Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF35835
- Class Q Military
- Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

74AC253，74ACT253
 Dual 4－Input Multiplexer with 3－STATE Outputs

Features

－ I_{CC} and I_{OZ} reduced by 50%
－Multifunction capability
■ Non inverting 3－STATE outputs
■ Outputs source／sink 24 mA
■ ACT253 has TTL－compatible inputs

General Description

The AC／ACT253 is a dual 4－input multiplexer with 3－STATE outputs．It can select two bits of data from four sources using common select inputs．The outputs may be individually switched to a high impedance state with a HIGH on the respective Output Enable（ $\overline{\mathrm{OE})}$ inputs， allowing the outputs to interface directly with bus oriented systems．

Device also available Tape and Reel．Specify by appending suffix letter＂X＂to the ordering number．

Connection Diagram

Pin Descriptions

Pin Names	Description
$I_{0 a}-I_{3 a}$	Side A Data Inputs
$I_{0 b}-I_{3 b}$	Side B Data Inputs
S_{0}, S_{1}	Common Select Inputs
$\overline{O E}_{a}$	Side A Output Enable Input
$\overline{O E}_{b}$	Side B Output Enable Input
Z_{a}, Z_{b}	3－STATE Outputs

Logic Diagram

Functional Description

The AC/ACT253 contains two identical 4-input multiplexers with 3-STATE outputs. They select two bits from four sources selected by common Select inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). The 4-input multiplexers have individual Output Enable ($\overline{\mathrm{OE}}_{\mathrm{a}}$, $\overline{\mathrm{OE}}_{\mathrm{b}}$) inputs which, when HIGH , force the outputs to a high impedance (High Z) state. This device is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two select inputs. The logic equations for the outputs are shown:

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{a}}=\overline{\mathrm{OE}}_{\mathrm{a}} \cdot\left(\begin{array}{l}
\left(\mathrm{I}_{0 \mathrm{a}} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{a}} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{0}+\right. \\
\left.\mathrm{I}_{2 \mathrm{a}} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{3 \mathrm{a}} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{0}\right)
\end{array}\right. \\
\mathrm{Z}_{\mathrm{b}}=\overline{\mathrm{OE}}_{\mathrm{b}} \cdot \begin{array}{l}
\left(\mathrm{I}_{0 \mathrm{~b}} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{~b}} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{0}+\right. \\
\left.\mathrm{I}_{2 \mathrm{~b}} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{3 \mathrm{~b}} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{0}\right)
\end{array}+
\end{aligned}
$$

If the outputs of 3-STATE devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-STATE devices whose outputs are tied together are designed so that there is no overlap.

Truth Table

Select Inputs		Data Inputs					Output Enable
$\mathrm{S}_{\mathbf{0}}$	$\mathrm{S}_{\mathbf{1}}$	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	$\mathrm{I}_{\mathbf{2}}$	$\mathrm{I}_{\mathbf{3}}$	$\overline{\mathbf{O E}}$	Outputs
X	X	X	X	X	X	H	Z
L	L	L	X	X	X	L	L
L	L	H	X	X	X	L	H
H	L	X	L	X	X	L	L
H	L	X	H	X	X	L	H
L	H	X	X	L	X	L	L
L	H	X	X	H	X	L	H
H	H	X	X	X	L	L	L
H	H	X	X	X	H	L	H

Address Inputs S_{0} and S_{1} are common to both sections.
H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial
$Z=$ High Impedance

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Figure 1.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage	-0.5 V to +7.0 V
$\mathrm{I}_{\text {IK }}$	DC Input Diode Current $\begin{aligned} & V_{I}=-0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -20 \mathrm{~mA} \\ & +20 \mathrm{~mA} \end{aligned}$
V_{1}	DC Input Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
I_{OK}	DC Output Diode Current $\begin{aligned} & \mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -20 \mathrm{~mA} \\ & +20 \mathrm{~mA} \end{aligned}$
V_{O}	DC Output Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
I_{0}	DC Output Source or Sink Current	$\pm 50 \mathrm{~mA}$
$\mathrm{I}_{\text {CC }}$ or $\mathrm{I}_{\text {GND }}$	DC V ${ }_{\text {CC }}$ or Ground Current per Output Pin	$\pm 50 \mathrm{~mA}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
T_{J}	Junction Temperature	$140^{\circ} \mathrm{C}$

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage AC ACT	2.0 V to 6.0 V
	Input Voltage	4.5 V to 5.5 V
$\mathrm{~V}_{\mathrm{I}}$	Output Voltage	0 V to V_{CC}
V_{O}	Operating Temperature	0 V to V_{CC}
T_{A}	Minimum Input Edge Rate, AC Devices: $V_{\text {IN }}$ from 30\% to 70% of $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}} @ 3.3 \mathrm{~V}, 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\Delta \mathrm{V} / \Delta \mathrm{t}$	$125 \mathrm{mV} / \mathrm{ns}$	
$\Delta \mathrm{V} / \Delta \mathrm{t}$	Minimum Input Edge Rate, ACT Devices: $V_{\text {IN }}$ from 0.8 V to $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$	$125 \mathrm{mV} / \mathrm{ns}$

DC Electrical Characteristics for AC

Symbol	Parameter	V_{Cc} (V)	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units
				Typ.		uaranteed Limits	
V_{IH}	Minimum HIGH Level Input Voltage	3.0	$\begin{aligned} & V_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } V_{C C}-0.1 \mathrm{~V} \end{aligned}$	1.5	2.1	2.1	V
		4.5		2.25	3.15	3.15	
		5.5		2.75	3.85	3.85	
V_{IL}	Maximum LOW Level Input Voltage	3.0	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	1.5	0.9	0.9	V
		4.5		2.25	1.35	1.35	
		5.5		2.75	1.65	1.65	
V_{OH}	Minimum HIGH Level Output Voltage	3.0	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$	2.99	2.9	2.9	V
		4.5		4.49	4.4	4.4	
		5.5		5.49	5.4	5.4	
		3.0	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \end{aligned}$		2.56	2.46	
		4.5	$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$		3.86	3.76	
		5.5	$\mathrm{I}_{\mathrm{OH}}=-24 m \mathrm{~A}^{(1)}$		4.86	4.76	
V_{OL}	Maximum LOW Level Output Voltage	3.0	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$	0.002	0.1	0.1	V
		4.5		0.001	0.1	0.1	
		5.5		0.001	0.1	0.1	
		3.0	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}: \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$		0.36	0.44	
		4.5	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.36	0.44	
		5.5	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}{ }^{(1)}$		0.36	0.44	
$\mathrm{IIN}^{(3)}$	Maximum Input Leakage Current	5.5	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$		± 0.1	± 1.0	$\mu \mathrm{A}$
I_{OZ}	Maximum 3-STATE Current	5.5	$\begin{aligned} & \mathrm{V}_{1}(\mathrm{OE})=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, G N D ; \\ & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, G \mathrm{GND} \end{aligned}$		± 0.25	± 2.5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OLD }}$	Minimum Dynamic Output Current ${ }^{(2)}$	5.5	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max.			75	mA
IOHD		5.5	$\mathrm{V}_{\mathrm{OHD}}=3.85 \mathrm{~V}$ Min.			-75	mA
$\mathrm{I}_{\mathrm{Cc}}{ }^{(3)}$	Maximum Quiescent Supply Current	5.5	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND		4.0	40.0	$\mu \mathrm{A}$

Notes:

1. All outputs loaded; thresholds on input associated with output under test.
2. Maximum test duration 2.0 ms , one output loaded at a time.
3. I_{IN} and $\mathrm{I}_{\mathrm{CC}} @ 3.0 \mathrm{~V}$ are guaranteed to be less than or equal to the respective limit $@ 5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$.

DC Electrical Characteristics for ACT

Symbol	Parameter	V_{Cc} (V)	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units
				Typ.		uaranteed Limits	
V_{IH}	Minimum HIGH Level Input Voltage	4.5	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	1.5	2.0	2.0	V
		5.5		1.5	2.0	2.0	
V_{IL}	Maximum LOW Level Input Voltage	4.5	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	1.5	0.8	0.8	V
		5.5		1.5	0.8	0.8	
V_{OH}	Minimum HIGH Level Output Voltage	4.5	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$	4.49	4.4	4.4	V
		5.5		5.49	5.4	5.4	
		4.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}: \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$		3.86	3.76	
		5.5	$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}{ }^{(4)}$		4.86	4.76	
V_{OL}	Maximum LOW Level Output Voltage	4.5	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$	0.001	0.1	0.1	V
		5.5		0.001	0.1	0.1	
		4.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}: \\ & \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$		0.36	0.44	
		5.5	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}^{(4)}$		0.36	0.44	
I_{IN}	Maximum Input Leakage Current	5.5	$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$		± 0.1	± 1.0	$\mu \mathrm{A}$
I_{OZ}	Maximum 3-STATE Current	5.5	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} ; \\ & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$		± 0.25	± 2.5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CCT }}$	Maximum $\mathrm{I}_{\mathrm{CC}} / \mathrm{Input}$	5.5	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$	0.6		1.5	mA
IOLD	Minimum Dynamic Output Current ${ }^{(5)}$	5.5	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max.			75	mA
$\mathrm{I}_{\text {OHD }}$		5.5	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min.			-75	mA
I_{CC}	Maximum Quiescent Supply Current	5.5	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND		4.0	40.0	$\mu \mathrm{A}$

Notes:
4. All outputs loaded; thresholds on input associated with output under test.
5. Maximum test duration 2.0 ms , one output loaded at a time.

AC Electrical Characteristics for AC

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})^{(6)}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min.	Typ.	Max.	Min	Max	
$t_{\text {PLH }}$	Propagation Delay, S_{n} to Z_{n}	3.3	2.0	8.5	15.5	2.0	17.5	ns
		5.0	2.0	6.5	11.0	1.5	12.5	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay,$S_{n} \text { to } Z_{n}$	3.3	2.5	9.5	16.0	2.0	18.0	ns
		5.0	2.0	7.0	11.5	1.5	13.0	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay, I_{n} to Z_{n}	3.3	1.5	7.0	14.5	1.5	17.0	ns
		5.0	1.5	5.5	10.0	1.5	11.5	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, I_{n} to Z_{n}	3.3	2.0	7.5	13.0	1.5	15.0	ns
		5.0	1.5	5.5	9.5	1.5	11.0	
$t_{\text {PZH }}$	Output Enable Time	3.3	1.5	4.5	8.0	1.0	8.5	ns
		5.0	1.5	3.5	6.0	1.0	6.5	
$\mathrm{t}_{\text {PZL }}$	Output Enable Time	3.3	1.5	5.0	8.0	1.0	9.0	ns
		5.0	1.5	3.5	6.0	1.0	7.0	
$t_{\text {PHZ }}$	Output Disable Time	3.3	2.0	5.5	9.5	1.5	10.0	ns
		5.0	2.0	5.0	8.0	1.5	8.5	
$t_{\text {PLZ }}$	Output Disable Time	3.3	1.5	5.0	8.0	1.0	9.0	ns
		5.0	1.5	4.0	7.0	1.0	7.5	

Note:
6. Voltage range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$. Voltage range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

AC Electrical Characteristics for ACT

Symbol	Parameter	$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})^{(7)}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min.	Typ.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay, S_{n} to Z_{n}	5.0	2.0	7.0	11.5	2.0	13.0	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, S_{n} to Z_{n}	5.0	3.0	7.5	13.0	2.5	14.5	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay, I_{n} to Z_{n}	5.0	2.5	5.5	10.0	2.0	11.0	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, I_{n} to Z_{n}	5.0	3.5	6.5	11.0	3.0	12.5	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time	5.0	2.0	4.5	7.5	1.5	8.5	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time	5.0	2.0	5.0	8.0	1.5	9.0	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time	5.0	3.0	6.0	9.5	2.5	10.0	ns
$t_{\text {PLZ }}$	Output Disable Time	5.0	2.5	4.5	7.5	2.0	8.5	ns

Note:
7. Voltage range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

Capacitance

Symbol	Parameter	Conditions	Typ.	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=\mathrm{OPEN}$	4.5	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	50.0	pF

Physical Dimensions

Dimensions are in millimeters unless otherwise noted.

Figure 2. 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M16A

Physical Dimensions (Continued)
Dimensions are in millimeters unless otherwise noted.

LAND PATTERN RECOMMENDATION

DIMENSIONS ARE IN MILLIMETERS

NOTES:
A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

M16DREVC

Figure 3. 16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M16D

Physical Dimensions (Continued)

Dimensions are in millimeters unless otherwise noted.

MTC16rev4

Figure 4. 16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC16

Physical Dimensions (Continued)
Dimensions are in inches (millimeters) unless otherwise noted.

Figure 5. 16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

FAIRCHILD

SEMICONDUCTOR*

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {® }}$	HiSeC ${ }^{\text {™ }}$	Programmable Active Droop ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {® }}$
Across the board. Around the world. ${ }^{\text {TM }}$	i-Lo ${ }^{\text {TM }}$	QFET ${ }^{\text {® }}$	TINYOPTOTM
ActiveArray ${ }^{\text {™ }}$	ImpliedDisconnect ${ }^{\text {TM }}$	QS ${ }^{\text {TM }}$	TinyPower ${ }^{\text {TM }}$
Bottomless ${ }^{\text {™ }}$	IntelliMAX ${ }^{\text {TM }}$	QT Optoelectronics ${ }^{\text {TM }}$	TinyWire ${ }^{\text {™ }}$
Build it Now ${ }^{\text {TM }}$	ISOPLANAR ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {™ }}$	TruTranslation ${ }^{\text {TM }}$
CoolFET ${ }^{\text {™ }}$	MICROCOUPLER ${ }^{\text {TM }}$	RapidConfigure ${ }^{\text {TM }}$	μ SerDes ${ }^{\text {™ }}$
CROSSVOLT ${ }^{\text {TM }}$	MicroPak ${ }^{\text {TM }}$	RapidConnect ${ }^{\text {TM }}$	UHC ${ }^{\text {® }}$
CTL ${ }^{\text {TM }}$	MICROWIRE ${ }^{\text {TM }}$	ScalarPump ${ }^{\text {TM }}$	UniFET ${ }^{\text {TM }}$
Current Transfer Logic ${ }^{\text {TM }}$	MSX ${ }^{\text {TM }}$	SMART START ${ }^{\text {TM }}$	VCX ${ }^{\text {™ }}$
DOME ${ }^{\text {TM }}$	MSXProtm	SPM ${ }^{\text {® }}$	Wire ${ }^{\text {™ }}$
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {™ }}$	OCX ${ }^{\text {™ }}$	STEALTH ${ }^{\text {™ }}$	
EcoSPARK ${ }^{\text {® }}$	OCXProtm	SuperFET ${ }^{\text {TM }}$	
EnSigna ${ }^{\text {™ }}$	OPTOLOGIC ${ }^{\text {® }}$	SuperSOT ${ }^{\text {TM }}$ - 3	
FACT Quiet Series ${ }^{\text {TM }}$	OPTOPLANAR ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM }}$-6	
$\mathrm{FACT}^{\text {® }}$	PACMAN ${ }^{\text {™ }}$	SuperSOT ${ }^{\text {TM- }}$ 8	
FAST ${ }^{\text {® }}$	РОРтм	SyncFET ${ }^{\text {TM }}$	
FASTr ${ }^{\text {TM }}$	Power220 ${ }^{\text {® }}$	TCM $^{\text {™ }}$	
FPS ${ }^{\text {TM }}$	Power247 ${ }^{\text {® }}$	The Power Franchise ${ }^{\text {® }}$	
FRFET ${ }^{\text {® }}$	PowerEdge ${ }^{\text {TM }}$	(1) ${ }^{\text {TM }}$	
GlobalOptoisolator ${ }^{\text {TM }}$	PowerSaver ${ }^{\text {TM }}$	TinyBoost ${ }^{\text {TM }}$	
GTO ${ }^{\text {™ }}$	PowerTrench ${ }^{\text {® }}$	TinyBuck ${ }^{\text {TM }}$	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR

 SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

