

128k Word x 16 bit

CS16LV20483

Revision History

Rev. No.	<u>History</u>	<u>Issue Date</u>	<u>Remark</u>
2.0	Initial issue with new naming rule	Jan.20,2005	
2.1	Remove 48PIN TSOP(I)/48PIN BGA(6*7mm)	Jun.12,2006	

128k Word x 16 bit

CS16LV20483

■ GENERAL DESCRIPTION

The CS16LV20483 is a high performance, high speed, super low power CMOS Static Random Access Memory organized as 131,072 words by 16 bits and operates from a wide range of 2.7 to 3.6V supply voltage. Advanced CMOS technology and circuit techniques provide both high speed and low power features with a typical CMOS standby current of 0.50uA and maximum access time of 55/70ns in 3.0V operation. Easy memory expansion is provided by an active LOW chip enable (/CE) and active LOW output enable (/OE) and three-state output drivers.

The CS16LV20483 has an automatic power down feature, reducing the power consumption significantly when chip is deselected. The CS16LV20483 is available in JEDEC standard 44-pin TSOP 2, 48 Mini BGA 6*8mm.

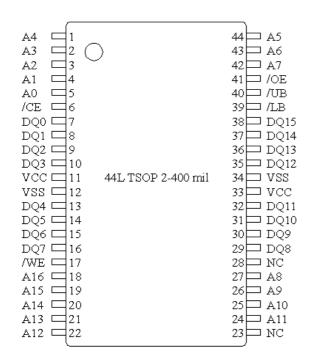
■ FEATURES

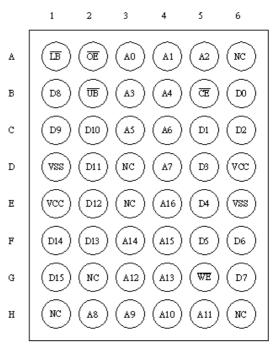
- Low operation voltage: 2.7 ~ 3.6V
- Ultra low power consumption :

Vcc = 3.0V 2mA@1MHz (Max.) operating current

0.50uA (Typ.) CMOS standby current

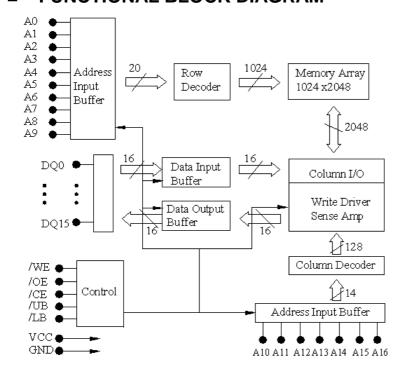
- High speed access time: 55/70ns (Max.) at Vcc = 3.0V.
- Automatic power down when chip is deselected.
- Three state outputs and TTL compatible, fully static operation
- Data retention supply voltage as low as 1.5V.
- Easy expansion with /CE and /OE options.


■ Product Family


Product Family	Operating Temp	Vcc. Range	Speed (ns)	Standby (Typ.)	Package Type
CS16LV20483				0.504	44 TSOP 2
	0~70°C	2.7~3.6	55/70	0.50 uA (Vcc = $3.0V$)	48 Mini BGA 6*8mm
				(VCC = 3.0V)	Dice
C310LV20463	-40~85°C		55/70	0.8 uA	44 TSOP 2
				(Vcc= 3.0V)	48 Mini BGA 6*8mm
				(Dice

128k Word x 16 bit

CS16LV20483


PIN CONFIGURATIONS

48 Ball CSP - Top View

■ FUNCTIONAL BLOCK DIAGRAM

128k Word x 16 bit

CS16LV20483

■ PIN DESCRIPTIONS

	1	
Name	Туре	Function
A0 – A16	Input	Address inputs for selecting one of the 131,072 x 16 bit words in the RAM
		/CE is active LOW. Chip enable must be active when data read from or write
/CE	Innut	to the device. If chip enable is not active, the device is deselected and in a
/CE	Input	standby power mode. The DQ pins will be in high impedance state when the
		device is deselected.
		The Write enable input is active LOW. It controls read and write operations.
/WE	Innut	With the chip selected, when /WE is HIGH and /OE is LOW, output data will
/VVE	Input	be present on the DQ pins, when /WE is LOW, the data present on the DQ
		pins will be written into the selected memory location.
		The output enable input is active LOW. If the output enable is active while
/OE	Innut	the chip is selected and the write enable is inactive, data will be present on
/OE	Input	the DQ pins and they will be enabled. The DQ pins will be in the high
		impedance state when /OE is inactive.
/LB and /UB	Input	Lower byte and upper byte data input/output control pins.
DO0 DO45	1/0	These 16 bi-directional ports are used to read data from or write data into the
DQ0~DQ15	I/O	RAM.
Vcc	Power	Power Supply
Gnd	Power	Ground

■ TRUTH TABLE

MODE	/CE	/WE	/OE	/LB	/UB	DQ0~7	DQ8~15	Vcc Current	
Ctondby	Х	Х	Х	Н	Н	∐iah 7	⊔iah 7		
Standby	Н	Х	Х	Х	Х	High Z	High Z	I _{CCSB} , I _{CCSB1}	
Output	_	Н	Н	Х	Х	∐iah 7	⊔iah 7	ı	
Disabled	_	П	П	^	^	High Z	High Z	I _{CC}	
					L	L	D _{OUT}	D _{OUT}	I _{CC}
Read	L	Н	L	Н	L	High Z	D _{OUT}	I _{CC}	
				L	Н	D _{OUT}	High Z	I _{CC}	
				L	L	D _{IN}	D _{IN}	I _{cc}	
Write	L	L	Х	Н	L	Х	D _{IN}	I _{cc}	
				L	Н	D _{IN}	Х	I _{cc}	

128k Word x 16 bit

CS16LV20483

■ ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Parameter	Rating	Unit
V _{TERM}	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
T _{BIAS}	Temperature Under Bias	-40 to +125	оС
T _{STG}	Storage Temperature	-60 to +150	оС
P _T	Power Dissipation	1.0	W
l _{out}	DC Output Current	25	mA

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause
permanent damage to the device. This is a stress rating only and functional operation of the
device at these or any other conditions above those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating conditions for extended
periods may affect reliability.

■ DC ELECTRICAL CHARACTERISTICS (TA = 0 to 70°C, Vcc = 3.0V)

Parameter	Parameter	Test Conduction	MIN	TYP ⁽¹⁾	MAX	Unit
Name						
V _{IL}	Guaranteed Input		-0.5		8.0	V
	Low Voltage (2)					
V _{IH}	Guaranteed Input		2.0		Vcc+0.2	V
	High Voltage (2)					
I _{IL}	Input Leakage	V _{CC} =MAX, V _{IN} =0 to V _{CC}	4		4	uA
	Current		-1		1	
I _{OL}	Output Leakage	V _{CC} =MAX, /CE=V _{IN} , or	4		4	uA
	Current	$/OE=V_{IN}$, $V_{IO}=0V$ to V_{CC}	-1		1	
V _{OL}	Output Low Voltage	V _{CC} =MAX, I _{OL} = 2mA			0.4	V
V	Output High Voltage	V_{CC} =MIN, I_{OH} = -1mA	2.4			V
V _{OH}		I _{OH} = -100uA	V _{CC} -0.2			V
Icc	Operating Power	/CE=V _{IL} , I _{DQ} =0mA,			25	mA
	Supply Current	F=F _{MAX} ⁽³⁾				
I _{CCSB}	Standby Supply - TTL	/CE=V _{IH} , I _{DQ} =0mA,			1	mA
I _{CCSB1}	Standby Current	$/CE \ge V_{CC}$ -0.2V, $V_{IN} \ge$		0.5	4	uA
	-CMOS	V_{CC} -0.2V or $V_{IN} \leq 0.2V$				

- 1. Typical characteristics are at $TA = 25^{\circ}C$.
- 2. Fmax = $1/t_{RC}$.

128k Word x 16 bit

CS16LV20483

■ OPERATING RANGE

Range	Ambient Temperature	Vcc
Commercial	0~70°C	2.7V ~ 3.6V
Industrial	-40~85°C	2.7V ~ 3.6V

- 1. Overshoot : Vcc +2.0V in case of pulse width \leq 20ns.
- 2. Undershoot: 2.0V in case of pulse width \leq 20ns.
- 3. Overshoot and undershoot are sampled, not 100% tested.

■ DATA RETENTION CHARACTERISTICS (TA = 0 to + 70°C)

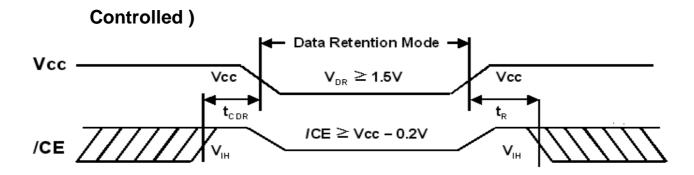
Parameter Name	Parameter	Test Conduction	MIN	TYP ⁽¹⁾	MAX	Unit
W	V _{CC} for Data	$/CE \ge V_{CC}$ -0.2V, $V_{IN} \ge V_{CC}$ -0.2V	1.5			V
V_{DR}	Retention	or V _{IN} ≦0.2V	1.5			V
	Data Retention	$/CE \ge V_{CC}$ -0.2V, V_{CC} =1.5V		0.3	2	
ICCDR	Current	$V_{IN}{\ge}V_{CC}$ -0.2V or $V_{IN}{\le}0.2V$				uA
т	Chip Deselect to		0			20
T _{CDR}	Data Retention Time	See Retention Waveform	0			ns
t _R	Operation Recovery	See Retention Wavelonn	t _{RC}			20
	Time		(2)			ns

^{1.} Vcc = 3.0V, $TA = +25^{\circ}C$.

■ **CAPACITANCE** (1) (TA = 25°C, f = 1.0 MHz)

Symbol	Parameter	Conditions	MAX.	Unit
C _{IN}	Input Capacitance	V _{IN} =0V	6	pF
C _{DQ}	Input/Output Capacitance	V _{I/O} =0V	8	pF

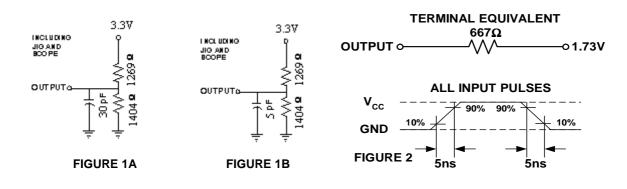
^{1.} This parameter is guaranteed and not tested.


■ LOW Vcc DATA RETENTION WAVEFORM (/CE

^{2.} t_{RC} (2)= Read Cycle Time.

128k Word x 16 bit

CS16LV20483


■ AC TEST CONDITIONS

Input Pulse Levels	Vcc/0V		
Input Rise and Fall Times	5ns		
Input and Output Timing	0.5Vcc		
Reference Level	0.5 VCC		
Output Load	See FIGURE 1A		
Output Load	and 1B		

■ KEY TO SWITCHING WAVEFORMS

WAVEFORMS	INPUTS	OUTPUTS
	MUST BE STEADY	MUST BE STEADY
	MAY CHANGE FROM H TO L	WILL BE CHANGE FROM H TO L
	MAY CHANGE FROM L TO H	WILL BE CHANGE FROM L TO H
	DON'T CARE ANY CHANGE PERMITTED	CHANGE STATE UNKNOWN
	DOES NOT APPLY	CENTER LINE IS HIGH IMPEDANCE OFF STATE

■ AC TEST LOADS AND WAVEFORMS

128k Word x 16 bit

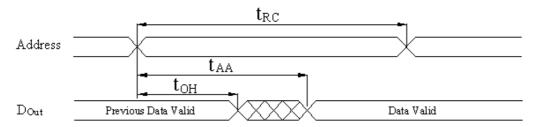
CS16LV20483

■ AC ELECTRICAL CHARACTERISTICS (TA = 0 to + 70°C, Vcc = 3V) < READ CYCLE >

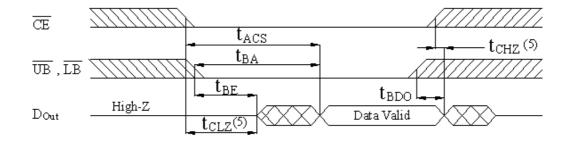
JEDEC	Parameter	Description	-5	55	-70		Unit
Parameter Name	Name		MIN	MAX	MIN	MAX	
t _{AVAX}	t _{RC}	Read Cycle Time	55		70		ns
t _{AVQV}	t _{AA}	Address Access Time		55		70	ns
t _{ELQV}	t _{ACS}	Chip Select Access Time (/CE)		55		70	ns
t _{BA}	t _{BA}	Data Byte Control Access Time (/LB, /UB)		55		70	ns
t _{GLQV}	t _{OE}	Output Enable to Output Valid		30		35	ns
t _{ELQX}	t _{CLZ}	Chip Select to Output Low Z (/CE)	10		10		ns
t _{BE}	t _{BE}	Data Byte Control to Output Low Z (/LB, /UB)	0		0		ns
t _{GLQX}	t _{OLZ}	Output Enable to Output in Low Z	5		5		ns
t _{EHQZ}	t _{CHZ}	Chip Deselect to Output in High Z (/CE)	0	20	0	25	ns
t _{BDO}	t _{BDO}	Data Byte Control to Output High Z (/LB, /UB)	0	20	0	25	ns
t _{GHQZ}	t _{OHZ}	Output Disable to Output in High Z	0	20	0	25	ns
t _{AXOX}	t _{OH}	Out Disable to Address Change	10		10		ns

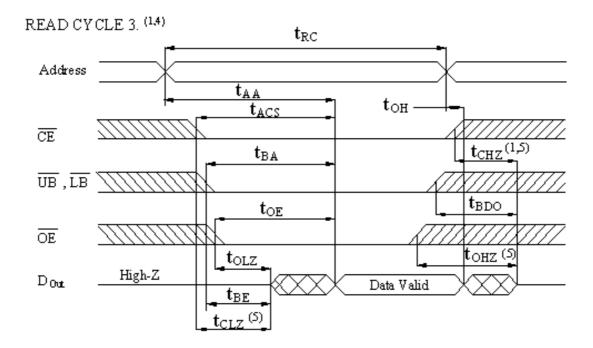
Note: 1.) /WE is high in read Cycle. 2.) Device is continuously selected when /CE = V_{IL} .

3.) Address valid prior to or coincident with CE transition low. 4.) /OE = VIL. 5.) Transition is measured ± 500 mV from steady state with $C_L = 5$ pF as shown in Figure 1B. The parameter is guaranteed but not 100% tested.



128k Word x 16 bit


CS16LV20483


■ SWITCHING WAVEFORMS (READ CYCLE)

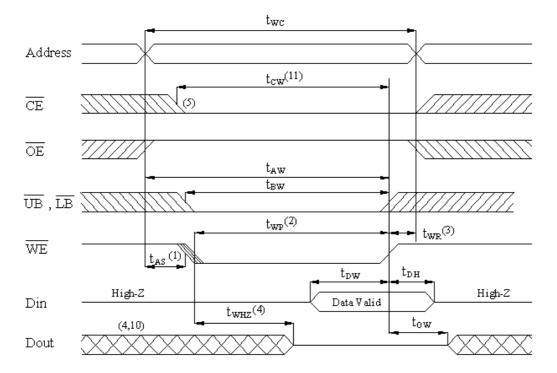
READ CYCLE 1. (1,2,4)

READ CYCLE 2. (1,3,4)

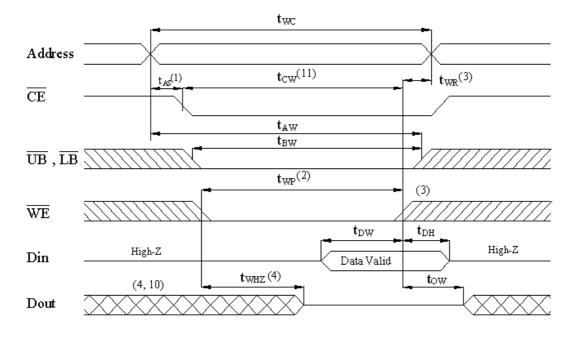
128k Word x 16 bit

CS16LV20483

■ AC ELECTRICAL CHARACTERISTICS (TA = 0 to + 70°C, Vcc = 3V) < WRITE CYCLE >


JEDEC	Parameter	Description	-5	55	-70		Unit
Parameter Name	Name		MIN	MAX	MIN	MAX	
t _{AVAX}	t _{WC}	Write Cycle Time	55		70		ns
t _{E1LWH}	t _{CW}	Chip Select to End of Write	45		60		ns
t _{AVWL}	t _{AS}	Address Setup Time	0		0		ns
t _{AVWH}	t _{AW}	Address Valid to End of Write	45		60		ns
t _{WLWH}	t _{WP}	Write Pulse Width	40		55		ns
t _{WHAX}	t _{WR1}	Write Recovery Time (/CE, /WE)	0		0		ns
t _{BW}	t _{BW}	Data Byte Control to End of Write (/LB, /UB)	45		60		ns
t _{WLQZ}	t _{WHZ}	Write to Output in High Z	20			25	ns
t _{DVWH}	t _{DW}	Data to Write Time Overlap	25		30		ns
t _{WHDX}	t _{DH}	Data Hold from Write Time	Hold from Write Time 0 0				ns
t _{whox}	x tow End of Write to Output Active		5		10		ns

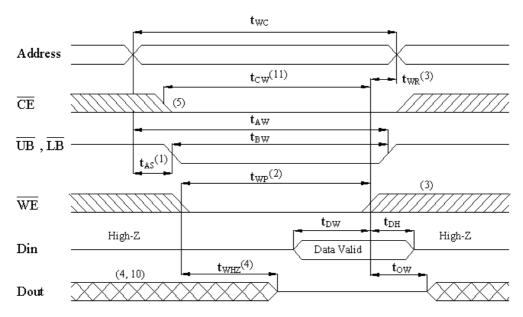
128k Word x 16 bit


CS16LV20483

SWITCHING WAVEFORMS (WRITE CYCLE)

WRITE CYCLE 1. (/WE controlled)

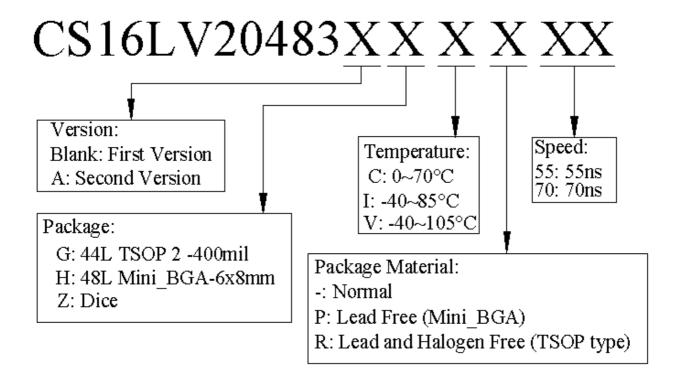
WRITE CYCLE 2. (/CE Controlled)



128k Word x 16 bit

CS16LV20483

WRITE CYCLE 3. (/UB, /LB Controlled)

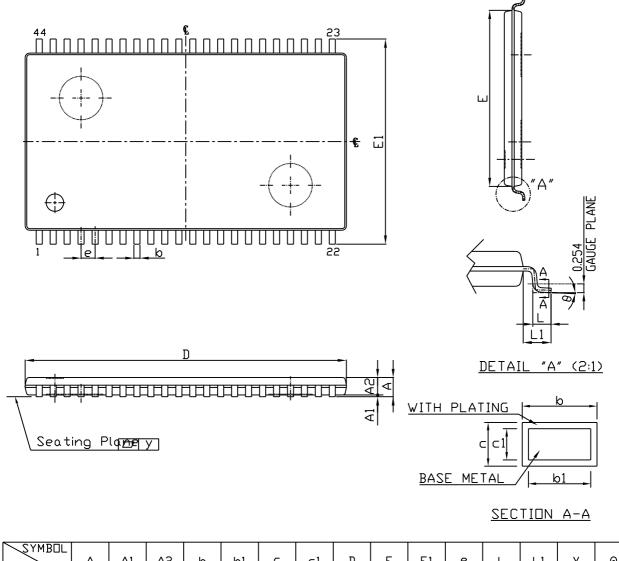

NOTES:

- 1. T_{AS} is measured from the address valid to the beginning of write.
- 2. The internal write time of the memory is defined by the overlap of /CE and /WE low. All signals must be active to initiate a write and any one signal can terminate a write by going inactive. The data input setup and hold timing should be referenced to the second transition edge of the signal that terminates the write.
- 3. T_{WR} is measured from the earliest of /CE or /WE or (/UB and ,or /LB) going high at the end of write cycle.
- 4. During this period, DQ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
- 5. If the /CE low transition occurs simultaneously with the /WE low transitions or after the /WE transition, output remain in a high impedance state.
- 6. /OE is continuously low (/OE = V_{IL}).
- 7. D_{OUT} is the same phase of write data of this write cycle.
- 8. D_{OUT} is the read data of next address.
- 9. If /CE is low during this period, DQ pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.
- 10. Transition is measured $\pm 500 \text{mV}$ from steady state with $C_L = 5 \text{pF}$ as shown in Figure 1B. The parameter is guaranteed but not 100% tested.
- 11. T_{CW} is measured from the later of /CE going low to the end of write.

128k Word x 16 bit

CS16LV20483

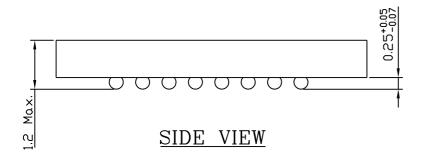
ORDER INFORMATION

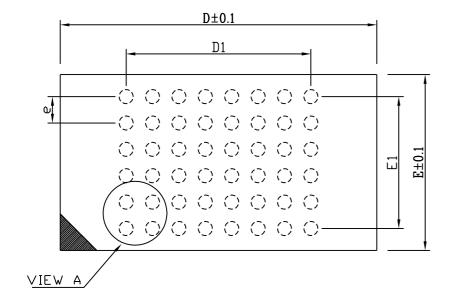

Note: Package material code "R" meets ROHS

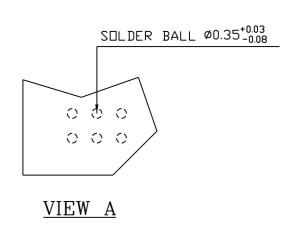
256k-Word By 16 Bit

CS16LV20483

■ PACKAGE DIMENSIONS: 44L TSOP 2-400mil


UNIT	MBUL	А	A1	A2	b	b1	С	c 1	D	Ε	E1	е	L	L1	У	Θ
mm	Min.	1.00	0.05	0.95	0.30	0.30	0.12	0.12	18.31	10.06	11.56	0.70	0.40	0.70	-	0°
	Nom.	1.10	0.10	1.00	-	-	-	-	18.41	10.16	11.76	0.80	0.50	0.80	-	-
	Mα×.	1.20	0.15	1.05	0.45	0.40	0.21	0.16	18.51	10.26	11.96	0.90	0.60	0.90	0.1	°°
inch	Min.	0.0393	0.002	0.037	0.012	0.012	0.005	0.005	0.721	0.396	0.455	0.0275	0.0157	0.0275	1	0°
	Nom.	0.0433	0.004	0.039	ı	ı	ı	ı	0.725	0.400	0.463	0.0315	0.0197	0.0315	-	1
	Max.	0.0473	0.006	0.041	0.018	0.016	0.008	0.006	0.729	0.404	0.471	0.0355	0.0237	0.0355	0.004	8°


256k-Word By 16 Bit


CS16LV20483

■ PACKAGE DIMENSIONS: 48 ball Mini_BGA-6x8mm

BALL PITCH e = 0.75							
D	Ε	N	D1	E1			
8.0	6.0	48	5.25	3.75			

TOP VIEW

NOTES:

- 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS.
- 2. PIN#1 DOT MARKING BY LASER OR PAD PRINT.
- 3. SYMBOL "N" IS THE NUMBER OF SOLDER BALLS.