outline package (TVSOP) (select devices), and selected devices in MicroStar BGA™ (LFBGA) package.

See www.ti.com/sc/logic for the most current data sheets.

DEVICE SELECTION GUIDE

LVT

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY							LITERATURE REFERENCE
			MIL	LFBGA	SOIC	SSOP	TSSOP	TVSOP	VFBGA	
LVT Octals (SN74LVTxxx, SN74LVTHxxx)										
SN74LVT125	14	Quad Bus Buffers with 3-State Outputs	\checkmark		\checkmark	\checkmark	\checkmark			SCBS133
SN74LVTH125	14	Quad Bus Buffers with 3-State Outputs			\checkmark	\checkmark	\checkmark	\checkmark		SCBS703
SN74LVTH126	14	Quad Bus Buffers with 3-State Outputs			\checkmark	\checkmark	\checkmark	\checkmark		SCBS746
SN74LVT240	20	Octal Buffers/Drivers with 3-State Outputs					\checkmark			Call
SN74LVT240A	20	Octal Buffers/Drivers with 3-State Outputs			\checkmark	\checkmark	\checkmark			SCBS134
SN74LVTH240	20	Octal Buffers/Drivers with 3-State Outputs			\checkmark	\checkmark	\checkmark			SCBS679
SN74LVTH241	20	Octal Buffers/Drivers with 3-State Outputs			\checkmark	\checkmark	\checkmark			SCAS352
SN74LVT244B	20	Octal Buffers and Line Drivers with 3-State Outputs			\checkmark	\checkmark	\checkmark			SCAS354
SN74LVTH244A	20	Octal Buffers and Line Drivers with 3-State Outputs	\checkmark		\checkmark	\checkmark	\checkmark			SCAS586
SN74LVT245B	20	Octal Bus Transceivers with 3-State Outputs			\checkmark	\checkmark	\checkmark			SCES004
SN74LVTH245A	20	Octal Bus Transceivers with 3-State Outputs	\checkmark		\checkmark	\checkmark	\checkmark			SCBS130
SN74LVTH273	20	Octal D-Type Flip-Flops with Clear			\checkmark	\checkmark	\checkmark			SCBS136
SN74LVTH373	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark		\checkmark	\checkmark	\checkmark			SCBS689
SN74LVTH374	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark		\checkmark	\checkmark	\checkmark			SCBS683
SN74LVTH540	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs			\checkmark	\checkmark	\checkmark			SCBS681
SN74LVTH541	20	Octal Buffers and Line Drivers with 3-State Outputs			\checkmark	\checkmark	\checkmark			SCBS682
SN74LVTH543	24	Octal Registered Transceivers with 3-State Outputs			\checkmark	\checkmark	\checkmark	\checkmark		SCBS704
SN74LVTH573	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark		\checkmark	\checkmark	\checkmark			SCBS687
SN74LVTH574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark		\checkmark	\checkmark	\checkmark			SCBS688
SN74LVTH646	24	Octal Registered Bus Transceivers with 3-State Outputs	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		SCBS705
SN74LVTH652	24	Octal Bus Transceivers and Registers with 3-State Outputs			\checkmark	\checkmark	\checkmark	\checkmark		SCBS706

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array) GKE $=96$ pins	PLCC (plastic leaded chip carrier) $\mathrm{FN}=20 / 28 / 44 / 68 / 84$ pins	SOIC (small-outline integrated circuit) D $=8 / 14 / 16$ pins	TSSOP (thin shrink small-outline package) $P W=8 / 14 / 16 / 20 / 24 / 28 \text { pins }$
GKF $=114$ pins	QFP (quad flatpack)	DW $=16 / 20 / 24 / 28$ pins	DGG $=48 / 56 / 64$ pins
VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48 -pin functions)	$\begin{aligned} & \mathrm{RC}=52 \text { pins (FB only) } \\ & \mathrm{PH}=80 \text { pins (FIFO only) } \end{aligned}$	QSOP (quarter-size outline package) DBQ = 16/20/24 pins	TVSOP (thin very small-outline package) DGV $=14 / 16 / 20 / 24 / 48 / 56$ pins
PDIP (plastic dual-in-line package)	PQ $=100 / 132$ pins (FIFO only)	SSOP (shrink small-outline package)	DBB $=80$ pins
$\mathrm{P}=8$ pins	TQFP (plastic thin quad flatpack)	DB $=14 / 16 / 20 / 24 / 28 / 30 / 38$ pins	SOT (small-outline transistor)
$N=14 / 16 / 20$ pins	PAH $=52$ pins	DBQ $=16 / 20 / 24$	DBV $=5$ pins
$N T=24 / 28$ pins	PAG $=64$ pins (FB only)	$D L=28 / 48 / 56$ pins	DCK $=5$ pins
	PM $=64$ pins	DL 28486 pins	
schedule	PN $=80$ pins		
schedule	PCA, PZ $=100$ pins (FB only)		
$\checkmark=$ Now $\quad+=$ Planned	PCB = 120 pins (FIFO only)		

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY							LITERATURE REFERENCE
			MIL	LFBGA	solc	SSOP	TSSOP	TVSOP	VFBGA	
LVT Widebus ${ }^{\text {TM }}$ (SN74LVTH16xxx)										
SN74LVT16240	48	16-Bit Buffers/Drivers with 3-State Outputs				$+$	$+$	$+$		SCBS717
SN74LVTH16240	48	16-Bit Buffers/Drivers with 3-State Outputs				\checkmark	\checkmark			SCBS684
SN74LVTH16241	48	16-Bit Buffers/Drivers with 3-State Outputs				\checkmark	\checkmark			SCBS693
SN74LVT16244B	48	16-Bit Buffers/Drivers with 3-State Outputs				\checkmark	\checkmark	\checkmark	\checkmark	SCBS716
SN74LVTH16244A	48	16-Bit Buffers/Drivers with 3-State Outputs	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	SCBS142
SN74LVT16245B	48	16-Bit Bus Transceivers with 3-State Outputs				\checkmark	\checkmark	\checkmark	\checkmark	SCBS715
SN74LVTH16245A	48	16-Bit Bus Transceivers with 3-State Outputs	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	SCBS143
SN74LVTH16373	48	16-Bit Transparent D-Type Latches with 3-State Outputs	\checkmark			\checkmark	\checkmark		\checkmark	SCBS144
SN74LVTH16374	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Output	\checkmark			\checkmark	\checkmark		\checkmark	SCBS145
SN74LVTH16500	56	18-Bit Universal Bus Transceivers with 3-State Outputs				\checkmark	\checkmark			SCBS701
SN74LVTH16501	56	18-Bit Universal Bus Transceivers with 3-State Outputs	\checkmark			\checkmark	\checkmark			SCBS700
SN74LVTH16541	48	16-Bit Buffers/Drivers with 3-State Outputs				\checkmark	\checkmark			SCBS691
SN74LVTH16543	56	16-Bit Registered Transceivers with 3-State Outputs				\checkmark	\checkmark			SCBS699
SN74LVTH16646	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				\checkmark	\checkmark			SCBS698
SN74LVTH16652	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				\checkmark	\checkmark			SCBS150
SN74LVTH16835	56	18-Bit Universal Bus Drivers with 3-State Outputs				\checkmark	\checkmark			SCBS713
SN74LVTH16952	56	16-Bit Registered Transceivers with 3-State Outputs	\checkmark			\checkmark	\checkmark			SCBS697
LVT Widebus+TM (SN74LVTH32xxx)										
SN74LVT32244	96	32-Bit Buffers/Drivers with 3-State Outputs		\checkmark						SCBS748
SN74LVTH32244	96	32-Bit Buffers/Drivers with 3-State Outputs		\checkmark						SCBS749
SN74LVT32245	96	32-Bit Bus Transceivers with 3-State Outputs		$+$						Call
SN74LVTH32245	96	32-Bit Bus Transceivers with 3-State Outputs		\checkmark						SCBS750
SN74LVTH32373	96	32-Bit Transparent D-Type Latches with 3-State Outputs		\checkmark						SCBS751
SN74LVTH32374	96	32-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs		\checkmark						SCBS752
SN74LVTH32501	114	32-Bit Universal Bus Transceivers with 3-State Outputs		$+$						Call

DEVICE SELECTION GUIDE

LVT

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY							LITERATURE REFERENCE
			MIL	LFBGA	SoIC	SSOP	TSSOP	TVSOP	VFBGA	
LVT Octals/Widebus ${ }^{\text {TM }}$ With Series Damping Resistors (SN74LVTH2xxx, SN74LVTH162xxx)										
SN74LVTH2245	20	Octal Bus Transceivers with Series Damping Resistors and 3 -State Outputs			\checkmark	\checkmark	\checkmark	\checkmark		SCBS707
SN74LVTH2952	24	Octal Bus Transceivers and Registers with 3-State Outputs			\checkmark	\checkmark	\checkmark			SCBS710
SN74LVT162240	48	16-Bit Buffers/Drivers with Series Damping Resistors and 3 -State Outputs				$+$	$+$	$+$		SCBS719
SN74LVTH162240	48	16-Bit Buffers/Drivers with Series Damping Resistors and 3 -State Outputs				\checkmark	\checkmark			SCBS685
SN74LVTH162241	48	16-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs				\checkmark	\checkmark			SCBS692
SN74LVT162244A	48	16-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs				$+$	$+$	$+$		SCBS718
SN74LVTH162244	48	16-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs	\checkmark			\checkmark	\checkmark			SCBS258
SN74LVT162245A	48	16-Bit Bus Transceivers with Series Damping Resistors and 3-State Outputs				\checkmark	\checkmark	$+$		SCBS714
SN74LVTH162245	48	16-Bit Bus Transceivers with Series Damping Resistors and 3-State Outputs	\checkmark			\checkmark	\checkmark			SCBS260
SN74LVTH162373	48	16-Bit Transparent D-Type Latches with 3-State Outputs	\checkmark			\checkmark	\checkmark			SCBS261
SN74LVTH162374	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs	\checkmark			\checkmark	\checkmark			SCBS262
SN74LVTH162541	48	16-Bit Buffers/Drivers with 3-State Outputs				\checkmark	\checkmark			SCBS690

PCA

I2C Inter-Integrated Circuit Applications

The ${ }^{2}{ }^{2} \mathrm{C}$ bus is a bidirectional two-wire bus for communicating between integrated circuits. The PCA and future PCF devices offered by TI are general-purpose logic to be used with the $\mathrm{I}^{2} \mathrm{C}$ or system management (SM) bus protocols.

PCA

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY			LItERATURE
			SOIC	SSOP	TSSOP	REFERENCE
PCA8550	16	Nonvolatile 5-Bit Registers with $1^{2} \mathrm{C}$ Interface	\checkmark	\checkmark	\checkmark	SCPS050

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array) GKE $=96$ pins	PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins	SOIC (small-outline integrated circuit) D $=8 / 14 / 16$ pins	TSSOP (thin shrink small-outline package) PW $=8 / 14 / 16 / 20 / 24 / 28$ pins
GKF $=114$ pins	QFP (quad flatpack)	DW $=16 / 20 / 24 / 28$ pins	DGG $=48 / 56 / 64$ pins
VFBGA (very-thin-profile fine-pitch ball grid array) GQL $=56$ pins (also includes 48 -pin functions)	$\begin{aligned} & \text { RC }=52 \text { pins (FB only) } \\ & \text { PH }=80 \text { pins (FIFO only) } \end{aligned}$	QSOP (quarter-size outline package) $D B Q=16 / 20 / 24 \text { pins }$	TVSOP (thin very small-outline package)
PDIP (plastic dual-in-line package)	PQ $=100 / 132$ pins (FIFO only)	SSOP (shrink small-outline package)	DBB $=80$ pins
$\mathrm{P}=8 \mathrm{pins}$	TQFP (plastic thin quad flatpack)	DB $=14 / 16 / 20 / 24 / 28 / 30 / 38 \mathrm{pins}$	SOT (small-outline transistor)
$N=14 / 16 / 20$ pins	PAH $=52$ pins	$D B Q=16 / 20 / 24$	DBV $=5$ pins
$N T=24 / 28$ pins	PAG $=64$ pins (FB only)	DL $=28 / 48 / 56$ pins	DCK $=5$ pins
NT 2428 pms	PM $=64$ pins	DL 284868 pins	
schedule	PN $=80$ pins		
schedule	PCA, PZ $=100$ pins (FB only)		
$\boldsymbol{\checkmark}$ = Now $\boldsymbol{+}$ = Planned	PCB $=120$ pins (FIFO only)		

S
 Schottky Logic

With a wide array of functions, Tl's S family continues to offer replacement alternatives for mature systems. This classic line of devices was at the cutting edge of performance when introduced, and it continues to deliver excellent value for many of today's designs. As the world leader in logic products, TI is committed to being the last major supplier at every price-performance node.

See www.ti.com/sc/logic for the most current data sheets.

DEVICE SELECTION GUIDE

S

DEVICE	$\begin{aligned} & \text { NO. } \\ & \text { PINS } \end{aligned}$	DESCRIPTION			AVAILABILITY				LITERATURE REFERENCE	
					MIL	PDIP	SOIC	SSOP		
SN74S00	14	Quad 2-Input NAND Gates			\checkmark	\checkmark	\checkmark		SDLS025	
SN74S02	14	Quad 2-Input NOR Gates			\checkmark	\checkmark	\checkmark		SDLS027	
SN74S04	14	Hex Inverters			\checkmark	\checkmark	\checkmark		SDLS029	
SN74S05	14	Hex Inverters with Open-Collector Outputs			\checkmark	\checkmark	\checkmark		SDLS030	
SN74S08	14	Quad 2-Input AND Gates			\checkmark	\checkmark	\checkmark		SDLS033	
SN74S09	14	Quad 2-Input AND Gates with Open-Collector Outputs			\checkmark	\checkmark	\checkmark		SDLS034	
SN74S10	14	Triple 3-Input NAND Gates			\checkmark	\checkmark	\checkmark		SDLS035	
SN74S20	14	Dual 4-Input NAND Gates			\checkmark	\checkmark	\checkmark		SDLS079	
SN74S32	14	Quad 2-Input OR Gates			\checkmark	\checkmark	\checkmark		SDLS100	
SN74S37	14	Quad 2-Input NAND Gates			\checkmark	\checkmark	\checkmark		SDLS103	
SN74S38	14	Quad 2-Input NAND Gates			\checkmark	\checkmark	\checkmark		SDLS105	
SN74S51	14	Dual 2-Wide 2-Input AND-OR-Invert Gates			\checkmark	\checkmark	\checkmark		SDLS113	
SN74S74	14	Dual D-Type Flip-Flops with Set and Reset			\checkmark	\checkmark	\checkmark		SDLS119	
SN74S85	16	4-Bit Magnitude Comparators			\checkmark	\checkmark	\checkmark		SDLS123	
SN74S86	14	Quad 2-Input Exclusive-OR Gates			\checkmark	\checkmark	\checkmark		SDLS124	
SN74S112A	16	Dual Negative-Edge-Triggered J-K Flip-Flops with Set and Reset			\checkmark	\checkmark	\checkmark		SDLS011	
SN74S124	16	Dual Voltage Controlled Oscillators			\checkmark	\checkmark	\checkmark		SDLS201	
SN74S132	14	Quad 2-Input NAND Gates with Schmitt-Trigger Inputs			\checkmark	\checkmark	\checkmark		SDLS047	
SN74S133	16	13-Input NAND Gates			\checkmark	\checkmark	\checkmark		SDLS202	
SN74S138A	16	3-to-8 Line Inverting Decoders/Demultiplexers			\checkmark	\checkmark	\checkmark		SDLS014	
SN74S139A	16	Dual 2-to-4 Line Decoders/Demultiplexers			\checkmark	\checkmark	\checkmark		SDLS013	
SN74S140	14	Dual 4-Input Positive-NAND $50-\Omega$ Line Drivers			\checkmark	\checkmark	\checkmark		SDLS210	
SN74S151	16	1-of-8 Data Selectors/Multiplexers			\checkmark	\checkmark	\checkmark		SDLS054	
SN74S153	16	Dual 1-0f-4 Data Selectors/Multiplexers			\checkmark	\checkmark			SDLS055	
SN74S157	16	Quad 2-to-4 Line Data Selectors/Multiplexers			\checkmark	\checkmark	\checkmark		SDLS058	
SN74S158	16	Quad 2-to-4 Line Data Selectors/Multiplexers			\checkmark	\checkmark	\checkmark		SDLS058	
SN74S163	16	Synchronous 4-Bit Binary Counters			\checkmark	\checkmark			SDLS060	
SN74S174	16	Hex D-Type Flip-Flops with Clear			\checkmark	\checkmark			SDLS068	
SN74S175	16	Quad D-Type Flip-Flops with Clear			\checkmark	\checkmark	\checkmark		SDLS068	
SN74S182	16	Look-Ahead Carry Generators			\checkmark	\checkmark			SDLS206	
SN74S195	16	4-Bit Parallel Access Shift Registers			\checkmark	\checkmark	\checkmark		SDLS076	
SN74S240	20	Octal Buffers/Drivers with 3-State Outputs			\checkmark	\checkmark	\checkmark		SDLS144	
SN74S241	20	Octal Buffers/Drivers with 3-State Outputs			\checkmark	\checkmark	\checkmark		SDLS144	
SN74S244	20	Octal Buffers and Line Drivers with 3-State Outputs			\checkmark	\checkmark	\checkmark		SDLS144	
SN74S257	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs			\checkmark	\checkmark	\checkmark		SDLS148	
commercial package description and availability										
LFBGA (low-profile fine-pitch ball grid array)$\begin{aligned} & \text { GKE }=96 \text { pins } \\ & \text { GKF }=114 \text { pins } \end{aligned}$			PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins	SOIC (small-outline integrated circuit) D $=8 / 14 / 16$ pins DW $=16 / 20 / 24 / 28$ pins		TSSOP (thin shrink small-outline package) PW $=8 / 14 / 16 / 20 / 24 / 28$ pins DGG $=48 / 56 / 64$ pins				
VFBGA (very-thin-profile fine-pitch ball grid array) GQL $=56$ pins (also includes 48-pin functions)			RC $=52$ pins (FB only) PH $=80$ pins (FIFO only) $P Q=100 / 132$ pins (FIFO only)	QSOP (quarter-size outine package) $\text { DBQ }=16 / 20 / 24 \text { pins }$		TVSOP (thin very small-outline package) DGV $=14 / 16 / 20 / 244 / 48 / 56$ pins DBB $=80$ pins				
PDIP (plastic d $\begin{aligned} & \mathrm{P}=8 \text { pins } \\ & \mathrm{N}=14 / 16 / 20 \mathrm{p} \\ & \mathrm{NT}=24 / 28 \text { pins } \end{aligned}$	ual-in-line ins	package)	$\begin{array}{ll} \begin{array}{l} \text { TQFP } \\ \text { (plastic thin quad flatpack) } \end{array} \\ \text { PAH } & 52 \text { pins } \\ \text { PAG } & =64 \text { pins (FB only) } \\ \text { PM } & =64 \text { pins } \\ \text { PN } & =80 \text { pins } \\ \text { PCA, PZ } & =100 \text { pins (FB only } \\ \text { PCB } & =120 \text { pins (FIFO only) } \end{array}$	$\begin{aligned} & \text { SSOP } \text { (shrink small-outline package) } \\ & \text { DB }=14 / 1 / 1 / 20 / 24 / 28 / 30 / 38 \text { pins } \\ & \text { DBQ }=161 / 2012 \\ & D L=28 / 48 / 56 \text { pins } \end{aligned}$		$\begin{aligned} & \text { SOT (small-outline transistor) } \\ & \text { DBV }=5 \text { pins } \\ & \text { DCK }=5 \text { pins } \end{aligned}$				
$\frac{\text { schedule }}{\boldsymbol{\nu}=\text { Now }+=\text { Planned }}$										

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY				LITERATUREREFERENCE
			MLL	PDIP	SOIC	SSOP	
SN74S260	14	Dual 5-Input NOR Gates	\checkmark	\checkmark	\checkmark		SDLS208
SN74S280	14	9-Bit Odd/Even Parity Generators/Checkers	\checkmark	\checkmark			SDLS152
SN74S283	16	9-Bit Binary Full Adders with Fast Carry	\checkmark	\checkmark			SDLS095
SN74S373	20	Octal Transparent D-Type Latches with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDLS165
SN74S374	20	Octal D-Type Edge-Triggered Flip-Flops with 3-State Outputs	\checkmark	\checkmark	\checkmark		SDLS165
SN74S381	20	Arithmetic Logic Units/Function Generators	\checkmark	\checkmark			SDLS168
SN74S1050	16	12-Bit Schottky Barrier Diode Bus-Termination Arrays		\checkmark	\checkmark		SDLS015
SN74S1051	16	12-Bit Schottky Barrier Diode Bus-Termination Arrays		\checkmark	\checkmark		SDLS018
SN74S1052	20	16-Bit Schottky Barrier Diode Bus-Termination Arrays		\checkmark	\checkmark		SDLS016
SN74S1053	20	16-Bit Schottky Barrier Diode Bus-Termination Arrays		\checkmark	\checkmark	\checkmark	SDLS017

SSTL/SSTV Stub Series-Terminated Logic

The SSTL interface is the computer industry's leading choice for next-generation technology in high-speed memory subsystems, adopted by JESD8-8 and JESD8-9 and endorsed by major memory-module, workstation, and PC manufacturers.

TI's SSTL family is optimized for 3.3-V V_{CC} operation. The SSTV family is optimized for $2.5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation. The devices offered in the SSTL/SSTV families are ideal solutions for address/control bus buffering in high-performance double-data-rate (DDR) memory systems.

HSTL

High-Speed Transceiver Logic

One of Tl's low-voltage interface solutions is HSTL. HSTL devices accept a minimal differential input swing from 0.65 V to 0.85 V (nominally) with the outputs driving LVTTL levels. HSTL is ideally suited for driving an address bus to two banks of memory. The HSTL input levels follow JESD8-6.

See www.ti.com/sc/logic for the most current data sheets.

SSTL/SSTV/HSTL

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY TSSOP	LITERATURE REFERENCE
SSTL				
SN74SSTL16837A	64	20-Bit SSTL_3 Interface Universal Bus Drivers with 3-State Outputs	\checkmark	SCBS675
SN74SSTL16847	64	20-Bit SSTL_3 Interface Buffers with 3-State Outputs	\checkmark	SCBS709
SN74SSTL16857	48	14-Bit SSTL_2 Registered Buffers	\checkmark	SCAS625
SSTV				
SN74SSTV16857	48	14-Bit Registered Buffers with SSTL_2 Inputs and Outputs	$+$	Call
SN74SSTV16859	64	13-Bit to 26-Bit Registered Buffers with SSTL_2 Inputs and Outputs	$+$	SCES297
HSTL				
SN74HSTL16918	48	9-Bit to 18-Bit HSTL-to-LVTTL Memory Address Latches	\checkmark	SCES096
SN74HSTL162822	64	14-Bit to 28-Bit HSTL-to-LVTTL Memory Address Latches	\checkmark	SCES091

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array) GKE $=96$ pins	PLCC (plastic leaded chip carrier) $\mathrm{FN}=20 / 28 / 44 / 68 / 84$ pins	SOIC (small-outline integrated circuit) D $=8 / 14 / 16$ pins	TSSOP (thin shrink small-outline package) PW $=8 / 14 / 16 / 20 / 24 / 28$ pins
GKF $=114$ pins	QFP (quad flatpack) RC $=52$ pins ($F B$ only) PH $=80$ pins (FIFO only) $P Q=100 / 132$ pins (FIFO only)	DW $=16 / 20 / 24 / 28 \mathrm{pins}$	DGG $=48 / 56 / 64$ pins
VFBGA (very-thin-profile fine-pitch ball grid array) GQL $=56$ pins (also includes 48 -pin functions)		QSOP (quarter-size outline package) $\text { DBQ }=16 / 20 / 24 \text { pins }$	TVSOP (thin very small-outline package) DGV $=14 / 16 / 20 / 24 / 48 / 56$ pins DBB $=80$ pins
PDIP (plastic dual-in-line package)		SSOP (shrink small-outline package)$\begin{aligned} & \mathrm{DB}=14 / 16 / 20 / 24 / 28 / 30 / 38 \text { pins } \\ & \mathrm{DBQ}=16 / 20 / 24 \\ & \mathrm{DL}=28 / 48 / 56 \text { pins } \end{aligned}$	
$\mathrm{P}=8 \mathrm{pins}$	$\begin{aligned} & \text { TQFP (plastic thin quad flatpack) } \\ & \begin{array}{l} \text { PAH } \quad=52 \text { pins } \\ \text { PAG } \quad=64 \text { pins (FB only) } \\ \text { PM } \quad=64 \text { pins } \\ \text { PN } \\ \text { PCA, } \end{array}=80 \text { pins } \\ & \text { PCB } \quad=100 \text { pins (FB only) } \\ & \text { Pa } \end{aligned}$		SOT (small-outline transistor)$\begin{aligned} & \text { DBV }=5 \text { pins } \\ & \text { DCK }=5 \text { pins } \end{aligned}$
$\mathrm{N}=14 / 16 / 20$ pins			
$N T=24 / 28$ pins			
schedule			
$\boldsymbol{\checkmark}$ =Now $\boldsymbol{+}$ = Planned			

TTL

Transistor-Transistor Logic

With a wide array of functions, TI's TTL family continues to offer replacement alternatives for mature systems. This classic line of devices was at the cutting edge of performance when introduced, and it continues to deliver excellent value for many of today's designs. As the world leader in logic products, TI is committed to being the last major supplier at every price-performance node.

See www.ti.com/sc/logic for the most current data sheets.

DEVICE SELECTION GUIDE

TTL

DEVICE	$\begin{aligned} & \text { NO. } \\ & \text { PINS } \end{aligned}$	DESCRIPTION			AVAILABILITY			Literature REFERENCE	
					MIL	PDIP	SOIC		
SN7400	14	Quad 2-Input NAND Gates			\checkmark	\checkmark	\checkmark	SDLS025	
SN7402	14	Quad 2-Input NOR Gates			\checkmark	\checkmark		SDLS027	
SN7404	14	Hex Inverters			\checkmark	\checkmark	\checkmark	SDLS029	
SN7405	14	Hex Inverters with Open-Collector Outputs			\checkmark	\checkmark	\checkmark	SDLS030	
SN7406	14	Hex Inverter Buffers/Drivers with Open-Collector Outputs			\checkmark	\checkmark	\checkmark	SDLS031	
SN7407	14	Hex Buffers/Drivers with Open-Collector Outputs			\checkmark	\checkmark	\checkmark	SDLS032	
SN7410	14	Triple 3-Input NAND Gates			\checkmark	\checkmark		SDLS035	
SN7414	14	Hex Schmitt-Trigger Inverters			\checkmark	\checkmark	\checkmark	SDLS049	
SN7416	14	Hex Inverter Buffer/Drivers with Open-Collector Outputs			\checkmark	\checkmark	\checkmark	SDLS031	
SN7417	14	Hex Buffers/Drivers with Open-Collector Outputs			\checkmark	\checkmark	\checkmark	SDLS032	
SN7425	14	Dual 4-Input NOR Gates with Strobe			\checkmark	\checkmark		SDLS082	
SN7432	14	Quad 2-Input OR Gates			\checkmark	\checkmark		SDLS100	
SN7437	14	Quad 2-Input NAND Gates			\checkmark	\checkmark		SDLS103	
SN7438	14	Quad 2-Input NAND Gates			\checkmark	\checkmark	\checkmark	SDLS105	
SN7445	16	BCD-to-Decimal Decoders/Drivers			\checkmark	\checkmark		SDLS110	
SN7447A	16	BCD to 7-Segment Decoders/Drivers			\checkmark	\checkmark		SDLS111	
SN7474	14	Dual D-Type Flip-Flops with Set and Reset			\checkmark	\checkmark	\checkmark	SDLS119	
SN7497	16	Synchronous 6-Bit Binary Rate Multipliers			\checkmark	\checkmark		SDLS130	
SN74107	14	Dual Negative-Edge-Triggered J-K Flip-Flops with Reset			\checkmark	\checkmark		SDLS036	
SN74121	14	Monostable Multivibrators with Schmitt-Trigger Inputs			\checkmark	\checkmark	\checkmark	SDLS042	
SN74123	16	Dual Retriggerable Monostable Multivibrators with Reset			\checkmark	\checkmark		SDLS043	
SN74128	14	Hex OR-Gate Line Drivers			\checkmark	\checkmark	\checkmark	SDLS045	
SN74132	14	Quad 2-Input NAND Gates with Schmitt-Trigger Inputs			\checkmark	\checkmark		SDLS047	
SN74145	16	BCD-to-Decimal Decoders/Drivers			\checkmark	\checkmark		SDLS051	
SN74148	16	8-to-3 Line Priority Encoders			\checkmark	\checkmark		SDLS053	
SN74150	24	1-of-16 Data Selectors/Multiplexers			\checkmark	\checkmark		SDLS054	
SN74154	24	4-to-16 Line Decoders/Demultiplexers			\checkmark	\checkmark		SDLS056	
SN74159	24	4-to-16 Line Decoders/Demultiplexers with Open-Collector Outputs				\checkmark		SDLS059	
SN74175	16	Quad D-Type Flip-Flops with Clear			\checkmark	\checkmark		SDLS068	
SN74193	16	Presettable Synchronous 4-Bit Up/Down Binary Counters			\checkmark	\checkmark		SDLS074	
SN74221	16	Dual Monostable Multivibrators with Schmitt-Trigger Inputs			\checkmark	\checkmark		SDLS213	
SN74265	16	Quad Complementary-Output Elements			\checkmark	\checkmark		SDLS088	
SN74273	20	Octal D-Type Flip-Flops with Clear				\checkmark		SDLS090	
SN74276	20	Quad J-Ǩ Flip-Flops				\checkmark	\checkmark	SDLS091	
SN74367A	16	Hex Buffers/Line Drivers with 3-State Outputs			\checkmark	\checkmark		SDLS102	
commercial package description and availability									
LFBGA (low-profile fine-pitch ball grid array)$\text { GKE }=96 \text { pins }$$\text { GKF }=114 \text { pins }$			PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins QFP (quad flatpack)	$\begin{aligned} & \text { SOIC (small-outline integrated circuit) } \\ & \text { D }=8 / 14 / 16 \text { pins } \\ & \text { DW }=16 / 20 / 24 / 28 \text { pins } \end{aligned}$	TSSOP (thin shrink small-outline package) PW $=8 / 14 / 16 / 20 / 24 / 28$ pins DGG $=48 / 56 / 64$ pins				
VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)			QFP (quad flatpack) RC = 52 pins (FB only) $\mathrm{PH}=80$ pins (FIFO only) PQ $=100 / 132$ pins (FIFO only)	QSOP (quarter-size outline package) DBQ $=16 / 20 / 24$ pins	TVSOP (thin very small-outline package) DGV $=14 / 16 / 20 / 24 / 48 / 56$ pins DBB $=80$ pins				
$\begin{aligned} & \text { PDIP (plastic } \\ & \mathrm{P}=8 \text { pins } \\ & \mathrm{N}=14 / 16 / 20 \\ & \mathrm{NT}=24 / 28 \text { pir } \end{aligned}$	pins	package)	$\begin{aligned} & \text { TQFP (plastic thin quad flatpack) } \\ & \text { PAH }=52 \text { pins } \\ & \text { PAG } \quad=64 \text { pins (FB only) } \\ & \text { PM } \quad=64 \text { pins } \\ & \text { PN } \\ & \text { PCA, } \\ & \text { PZ } \end{aligned}=100 \text { pins } \begin{aligned} & \text { pins (FB only) } \\ & \text { PCB } \quad=120 \text { pins (FIFO only) } \end{aligned}$	$\begin{aligned} & \text { SSOP (shrink small-outline package) } \\ & \text { DB }=14 / 16 / 20 / 24 / 28 / 30 / 38 \text { pins } \\ & \text { DQ }=16 / 20124 \\ & \text { DL }=28 / 48 / 56 \text { pins } \end{aligned}$	$\begin{aligned} & \text { SOT (small-outline transistor) } \\ & \text { DBV }=5 \text { pins } \\ & \text { DCK }=5 \text { pins } \end{aligned}$				
schedule									
$\boldsymbol{\checkmark}$ = Now	+ = Pla								

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY			LITERATURE REFERENCE
			MIL	PDIP	Solc	
SN74368A	16	Hex Inverting Buffers/Line Drivers with 3-State Outputs	\checkmark	\checkmark		SDLS102
SN74393	14	Dual 4-Bit Binary Counters	\checkmark	\checkmark		SDLS107

TVC

Translation Voltage Clamp Logic

TVC products are designed to protect components sensitive to high-state voltage-level overshoots.

New designs for PCs and other bus-oriented products require faster and lower-power devices built with advanced submicron semiconductor processes. Often, the I/Os of these devices are intolerant of high-state voltage levels on the communication buses used. The need for I/O protection became apparent for devices communicating with legacy buses, and the TVC family fills this need.

TVC devices offer an array of n-type metal-oxide semiconductor (NMOS) field-effect transistors (FETs) with the gates cascaded to a common gate input. TVC devices can be used as voltage limiters by connecting one of the FETs as a voltage reference transistor and the remainder as pass transistors. The low-voltage side of each pass transistor is limited to the voltage set by the reference transistor. All of the FETs in the array have essentially the same characteristics, so any one can be used as the reference transistor. Because the fabrication of the FETs is symmetrical, either port connection for each bit can be used as the low-voltage side, and the I/O signals are bidirectional through each FET.

Key features:

- No logic supply voltage required (no internal control logic)
- Used as voltage translators or voltage clamps
- $7-\Omega$ on-state resistance with gate at 3.3 V
- Any FET can be used as the reference transistor.
- Direct interface with GTL+ levels
- Accept any I/O voltage from 0 to 5.5 V
- Flow-through pinout for ease of printed circuit board layout
- Minimum fabrication process transistor characteristic variations

See www.ti.com/sc/logic for the most current data sheets.

TVC

DEVICE	NO. PINS	FUNCTION	AVAILABILITY				LIterature
			SOIC	SSOP	TSSOP	TVSOP	REFERENCE
SN74TVC3010	24	10-Bit Translation Voltage Clamps	\checkmark	\checkmark	\checkmark	\checkmark	SCDS088
SN74TVC16222A	48	22-Bit Translation Voltage Clamps		\checkmark	\checkmark	\checkmark	SCDS087

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array) GKE $=96$ pins	PLCC (plastic leaded chip carrier) $\mathrm{FN}=20 / 28 / 44 / 68 / 84 \mathrm{pins}$	SOIC (small-outline integrated circuit) D $=8 / 14 / 16$ pins	TSSOP (thin shrink small-outline package) $P W=8 / 14 / 16 / 20 / 24 / 28 \text { pins }$
GKF = 114 pins	QFP (quad flatpack) RC $=52$ pins (FB only) PH $=80$ pins (FIFO only) $P Q=100 / 132$ pins (FIFO only)	DW $=16 / 20 / 24 / 28$ pins	DGG $=48 / 56 / 64$ pins
VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)		QSOP (quarter-size outline package) $D B Q=16 / 20 / 24 \text { pins }$	TVSOP (thin very small-outline package) DGV $=14 / 16 / 20 / 24 / 48 / 56$ pins DBB $=80$ pins
PDIP (plastic dual-in-line package)		SSOP (shrink small-outline package)$\begin{aligned} & D B=14 / 16 / 20 / 24 / 28 / 30 / 38 \text { pins } \\ & D B Q=16 / 20 / 24 \\ & D L=28 / 48 / 56 \text { pins } \end{aligned}$	
$\mathrm{P}=8$ pins	$\begin{aligned} & \text { TQFP (plastic thin quad flatpack) } \\ & \begin{array}{l} \text { PAH } \\ \text { PAG } \end{array}=62 \text { pins } \\ & \text { PM } \quad=64 \text { pins (FB only) } \\ & \text { PN } \quad=84 \text { pins } \\ & \text { PCA, PZ } \\ & \text { PCB } \\ & =100 \text { pins (FB only) } \\ & \text { PC } \end{aligned}$		SOT (small-outline transistor)$\begin{aligned} & \text { DBV }=5 \text { pins } \\ & \text { DCK }=5 \text { pins } \end{aligned}$
$N=14 / 16 / 20$ pins			
$N T=24 / 28$ pins			
schedule			
schedule			
$\checkmark=$ Now $\boldsymbol{+}$ = Planned			

> LOGIC OVERVIEW

> FOCUS ON THE HISTORY OF LOGIC

CONTENTS

Device Names and Package Designators for TI Logic Products A-5
Device Names and Package Designators
for Logic Products Formerly Offered by Cypress Semiconductor A-6
Device Names and Package Designators
for Logic Products Formerly Offered by Harris Semiconductor A-7
Logic Symbolization Guidelines A-9
Moisture Sensitivity by Package A-15
Packaging Cross-Reference A-17

DEVICE NAMES AND PACKAGE DESIGNATORS FOR TI LOGIC PRODUCTS

Example:

1 Standard Prefix
Examples: \quad SN - Standard Prefix SNJ - Conforms to MIL-PRF-38535 (QML)

2 Temperature Range

Examples: 54 - Military

74 - Commercial

3 Family

Examples: Blank - Transistor-Transistor Logic
ABT - Advanced BiCMOS Technology
ABTE/ETL - Advanced BiCMOS Technology/
Enhanced Transceiver Logic
AC/ACT - Advanced CMOS Logic
AHC/AHCT - Advanced High-Speed CMOS Logic
ALB - Advanced Low-Voltage BiCMOS
ALS - Advanced Low-Power Schottky Logic
ALVC - Advanced Low-Voltage CMOS Technology
AS - Advanced Schottky Logic
AVC - Advanced Very Low-Voltage CMOS Logic
BCT - BiCMOS Bus-Interface Technology
CBT - Crossbar Technology
CBTLV - Low-Voltage Crossbar Technology
CD4000 - CMOS B-Series Integrated Circuits
F - F Logic
FB - Backplane Transceiver Logic/Futurebus+
FCT - Fast CMOS TTL Logic
GTL - Gunning Transceiver Logic
HC/HCT - High-Speed CMOS Logic
HSTL - High-Speed Transceiver Logic
LS - Low-Power Schottky Logic
LV - Low-Voltage CMOS Technology
LVC - Low-Voltage CMOS Technology
LVT - Low-Voltage BiCMOS Technology
PCA - ${ }^{2}$ C Inter-Integrated Circuit Applications S - Schottky Logic
SSTL/SSTV - Stub Series-Terminated Logic
TVC - Translation Voltage Clamp Logic

4 Special Features

Examples: \quad Blank $=$ No Special Features
C - Configurable V_{CC} (LVCC)
D - Level-Shifting Diode (CBTD)
H - Bus Hold (ALVCH)
K - Undershoot-Protection Circuitry (CBTK)
R - Damping Resistor on Inputs/Outputs (LVCR)
S - Schottky Clamping Diode (CBTS)
Z - Power-Up 3-State (LVCZ)

5 Bit Width

Examples: Blank = Gates, MSI, and Octals 1G - Single Gate
8 - Octal IEEE 1149.1 (JTAG)
16 - Widebus ${ }^{\text {TM }}$ (16,18 , and 20 bit)
18 - Widebus IEEE 1149.1 (JTAG)
32 - Widebus $+^{\text {TM }}$ (32 and 36 bit)

6 Options

Examples: Blank = No Options
2 - Series Damping Resistor on Outputs
4 - Level Shifter
$25-25-\Omega$ Line Driver

7 Function

Examples: 244 - Noninverting Buffer/Driver
374 - D-Type Flip-Flop
573 - D-Type Transparent Latch
640 - Inverting Transceiver

8 Device Revision

Examples: Blank = No Revision
Letter Designator A-Z

9 Packages

Commercial: D, DW - Small-Outline Integrated Circuit (SOIC)
DB, DL - Shrink Small-Outline Package (SSOP)
DBB, DGV - Thin Very Small-Outline Package (TVSOP)
DBQ - Quarter-Size Outline Package (QSOP)
DBV, DCK - Small-Outline Transistor Package (SOT)
DGG, PW - Thin Shrink Small-Outline Package (TSSOP)
FN - Plastic Leaded Chip Carrier (PLCC)
GKE, GKF - MicroStar BGA™ Low-Profile Fine-Pitch
Ball Grid Array (LFBGA)
GQL - MicroStar Junior BGA Very-Thin-Profile
Fine-Pitch Ball Grid Array (VFBGA)
N, NP, NT - Plastic Dual-In-Line Package (PDIP)
NS, PS - Small-Outline Package (SOP)
PAG, PAH, PCA, PCB, PM, PN, PZ -
Thin Quad Flatpack (TQFP)
PH, PQ, RC - Quad Flatpack (QFP)
Military: FK - Leadless Ceramic Chip Carrier (LCCC)
GB - Ceramic Pin Grid Array (CPGA)
HFP, HS, HT, HV - Ceramic Quad Flatpack (CQFP)
J, JT - Ceramic Dual-In-Line Package (CDIP)
W, WA, WD - Ceramic Flatpack (CFP)

10 Tape and Reel

Devices in the DB and PW package types include the R designation for reeled product. Existing product inventory designated LE may remain, but all products are being converted to the R designation.
Examples: Old Nomenclature - SN74LVTxxxDBLE
New Nomenclature - SN74LVTxxxADBR
LE - Left Embossed (valid for DB and PW packages only)
R - Standard (valid for all surface-mount packages)
There is no functional difference between LE and R designated products, with respect to the carrier tape, cover tape, or reels used.

CYFCT Nomenclature

Example:

CY	74	FCT	162	H	245	A	T	PV	C	T
1	2	3	4	5	6	7	8	9	10	11

1 Prefix Designation
for Acquired Cypress FCT Logic
May be blank to accommodate 18-character limitation
2 Temperature Range

```
Examples: 54 - Military \(\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.125^{\circ} \mathrm{C}\right)\)
74 - Commercial/Industrial \(\left(-40^{\circ} \mathrm{C}\right.\) to \(\left.85^{\circ} \mathrm{C}\right)\)
29 - Commercial/Industrial or Military (see data sheet)
```


3 Family

Example: \quad FCT - FAST ${ }^{\text {тм }}$ CMOS TTL Logic

416 or Greater Bit Width
 With Balanced Drive or 3.3-V Operation

Examples: Blank
$16 x$ - 16 or Greater Bit Width
With Balanced Drive or 3.3-V Operation
162 - Balanced Drive (series output resistors) 163-3.3 V

5 Bus Hold

Examples: Blank = No Bus Hold
H - Bus Hold (present only when preceded by 16x - see item 4)

6 Type Designation

Up to Five Digits
Examples: 245
1652
16245

7 Speed Grade	
Examples:	```Blank = No Speed Grade A B C D E```
8 TTL or CMOS Outputs	
Examples:	$\begin{aligned} & \text { Blank = CMOS Outputs } \\ & \text { T - TTL Outputs } \end{aligned}$
9 Packages	
Examples:	P - Plastic Dual-In-Line Package (PDIP) (N) PA - Thin Shrink Small-Outline Package (TSSOP) (DGG/G) PV - Shrink Small-Outline Package (SSOP) (DL) Q - Quarter-Size Outline Package (QSOP) (DBQ) SO - Small-Outline Integrated Circuit (SOIC) (DL)

10 Processing

Example: \quad - Commercial Processing

11 Tape and Reel

Example: T-Tape and Reel Packing

DEVICE NAMES AND PACKAGE DESIGNATORS FOR LOGIC PRODUCTS FORMERLY OFFERED BY HARRIS SEMICONDUCTOR

1 Prefix Designation for Acquired Harris Digital Logic

2 Type Designation

Up to Five Digits

3 Supply Voltage

Examples: A-12 V Maximum
$B-18 \vee$ Maximum
UB - 18 V Maximum, Unbuffered

4 Packages

Examples: D - Ceramic Side-Brazed Dual-In-Line Package (DIP)
E - Plastic DIP
F - Ceramic DIP
K - Ceramic Flatpack
M - Plastic Surface-Mount
Small-Outline Integrated Circuit (SOIC)
SM - Plastic Shrink SOIC (SSOP)
M96 - Reeled Plastic Surface-Mount SOIC
SM96 - Reeled Plastic Shrink SOIC (SSOP)

5 High-Reliability Screening

Military Products Only
Examples: 3 - Noncompliant With MIL-STD-883, Class B
3A - Fully Compliant With MIL-STD-883, Class B

CDAC/CDACT Advanced CMOS and CDHC/CDHCT/CDHCU High-Speed CMOS Nomenclature

1 Prefix Designation
for Acquired Harris Digital Logic

2 Temperature Range

Examples: 54 - Military ($-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$) 74 - Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$

3 Family

Examples: AC - Advanced CMOS Logic, CMOS Input Levels ACT - Advanced CMOS Logic, TTL Input Levels HC - High-Speed CMOS Logic, CMOS Input Levels HCT - High-Speed CMOS Logic, TTL Input Levels HCU - High-Speed CMOS Logic, CMOS Input Levels, Unbuffered

4 Type Designation

Up to Five Digits

5 Packages

Examples: E - Plastic Dual-In-Line Package (DIP)
EN - Plastic Slim-Line 24-Lead DIP
F - Ceramic DIP
M - Plastic Surface-Mount
Small-Outline Integrated Circuit (SOIC)
SM - Plastic Shrink SOIC (SSOP)
M96 - Reeled Plastic Surface-Mount SOIC
SM96 - Reeled Plastic Shrink SOIC (SSOP)

6 High-Reliability Screening

Military Products Only
Example: $\quad 3 \mathrm{~A}$ - Fully Compliant With MIL-STD-883

CDFCT Nomenclature

1 Prefix Designation for Acquired Harris Digital Logic

2 Temperature Range
Examples: 54 - Military ($-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$) 74 - Commercial ($0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)

3 Family

Example: FCT - Bus Interface, TTL Input Levels

4 Type Designation

Up to Five Digits

5 Speed Grade

Example: Blank or A - Standard Equivalent to FAST™

6 Packages

Examples: E - Plastic Dual-In-Line Package (DIP) EN - Plastic Slim-Line 24-Lead DIP F - Ceramic DIP
M - Plastic Surface-Mount Small-Outline Integrated Circuit (SOIC)
SM - Plastic Shrink SOIC (SSOP) M96 - Reeled Plastic Surface-Mount SOIC SM96 - Reeled Plastic Shrink SOIC (SSOP)

In the past, logic products had the complete device name on the package. It has become necessary to reduce the character count, as package types have become smaller and logic names longer. Information in the following tables is intended to help interpret Tl's logic symbolization.

Table A-1 defines a "name rule" (A, B, or C) based on the type of package for a specific device. Each name rule differs in the number of characters that are symbolized on the package. Name rule A uses the complete, or fully qualified, device name. Name rules B and C include fewer characters, respectively. Table A-2 is a listing of the various logic products by name rule.

Example: Assume a 48 -pin TVSOP with the symbolization $V^{* * *}$. Locate the 48 -pin TVSOP (DGV) package in Table A-1, and find the name rule used (C). Proceed to Table A-2, and find $\mathrm{VH}^{* * *}$ in the Name Rule C column. The most complete device number, SN74ALVCH16***, is located in the Name Rule A column.

See the following information and Tables A-3 and A-4 for little-logic (PicoGate Logic and Microgate Logic) packages.

Table A-1. Name Rule Decision Tree

PACKAGE	NO. PINS	NAME RULE	PACKAGE DESIGNATOR
LFBGA	96	C	GKE
	114	C	GKF
PDIP	8	A	P
	14, 16, 20	A	N
	24, 28	A	NP, NT
PLCC	28	A	FN
	44	B	FN
	68	A	FN
QSOP	16, 20, 24	B	DBQ
SOIC	8	C	D
	14, 16	B	D
	16, 20, 24, 28	B	DW
QFP	52	B	RC
	80	A	PH
	100, 132	A	PQ
SOP	8	C	PS
	14, 16, 20, 24	B	NS
SSOP	14, 16, 20, 24, 28, 30, 38	C	DB
	28, 48, 56	B	DL
TSSOP	8, 14, 16, 20, 24, 28	C	PW
	48, 56, 64	B	DGG
TVSOP	14, 16, 20, 24, 48, 56	C	DGV
	80	B	DBB
TQFP	52	B	PAH
	64	B	PAG, PM
	80	B	PN
	100	B	PZ, PCA
	120	B	PCB
VFBGA	56	C	GQL

Table A-2. Typical Logic Package Symbolization Guidelines

NAME RULE A	NAME RULE B	NAME RULE C
74AC***	AC***	AC***
74AC11***	AC11***	AE***
74ACT***	ACT***	AD**
74ACT1***	ACT1***	AU***
74ACT11***	ACT11***	AT***
CD74HC***	HC***M	HJ***
CD74HCT***	HCT***M	HK***
CD74AC***	$\mathrm{AC}^{* * *} \mathrm{M}$	HL***
CD74ACT***	ACT***	HM ${ }^{* *}$
SN64BCT***	DCT***	DT***
SN64BCT2***	DCT2***	DA***
SN64BCT25***	DCT25***	DC***
SN64BCT29***	DCT29***	DD***
SN74ABT***	ABT***	AB***
SN74ABT***-S	ABT***-S	$A B^{* * *}$-S
SN74ABT16***	ABT16***	AH***
SN74ABT162***	ABT162***	AH2***
SN74ABT18***	ABT18***	AJ***
SN74ABT2***	ABT2***	AA ${ }^{* * *}$
SN74ABT5***	ABT5**	AF ${ }^{* * *}$
SN74ABT8***	ABT8***	AG***
SN74ABTE16***	ABTE16***	AN**
SN74ABTH**	ABTH**	$\mathrm{AK}^{* * *}$
SN74ABTH16***	ABTH16***	AM ${ }^{* *}$
SN74ABTH162***	ABTH162***	AM2***
SN74ABTH18***	ABTH18***	AL***
SN74ABTR2***	ABTR2***	$\mathrm{AR}^{* * *}$
SN74AHC***	AHC***	HA**
SN74AHC16***	AHC16***	HE***
SN74AHCH16***	AHCH16***	HH**
SN74AHCT***	AHCT***	$\mathrm{HB}^{* * *}$
SN74AHCT16***	AHCT16***	HF***
SN74AHCTH16***	AHCTH16***	HG***
SN74AHCU***	AHCU***	HD**
SN74ALB16***	ALB16***	AV***
SN74ALS***	ALS***	$\mathrm{G}^{* * *}$
SN74ALVC***	ALVC***	VA***
SN74ALVC16***	ALVC16***	VC***
SN74ALVC162***	ALVC162***	VC2***
SN74ALVCH***	ALVCH***	VB***

NAME RULE A	NAME RULE B	NAME RULE C
SN74ALVCH16***	ALVCH16***	VH***
SN74ALVCH162***	ALVCH162***	VH2***
SN74ALVCH32***	ALVCH32***	$\mathrm{ACH}^{* * *}$
SN74ALVCHG16***	ALVCHG16***	VG***
SN74ALVCHG162***	ALVCHG162***	VG2***
SN74ALVCHR16***	ALVCHR16***	VR ${ }^{* * *}$
SN74ALVCHR162***	ALVCHR162***	VR2***
SN74ALVCHS162***	ALVCHS162***	VS2***
SN74ALVTH16***	ALVTH16***	VT***
SN74ALVTH162***	ALVTH162***	VT2***
SN74ALVTH32***	ALVTH32***	VL***
SN74AS***	AS***	AS ${ }^{* * *}$
SN74AS***	74AS***	AS ${ }^{* * *}$
SN74AVC***	AVC***	AVC***
SN74AVC16***	AVC16***	CVA***
SN74AVC32***	AVC32***	ACV***
SN74AVCH16***	AVCH16***	CVH***
SN74BCT***	BCT***	BT***
SN74BCT11***	BCT11***	BB***
SN74BCT2***	BCT2***	BA ${ }^{* * *}$
SN74BCT25***	BCT25***	BC***
SN74BCT29***	BCT29***	BD***
SN74BCT8***	BCT8***	$\mathrm{BG}^{* *}$
SN74CBT***	CBT***	CT ${ }^{* * *}$
SN74CBT16***	CBT16***	$\mathrm{CY}^{* * *}$
SN74CBT3***	CBT3***	CU***
SN74CBT6***	CBT6***	CT6***
SN74CBTD***	CBTD***	CD***
SN74CBTD16***	CBTD16***	CYD***
SN74CBTD3***	CBTD3***	CC ${ }^{* * *}$
SN74CBTH16***	CBTH16***	CYH***
SN74CBTLV16***	CBTLV16***	CN***
SN74CBTLV3***	CBTLV3***	CL***
SN74CBTS***	CBTS***	CS ${ }^{* * *}$
SN74CBTS16***	CBTS16***	CYS***
SN74CBTS3***	CBTS3***	CR**
SN74F***	$\mathrm{F}^{* * *}$	$\mathrm{F}^{* * *}$
SN74F***	$74 \mathrm{~F}^{* * *} \dagger$	$\mathrm{F}^{* * *}$
SN74HC***	$\mathrm{HC}^{* * *}$	$\mathrm{HC}^{* * *}$
SN74HCT***	HCT***	$\mathrm{HT}^{* * *}$

[^4]
LOGIC SYMBOLIZATION GUIDELINES

Table A-2. Typical Logic Package Symbolization Guidelines (continued)

NAME RULE A	NAME RULE B	NAME RULE C
SN74HCU***	HCU***	HU**
SN74LS***	LS***	LS***
SN74LS***	74LS***	LS***
SN74LV***	LV***	LV***
SN74LV***	74LV*** \dagger	LV***
SN74LVC***	LVC***	LC***
SN74LVC16***	LVC16***	LD***
SN74LVC2***	LVC2***	LE***
SN74LVC4***	LVC4***	LJ***
SN74LVC8***	LVC8***	LC8***
SN74LVCC3***	LVCC3***	LH***
SN74LVCC4***	LVCC4***	LG***
SN74LVCH***	LVCH***	LCH***
SN74LVCH16***	LVCH16***	LDH***
SN74LVCH162***	LVCH162***	LN2***
SN74LVCH32***	LVCH32***	$\mathrm{CH}^{* * *}$
SN74LVCHR162***	LVCHR162***	LR2***
SN74LVCR2***	LVCR2***	LER***

NAME RULE A	NAME RULE B	NAME RULE C
SN74LVCU***	LVCU***	LCU***
SN74LVCZ***	LVCZ***	CV***
SN74LVCZ16***	LVCZ16***	CW***
SN74LVT***	LVT***	LX***
SN74LVT***-S	LVT***-S	LX***-S
SN74LVT162***	LVT162***	LZ***
SN74LVT18***	LVT18***	T18***
SN74LVT2***	LVT2***	LY***
SN74LVTH***	LVTH***	LXH***
SN74LVTH16***	LVTH16***	LL***
SN74LVTH162***	LVTH162***	LL2***
SN74LVTH2***	LVTH2***	LK***
SN74LVTR***	LVTR ${ }^{* * *}$	LXR***
SN74LVTT***	LVTT***	LXT***
SN74LVTZ***	LVTZ***	LXZ***
SN74LVU***	LVU***	LU***
SN74S***	S***	S***
SN74S***	74S***	S***

[^5]
DCK and DBV 5-Pin SOT Packages

The DCK (PicoGate Logic) and DBV (Microgate Logic) 5-pin packages are very small and have space for only three or four symbolization characters. The format of the characters is $1,2,4$, or $1,2,3,4$ where:

PACKAGE	DCK	DBV	TABLE
Device technology	1	1	See Table A-3
Device function	2	2,3	See Table A-4
Wafer fabrication/assembly test site code	3	4	

Tables A-3 and A-4 list the possible device technology and function codes for the 5-pin packages. In some cases, the tables may list a device technology or function that is not yet available. The wafer fabrication and assembly-test site is coded into the final character for both packages. Additional tracking information is coded into "dots" or marks adjacent to the device pins. For further information about a specific device, please contact your local field sales office or the TI Product Information Center.

PicoGate Logic

PicoGate Logic uses a three-character name rule. The first character denotes the technology family, the second character denotes device function, and the third character denotes a wafer fabrication and assembly-test facility combination (for internal tracking, here denoted by x).

Example: A PicoGate Logic device with a package code of BAx is an SN74AHCT1G00DBV.

Microgate Logic

Microgate Logic uses a four-character name rule. The first character denotes the technology family, the second and third characters denote device function, and the fourth character denotes a wafer fabrication and assembly-test facility combination (for internal tracking, here denoted by x).

Example: A Microgate Logic device with a package code of A02x is an SN74AHC1G02DCK.

Table A-3. Device Technology Codes

TECHNOLOGY	CODE
AHC	A
AHCT	B
ALVC	G
CBT	S
CBTD	P
LVC1G**A $^{\text {LVC1G**B }}$	L
$\mathrm{CBTLV1G}^{\mathrm{CB}}$	

Table A-4. Device Function Codes

FUNCTION	DCK	DBV
00	A	00
02	B	02
04	C	04
05	5	05
06	T	06
07	V	07
08	E	08
125	M	25
126	N	26
132	Y	3 B
14	F	14
157		57
240	K	40
241		41
245		45
32	G	32
79	R	79
80	X	80
86	H	86
4066	L	
U 04	D	U 4

Table A-5 lists the moisture sensitivity of TI packages by level. Some packages differ in level by pin count. Where no pin count is shown, all packages of that type used in the assembly of logic products have the same moisture-sensitivity level.

Table A-5. Package Moisture Sensitivity by Levels

PACKAGE	LEVEL 1	LEVEL 2	LEVEL 2A	LEVEL 3	LEVEL 4
PLCC	FN (20/28)			FN (44/68)	
SOT	DBV (5) DCK (5)				
SOP	NS (14/16/20) PS (8)				
SOIC	D (8/14/16) DW (16/20/24/28)				
SSOP	DB (14/16/20/24/28/30/38) DBQ (16/20/24) DL (28/48/56)				
TSSOP	DGG (48/56/64) PW (8/14/16/20/24)				
TVSOP	DBB (80) DGV (14/16/20/24/48/56)				
QFP		RC (52)			
TQFP		PAG (64) PN (80) PZ (100)			
MicroStar BGA				GKE (96) GKF (114)	
MicroStar Junior BGA			GQL (56)		

NOTES: 1. No current device packages are moisture-sensitivity levels 5 or 6 .
2. Some device types in these packages may have different moisture-sensitivity levels than shown.

Tl's through-hole packages (N, NT) have not been tested per the JESD22-A112A/JESD22-A113A standards. Due to the nature of the through-hole PCB soldering process, the component package is shielded from the solder wave by the PC board and is not subjected to the higher reflow temperatures experienced by surface-mount components.

Tl's through-hole component packages are classified as not moisture sensitive.

MOISTURE SENSITIVITY BY PACKAGE

The information in Table A-6 was derived using the test procedures in JESD22-A112A and JESD22-A113A. The Floor Life column lists the time that products can be exposed to the open air while in inventory or on the manufacturing floor. The worst-case environmental conditions are given. The Soak Requirements column lists the preconditioning, or soak, conditions used when testing to determine the floor-life exposure time.

Table A-6. Moisture-Sensitivity Levels
(JESD22-A112A/JESD22-A113A)

LEVEL	FLOOR LIFE		SOAK REQUIREMENTS	
	CONDITIONS	TIME (hours)	CONDITIONS	TIME (hours)
1	$\leq 30^{\circ} \mathrm{C} / 90 \% \mathrm{RH}$	Unlimited	$85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}$	168
2	$\leq 30^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$	1 year	$85^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$	168
2 A	$\leq 30^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$	4 weeks	$30^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$	696
				$\mathrm{X}+\mathrm{Y}=\mathrm{Z} \mathrm{\dagger}$
3	$\leq 30^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$	168	$30^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$	$24+168=192$
4	$\leq 30^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$	72	$30^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$	$24+72=96$
5	$\leq 30^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$	24	$30^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$	$24+24=48$
6	$\leq 30^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$	6	$30^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$	$0+6=6$

RH = Relative humidity
$\dagger \mathrm{X}+\mathrm{Y}=\mathrm{Z}$, where:
$\mathrm{X}=$ Default value of time between bake and bag. If the actual time exceeds this
value, use the actual time and adjust the soak time (Z). For levels $3-6, X$ can be standardized at 24 hours as long as the actual time does not exceed this value.
$\mathrm{Y}=$ Floor life of package after it is removed from dry-pack bag
$Z=$ Total soak time for the evaluation
For more information, see:
Packaging Material Standards for Moisture-Sensitive Items, EIA Std EIA-583
Symbol and Labels for Moisture-Sensitive Devices, EIA/JEDEC Engineering Publication EIA/JEP113-B, May 1999

Guidelines for the Packing, Handling, and Repacking of Moisture-Sensitive Components, EIA/JEDEC Publication EIA/JEP124, December 1995

Table A-7 is a packaging cross-reference for TI and other semiconductor manufacturing companies. If a specific alternate source agreement exists between TI and a particular company, the cell is shaded.

Table A-7. Logic Package Competitive Cross-Reference

PACKAGE TYPE	NO. PINS	PACKAGE										
		TI	TIACQUIRED HARRIS	TIACQUIRED CYPRESS	FAIRCHILD	HITACHI	IDT	IDTACQUIRED QUALITY	ON (formerly Motorola)	PERICOM	PHILIPS	TOSHIBA
LFBGA	96	GKE	-	-	-	-	BF	-	-	-	GKE	-
	114	GKF	-		-	-	BF	-	-	NB	GKF	-
PDIP	14	N	E	P	N, P	DP	P	P	N	P	N	P
	16	N	E	P	P	DP	P	-	N	P	N	-
	20	N	E	P	P	DP	P	-	N	P	N	-
	24	NT	EN	P	SP	DP	PT	P	N	P	N2	-
	28	NT	-	P	-	DP	PT	-	-	P	-	-
SOIC	14	D	M	S0	M,S	FP	DC	S1	D	W	D	FN
	16	D	M	S0	M,S	FP	DC	S1	D	W	D	FN
	16	DW	-	S0	-	-	SO	S0	DW	S	-	-
	20	DW	M	S0	WM	FP	SO	S0	DW	S	DW	FW
	24	DW	M	S0	WM	FP	SO	S0	DW	S	DW	-
	28	DW	-	S0	-	FP	SO	S0	-	S	DW	-
SSOP	14	DB	-	-	SJ	-	-	-	SD	H	DB	FS
	16	DB	SM	-	SJ	-	-	-	SD	H	DB	FS
	16	DBQ	-	Q	-	-	Q	Q	-	Q	-	-
	20	DB	SM	-	MSA	-	PY	-	SD	H	DB	FS
	20	DBQ	-	Q	QSC	-	Q	Q	-	Q	-	-
	24	DB	SM	Q	MSA	-	PY	-	SD	H	DB	-
	24	DBQ	-	Q	-	-	Q	Q	-	Q	-	-
	28	DB	-	-	-	-	PY	-	-	H	DB	-
	30	DB	-	-	-	-	-	-	-	-	-	-
	38	DB	-	-	-	-	-	-	-	-	-	-
	28	DL	-	-	-	-	-	-	-	-	-	-
	48	DL	-	PV	MEA	-	PV	PV	-	V	DL	-
	56	DL	-	PV	MEA	-	PV	PV	-	V	DL	-
TSSOP	14	PW	-	-	MTC	TTP	-	-	DT	L	PW/DH	FS
	16	PW	-	-	MTC	TTP	-	-	DT	L	PW/DH	FS
	20	PW	-	-	MTC	TTP	PG	-	DT	L	PW/DH	FS
	24	PW	-	-	MTC	TTP	PG	PA	DT	L	PW/DH	-
	28	PW	-	-	-	TTP	PG	-	-	L	-	-
	48	DGG	-	PA	MTD	TTP	PA	PA	-	A	DGG	FT
	56	DGG	-	PA	MTD	TTP	PA	PA	-	A	DGG	FT
	64	DGG	-	-	-	TTP	-	-	-	-	-	-

Table A-7. Logic Package Competitive Cross-Reference (continued)

PACKAGE TYPE	NO. PINS	PACKAGE											
		TI	TIACQUIRED HARRIS	TIACQUIRED CYPRESS	FAIRCHILD	HITACHI	IDT	IDTACQUIRED QUALITY	$\begin{gathered} \hline \text { ON } \\ \text { (formerly } \\ \text { Motorola) } \end{gathered}$	PERICOM	PHILIPS	TOSHIBA	
TVSOP	14	DGV	-	-	-	-	-	-	-	-	DGV	-	
	16	DGV	-	-	-	-	-	-	-	-	-	-	
	20	DGV	-	-	-	-	-	-	-	-	-	-	
	24	DGV	-	-	-	-	-	-	-	-	-	-	
	48	DGV	-	-	-	-	PF†	Q1 \ddagger	-	K§	-	-	
	56	DGV	-	-	-	-	PF†	-	-	K6	-	-	
	80	DBB	-	-	-	TTP	-	-	-	-	-	-	
VFBGA	56	GQL	-	-	-	-	-	-	-	-	-	-	
Single Gate	5	DBV	-	-	P5	MPAK	-	-	-	-	-	F	
	5	DCK	-	-	-	CMPAK	-	-	-	-	DCK	FU	
Dual Gate	8	DCT	-	-	-	SSOP-8	-	-	-	-	-	FU	
	8	DCU	-	-	-	-	-	-	-	-	-	FK	
Tape and ReelII		R\#\|		96	T	X	R	T/R	X	$\begin{gathered} \text { T1, T3, } \\ \text { T4, } \\ \text { R1, R2, } \\ \text { RL } \end{gathered}$	X	-T	EL

†IDT has a TSSOP with similar specifications and lead pitch to TI's TVSOP package.
\ddagger Quality Semiconductor's QVSOP package has the same pitch but slightly different footprint than Tl's TVSOP package.
§ Pericom has a QVSOP with similar specifications and lead pitch to Tl's TVSOP package.
IT Tape and reel packaging is valid for surface-mount packages only. All orders must be for whole reels.
\#LE = Left-embossed tape and reel may be seen with some DB and PW packages, however, the nomenclature is transitioning to R.
$\| \mathrm{R}=$ Standard tape and reel (required for DBB, DBV, and DGG; optional for D, DL, and DW packages)

LEGEND:

\square TI and this company have an alternate source agreement.

Logic Devices

Tables A-8 through A-11 list the standard pack quantities, by package type, for tubes, reels, boxes, and trays, respectively.

Table A-8. Tube Quantities

	PIN COUNT									
	8	14	16	20	24	28	44	48	56	68
DIP	50	25	25	20	15	13	N/A	N/A	N/A	N/A
PLCC	N/A	N/A	N/A	46	N/A	37	26	N/A	N/A	18
SOIC	75	50	40	25	25	20	N/A	N/A	N/A	N/A
SSOP	N/A	N/A	NS	N/A	N/A	40	N/A	25	20	N/A

NOTE 1: QSOP (DBQ) and EIAJ devices (DB, NS, PS, and PW packages) are not available in tubes.
Table A-9. Reel Quantities

		PACKAGE DESIGNATOR	UNITS PER REEL
EIAJ surface mount	DBR/DBLE, NSR/NSLE, PWR/PWLE	2000	
	$96 / 114$ pin	GKE, GKF	1000
	28 pin	FNR	750
	44 pin	FNR	500
QSOP	$16 / 20 / 24$ pin	DBQR	2500
	$48 / 56$ pin	DLR	1000
	$14 / 16$ pin	DR	2500
	Widebody 16 pin	DWR	2000
	$20 / 24$ pin	DWR	2000
	28 pin	DWR	1000
TQFP	64 pin	PMR	1000
TSSOP		DGGR	2000

Table A-10. Box Quantities

		PACKAGE DESIGNATOR
DIP	UNITS PER BOX	
	N	1000
	NT	750
SOIC	NP	700
SSOP	$48 / 56$ pin	D, DW

Table A-11. Tray Quantities

		PACKAGE DESIGNATOR	UNITS PER TRAY
TQFP	64 pin	PM	160

LOGIC OVERVIEW
 FOCUS ON THE HISTORY OF LOGIC

Tables B-1 through B-4 list equivalent or similar product types for most logic families available in the industry, separated by voltage node and specialty logic. As the world leader in logic products, TI offers the broadest logic portfolio to meet your design needs.

Alternate sourcing agreements between TI and other companies are shown with shaded table cells. Crosshatched cells are used where the products are identical (or nearly identical). Cells with no background are used where the products are similar.

Table B-1. 5-V Logic

TI	FAIRCHILD	HITACHI	IDT	ON	PERICOM	PHILIPS	TOSHIBA
ABT	ABT	ABT				ABT	ABT
AC	AC	AC		AC			AC
ACT	ACT	ACT		ACT			ACT
AHC	VHC			VHC		AHC	
AHCT	VHCT			VHCT		AHCT	
AHC1G	NC7S					HC1G	7SHU
AHCT1G							
ALS	ALS					ALS	
AS	AS						
BCT	BCT			BC			BC
CBT/BUS	FST		FST, QS		PI5C		
CD4000	CD4000			MC14000			
F	F			F		F	
FCT			FCT		FCT		
HC	HC	HC		HC		HC	HC
HCT	HCT	HCT		HCT		HCT	HCT
LS	LS			LS			
S	S						
TTL	TTL						

LEGEND:TI and this company have an alternate source agreement.
Same product but no alternate source agreement
NAME Similar product and technology

[^6]
LOGIC PURCHASING TOOL/ALTERNATE SOURCES

Table B-2. 3.3-V Logic

TI	FAIRCHILD	HITACHI	IDT	ON	PERICOM	PHILIPS	TOSHIBA
ALB							
ALVC	VCX	ALVC	ALVC	VCX	ALVC	ALVC	VCX
CBTLV			QS3VH		P13B		
LV	LVQ/LVX	LV		LVQ/LVX		LV	LVQ/LVX
LVC	LCX	LVC	LVC/ LCX	LCX	LCX/LPT	LVC	LCX
LVT	LVT	LVT				LVT	

LEGEND:

TI and this company have an alternate source agreement.
\square / \angle
Same product but no alternate source agreement
Similar product and technology

Table B-3. 2.5-V Logic

TI	PERICOM	PHILIPS
ALVT	ALVT	ALVT
AVC	AVC	AVC

LEGEND:

TI and this company have an alternate source agreement.
Same product but no alternate source agreement
NAME Similar product and technology

Table B-4. Specialty Logic

TI	FAIRCHILD	HITACHI	IDT	PERICOM	PHILIPS
ABTE	ETL/VME				
FB	DS				FB
GTL					GTL
GTLP	GTLP			GTLP	
HSTL					
JTAG	SCAN		QS3J		
TVC					GTLL
PCA					PCA
SSTL		SSTL			

LEGEND:

TI and this company have an alternate source agreement.

Same product but no alternate source agreement

Similar product and technology

SN74F244, Octal Buffers/ Drivers With 3-State Outputs
 device status: Active

PARAMETER NAME	SN74F244
Voltage Nodes (V)	5
Vcc range (V)	4.5 to 5.5
Input Level	TTL
Output Level	TTL
Output Drive (mA)	$-15 / 64$
tpd(max) (ns)	6.5
Static Current	75

FEATURES
$\pm \underline{\text { Back to Top }}$

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

DESCRIPTION
\triangle Back to Top
These octal buffers and line drivers are designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. Taken together with the 'F240 and
' F241, these devices provide the choice of selected combinations of inverting and noninverting outputs, symmetrical $\overline{\mathrm{OE}}$ (active-low output-enable) inputs, and complementary OE and $\overline{\mathrm{OE}}$ inputs.

The ' F244 is organized as two 4-bit buffers/line drivers with separate output enable ($\overline{\mathrm{OE}}$) inputs. When $\overline{\mathrm{OE}}$ is low, the device passes data from the A inputs to the Y outputs. When $\overline{\mathrm{OE}}$ is high, the outputs are in the high-impedance state.

The SN74F244 is available in TI's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54F244 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74F244 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

TECHNICAL DOCUMENTS
\triangle Back to Top
To view the following documents, Acrobat Reader 4.0 is required.
To download a document to your hard drive, right-click on the link and choose 'Save'.
DATASHEET \quad \&Back to Top
file:///J|/imaging/BITTING/mail_pdf/cpl_images/sn74f244.html (1 of 2) [8/4/2001 5:33:08 PM]

- Input and Output Characteristics of Digital Integrated Circuits (SDYA010 - Updated: 10/01/1996)
- Timing Differences of 10-pF Versus 50pF Loading (SCEA004 - Updated: 11/01/1996)

RELATED DOCUMENTS

\triangle Back to Top

- Advanced Bus Interface Logic Selection Guide (SCYT126, 448 KB - Updated: 01/09/2001)
- Documentation Rules (SAP) And Ordering Information (SZZU001B, 13 KB - Updated: 05/06/1999)
- Logic Selection Guide First Half 2001 (SDYU001O, 4573 KB - Updated: 11/08/2000)
- MicroStar Junior BGA Design Summary (SCET004, 167 KB - Updated: 07/28/2000)
- More Power In Less Space - Technical Article (SCAU001A, 850 KB - Updated: 03/01/1996)
- Overview of IEEE Std 91-1984, Explanation of Logic Symbols Training Booklet (SDYZ001A, 138 KB - Updated: 07/01/1996)

PRICI NG/ AVAI LABI LI TY							
ORDERABLE DEVICE	PACKAGE	PINS	TEMP (${ }^{\circ} \mathrm{C}$)	STATUS	$\begin{aligned} & \text { BUDGETARY PRICE } \\ & \underline{\text { US } \$ / \text { UNIT }} \\ & \underline{\text { QTY }=1000+} \end{aligned}$	PACK QTY	PRICING/AVAILABILITY
SN74F244DBLE	DB	20	0 TO 70	OBSOLETE			
SN74F244DBR	DB	20	0 TO 70	ACTIVE	0.59	2000	Check stock or order
SN74F244DW	DW	20	0 TO 70	ACTIVE	0.59	25	Check stock or order
SN74F244DWR	DW	20	0 TO 70	ACTIVE	0.62	2000	Check stock or order
SN74F244N	N	20	0 TO 70	ACTIVE	0.57	20	Check stock or order
SN74F244N3	N	20	0 TO 70	OBSOLETE			
SN74F244NSR	NS	20	0 TO 70	ACTIVE	0.67	2000	Check stock or order

MODELS

- IBIS Model of SN74F244 (SDFM008, 65 KB - Updated: 08/18/2000) IBIS Model of SN74F244 (SDFM008, 10 KB, ZIP - Updated: 08/18/2000)

Table Data Updated on: 5/ 6/ 2001
© Copyright 2000 Texas Instruments Incorporated. All rights reserved. Trademarks | Privacy Policy | Important Notice

[^0]: \ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
 NOTE 1: The input voltage ratings may be exceeded provided the input current ratings are observed.

[^1]: \dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. NOTE 2: Load circuits and waveforms are shown in Section 1.

[^2]: MicroStar BGA and MicroStar Junior are trademarks of Texas Instruments.

[^3]: TSSOP (thin shrink small-outline package) PW $=8 / 14 / 16 / 20 / 24 / 28$ pins
 DGG $=48 / 56 / 64$ pins
 TVSOP (thin very small-outline package)
 DGV $=14 / 16 / 20 / 24 / 48 / 56$ pins
 DBB $=80$ pins
 SOT (small-outline transistor)
 DBV $=5$ pins
 DCK $=5$ pins

[^4]: \dagger For NS package only

[^5]: \dagger For NS package only

[^6]: Cypress $=$ Cypress Semiconductor, Fairchild $=$ Fairchild Semiconductor, Hitachi $=$ Hitachi Semiconductor (America), Inc., IDT = Integrated Device Technology, Inc., ON = ON Semiconductor, Pericom = Pericom Semiconductor Corporation, Philips = Philips Semiconductors, Toshiba = Toshiba America Electronic Components, Inc.

