

32K x 8 SRAM

MSM832-020/025/35

Issue 1.1: June 1993

ADVANCE PRODUCT INFORMATION

32,768 x 8 CMOS High Speed Static RAM

Features

Access Times of 020/025/35 ns

Standard 28 pin DIL footprint.

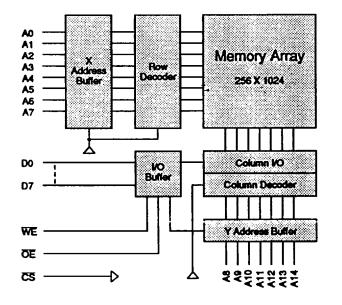
Available in 28 pin VIL™ and FlatPack packages.

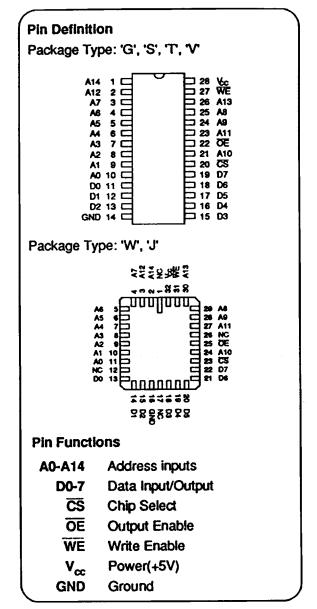
Operating Power 715 mW (max)

Standby Power

2.2 mW (max)

Completely Static Operation.


Battery back-up capability.


Directly TTL compatible.

Common Data Inputs and Outputs.

May be Processed to MIL-STD-883, Method 5004, non-compliant.

Block Diagram

Pin Count	Description	Package Type	Material	Pin Out
28	0.6" Dual-in-Line (DIP)	S	Ceramic	JEDEC
28	0.3" Dual-in-Line (DIP)	Т	Ceramic	JEDEC
28	0.1" Vertical-in-Line (VIL™)	V	Ceramic	JEDEC
28	Bottom Brazed Flat Pack	G	Ceramic	JEDEC
32	Leadless Chip Carrier (LCC)	W	Ceramic	JEDEC
32	J-Leaded Chip Carrier (JLCC)	J	Ceramic	JEDEC

Absolute Maximum Ratings (1)			
Voltage on any pin relative to V _{ss} ⁽²⁾	V _T	-1.0V to +7	٧
Power Dissipation	Ρ.	1	W

Storage Temperature T_{STG} -65 to +150 °C Notes: (1) Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional

Notes: (1) Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

(2) Pulse width:- 3.5V for less than 10ns.

Recommended	Operating	Conditions

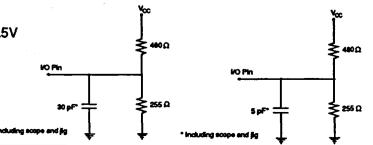
		min	typ	max	
Supply Voltage	V_{∞}	4.50	5.0	5.50	V
Input High Voltage	V _H	2.2	-	V _∞ +1.0	V
Input Low Voltage	V _a .	-0.5	-	0.8	٧
Operating Temperature	T,	0	-	70	•C
	TAL	-40	-	85	°C (832I)
	TAM	-5 5	-	125	°C (832M,832MB)

Parameter	Symbol	Test Condition	min	typ	max	Unit	
Input Leakage Current	l _u	V _N =0V to V _{cc}	-5	-	5	μА	
Output Leakage Current	ILO	CS=V _H or OE=V _H , V _{IO} =GND to V _{CC}	-5	-	5	μА	
Average Supply Current	l _{cc1}	CS=V _{IL} ,I _{IO} =0mA, Min. Cycle, Duty=100%	-	-	130	mA	
Standby Supply Current	l _{se}	CS=V _{str} l/P's static		.=	30	mΑ	
	₅₈₁	<u>CS</u> ≥V _{cc} -0.2V, 0.2V≥V _w ≥V _{cc} -0.2V	-	-	5	mA	
L-Version	1 ₅₈₂	<u>CS</u> ≥V _{cc} -0.2V, 0.2V≥V _w ≥V _{cc} -0.2V	-,	-	3	mΑ	
P-Version	l _{ses}	<u>CS</u> ≥V _∞ -0.2V, 0.2V≥V _w ≥V _∞ -0.2V	-	-	400	μА	
Output Voltage	Val	I _{ot} =8.0mA	-	-	0.4	٧	
	V_{OH}	I _{OH} =-4.0mA	2.4	-	-	٧	

Typical values are at V_{cc} =5.0V, T_{A} =25°C and specified loading.

Capacitance (V_{cc}=5V±10%,T_a=25°C)

	- Trotto, the state of					
Parameter	Symbol	Test Condition	typ	max	Unit	
Input Capacitance:	C _N	V _{IN} = 0V	•	8	pF	
I/O Capacitance:	Cko	V ₁₀ = 0V	-	10	рF	

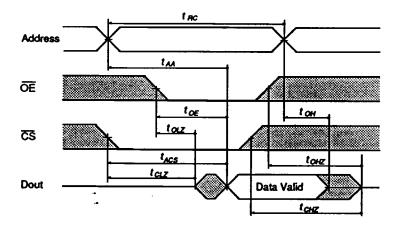

Note: This parameter is sampled and not 100% tested.

AC Test Conditions

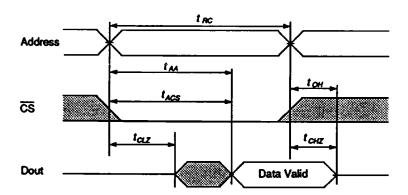
Output Load A

Output Load B

- * Input pulse levels: 0V to 3.0V
- * Input rise and fall times: 3ns
- * Input and Output timing reference levels: 1.5V
- * Output load: see diagram
- * V_=5V±10%

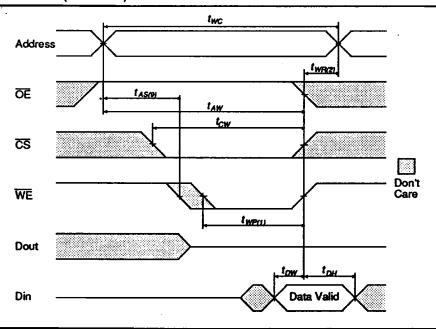


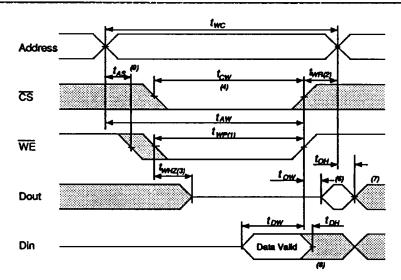
Electrical Characteristics & Recommended AC Operating Conditions


Read Cycle

			-020		<i>-025</i>		<i>-35</i>		
Parameter	Symbol	min ——	max	min	max	min	max	Unit	Notes
Read Cycle Time	t _{ec}	20	•	25	-	35	•	ns	
Address Access Time	t	-	20	-	25	-	35	ns	
Chip Select Access Time	t _{ACS}	-	20	-	25	-	35	ns	
Output Enable to Output Valid	toe	-	10	-	12	-	15	ns	
Output Hold from Address Change	t _{oH}	3	-	3	-	3	-	ns	
Chip Selection to Output in Low Z	taz	3	-	3	-	3	-	ns	5,6
Output Enable to Output in Low Z	toz	0	-	0	•	0	-	ns	5,6
Chip Deselection to Output in High Z		-	9	-	10	-	15	ns	5,6
Output Disable to Output in High Z	t _{oriz}	-	8	-	10	-	15	ns	5,6

Read Cycle 1 Timing Waveform(1,5) (OE Controlled)

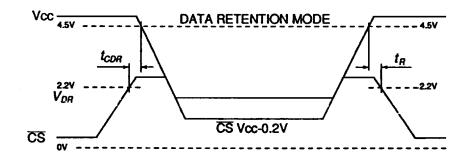

Read Cycle 2 Timing Waveform (1,23,45) (CS Controlled)


- Notes: (1) WE is V_M (High) for Read Cycle.
 - (2) Device may be continually selected, (CS=V_e).
 - (3) OE is V₁ (Low) for Read Cycle.
 - (4) If address is valid prior to or coincident with \overline{CS} access is controlled by \overline{CS} , otherwise address transition controls timing.
 - (5) t_{cre} and t_{ore} are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels. These parameters are sampled and not 100% tested.
 - (6) Transition is measured ±200mV from steady voltage with load B shown on page 2.

	-020		20	<i>-025</i>		-35			
Parameter	Symbol	min	min max	c <i>min</i>	max	min	max	Unit Note	
Write Cycle Time	t _{wc}	20	•	25	-	35	-	ns	
Chip Selection to End of Write	t _{cw}	15	-	18	-	30	-	ns	
Address Valid to End of Write	t _{AW}	15	-	18	-	30	-	ns	
Address Setup Time	tas	0	-	0	-	0	•	ns	
Write Pulse Width	twe	15	-	17	•	20	-	ns	
Write Recovery Time	t _{wa}	0	-	0	-	0	-	ns	
Write to Output in High Z	t _{wiz}	0	10	0	15	0	15	ns	9,10
Data to Write Time Overlap	t _{ow}	11	-	12	-	15	-	ns	
Data Hold from Write Time	t _{DH}	0	-	0	-	0	-	ns	
Output Active from End of Write	tow	3	-	3	-	3	-	ns	

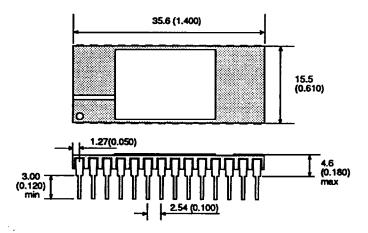
Write Cycle 1 Timing Waveform (OE Clock)

Write Cycle 2 Timing Waveform (OE Low Fixed)

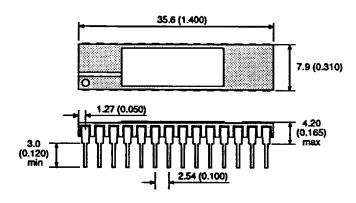

AC Write Characteristics Notes

- (1) A write occurs during the overlap (twp) of a low CS and a low WE.
- (2) t_{wn} is measured from the earlier of CS or WE going high to the end of write cycle.
- (3) During this period, I/O pins are in the output state. Input signals out of phase must not be applied.
- (4) If the $\overline{\text{CS}}$ low transition occurs simultaneously with the $\overline{\text{WE}}$ low transition or after the $\overline{\text{WE}}$ low transition, outputs remain in a high impedance state.
- (5) OE is continuously low. (OE=V_x)
- (6) Dout is in the same phase as written data of this write cycle.
- (7) Dout is the read data of next address.
- (8) If CS is low during this period, I/O pins are in the output state. Input signals out of phase must not be applied to I/O pins.
- (9) WE must be high during all address transitions except when the device is deselected with CS.
- (10) Transition is measured ±200mV from steady voltage with load B. This parameter is sampled and is not 100% tested.

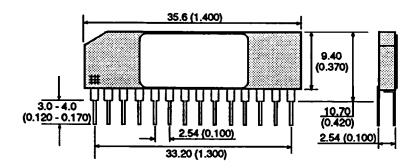
Parameter Sy		ymbol Test Condition I		typ	max	Unit
V _∞ for Data Retention	V _{DR}	<u>CS</u> ≥ V _{cc} -0.2V	2.0	-	•	٧
Data Retention Current	2	$\overline{CS} \ge V_{cc}^{-0.2V}, V_{N} \ge V_{cc}^{-0.2V}$ or $\le 0.2V$	eV.			
L-Version	CCDR1	V _∞ = 3V	-	-	800	μА
P-Version	CCOR2	V _∞ =3V	-	-	200	μΑ
Chip Deselect to Data Retention Time	t _{con}	See Retention Waveform	0	-	-	ns
Operation Recovery Time	t _R	See Retention Waveform	t _{RC} ⁽¹⁾	-	-	ns

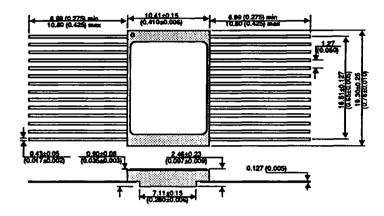

Notes (1) t_{ac}=Read Cycle Time

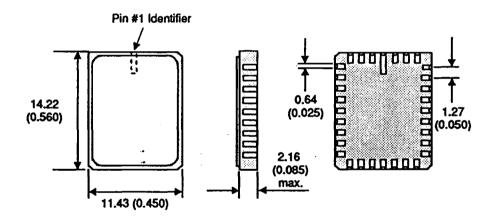
Data Retention Waveform

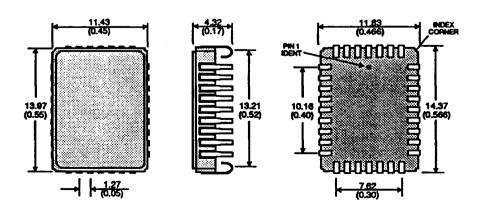


Package Details Dimensions in mm (inches). Tolerance on all dimensions \pm 0.254 (0.01)

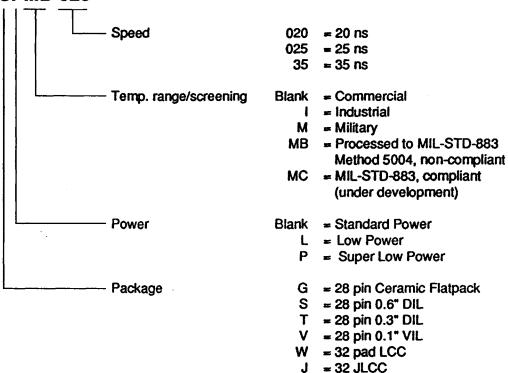

28 pin 0.6" Dual-In-Line (DIL) - 'S' Package


28 pin 0.3" Dual-In-Line (DIL) - T' Package


28 pin 0.1" Vertical-in-Line (VIL) - "V" Package


28 pin Cereamic Flatpack - 'G' Package

32 pad Leadless Chip Carrier (LCC) - 'W' Package



32 pad 'J' Leaded Chi p Carrier (JLCC) - 'J' Package

Ordering Information

MSM832SPMB-020

Note: For more information regarding screening levels, contact Mosaic Semiconductor Inc. for a 'Screening Level Applications Note.'

mofaic

Mosaic
Semiconductor
Inc.