
- DOC[™] (Dynamic Output Control) Circuit Dynamically Changes Output Impedance, Resulting in Noise Reduction Without Speed Degradation
- *EPIC*[™] (Enhanced-Performance Implanted CMOS) Submicron Process
- Less Than 2-ns Maximum Propagation Delay at 2.5-V and 3.3-V V_{CC}
- Dynamic Drive Capability Is Equivalent to Standard Outputs With I_{OH} and I_{OL} of ±24 mA at 2.5-V V_{CC}

- Overvoltage-Tolerant Inputs/Outputs Allow Mixed-Voltage-Mode Data Communications
- I_{off} Supports Partial-Power-Down Mode Operation
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Package Options Include Plastic Small-Outline (DW), Thin Very Small-Outline (DGV), and Thin Shrink Small-Outline (PW) Packages

description

A Dynamic Output Control (DOC) circuit is implemented, which, during the transition, initially lowers the output impedance to effectively drive the load and, subsequently, raises the impedance to reduce noise. Figure 1 shows typical V_{OL} vs I_{OL} and V_{OH} vs I_{OH} curves to illustrate the output impedance and drive capability of the circuit. At the beginning of the signal transition, the DOC circuit provides a maximum dynamic drive that is equivalent to a high-drive standard-output device. For more information, refer to the TI application reports, AVC Logic Family Technology and Applications, literature number SCEA006, and Dynamic Output Control (DOCTM) Circuitry Technology and Applications, literature number SCEA009.

This octal bus transceiver is operational at 1.2-V to 3.6-V V_{CC} , but is designed specifically for 1.65-V to 3.6-V V_{CC} operation.

The SN74AVCH245 is designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so the buses are effectively isolated.

This device can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses are effectively isolated.

DOC, EPIC, and Widebus are trademarks of Texas Instruments Incorporated.

SN74AVCH245 OCTAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS SCES264D – APRIL 1999 – REVISED FEBRUARY 2000

description (continued)

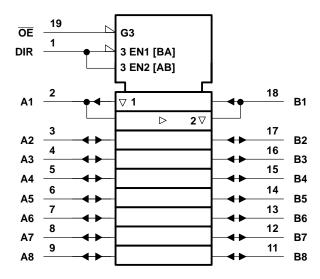
To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

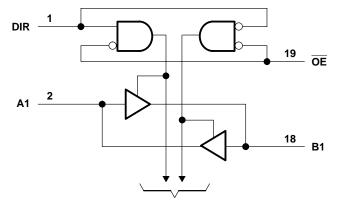
The SN74AVCH245 is characterized for operation from –40°C to 85°C.

terminal assignments


DGV, DW, OR PW PACKAGE (TOP VIEW)									
DIR [1	20) V _{CC}						
A1 [2	19) OE						
A2 [3	18) B1						
A3 [4	17] B2						
A4 [5	16] B3						
A5 [6	15] B4						
A6 [7	14] B5						
A7 [8	13] B6						
A8 [9	12] B7						
GND [10	11] B8						

FUNCTION TABLE (each transceiver)

I	NPUTS	OPERATION					
OE	E DIR	OPERATION					
L	L	B data to A bus					
L	н	A data to B bus					
н	Х	Isolation					



logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

	-0.5 V to 4.6 V
Input voltage range, V _I : Except I/O ports (see No	te 1)
I/O ports (see Notes 1 ar	nd 2)
Voltage range applied to any input/output when th	
is in the high-impedance or power-off state, V_{C}) (see Note 1)
Voltage range applied to any input/output when th	ie output
is in the high or low state, V _O (see Notes 1 and	12)0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	
Continuous output current, Io	±50 mA
· · · · ·	±100 mA
Package thermal impedance, θ_{IA} (see Note 3): D	OGV package 92°C/W
	W package
	W package
	——————————————————————————————————————
9	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

2. The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.

3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

			MIN	MAX	UNI			
\/	Current and the sec	Operating	1.4	3.6	v			
VCC	Supply voltage	Data retention only	1.2		v			
		V _{CC} = 1.2 V	V _{CC}					
		V _{CC} = 1.4 V to 1.6 V	$0.65 \times V_{CC}$		1			
∨ін	High-level input voltage	V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$		V			
		V _{CC} = 2.3 V to 2.7 V	$V_{CC} = 2.3 V \text{ to } 2.7 V$ 1.7					
		$V_{CC} = 3 V \text{ to } 3.6 V$	2		1			
		V _{CC} = 1.2 V		GND				
		V _{CC} = 1.4 V to 1.6 V		$0.35 \times V_{CC}$	1			
VIL	Low-level input voltage	V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$	V			
		V_{CC} = 2.3 V to 2.7 V		0.7	1			
		V _{CC} = 3 V to 3.6 V		0.8	1			
VI	Input voltage		0	3.6	V			
Va	Quito ut volto go	Active state	0	VCC	v			
VO	Output voltage	3-state	0	3.6]			
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		-2				
	Static high-level output current [†]	V _{CC} = 1.65 V to 1.95 V		-4				
IOHS	Static high-level output current	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		-8	- m/			
		V _{CC} = 3 V to 3.6 V		-12	1			
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		2				
	Static law laws autout surgest $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$			4				
IOLS	Static low-level output current [†]	V_{CC} = 2.3 V to 2.7 V		8	mA			
		V _{CC} = 3 V to 3.6 V		12				
Δt/Δv	Input transition rise or fall rate	V _{CC} = 1.4 V to 3.6 V		5	ns/			
TA	Operating free-air temperature		-40	85	°C			

[†] Dynamic drive capability is equivalent to standard outputs with I_{OH} and I_{OL} of ±24 mA at 2.5-V V_{CC}. See Figure 1 for V_{OL} vs I_{OL} and V_{OH} vs I_{OH} characteristics. Refer to the TI application reports, *AVC Logic Family Technology and Applications*, literature number **SCEA006**, and *Dynamic Output Control (DOC™) Circuitry Technology and Applications*, literature number **SCEA009**.

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74AVCH245 **OCTAL BUS TRANSCEIVER** WITH 3-STATE OUTPUTS

SCES264D - APRIL 1999 - REVISED FEBRUARY 2000

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST	CONDITIONS	Vcc	MIN	TYPT	MAX	UNIT
		I _{OHS} = -100 μA		1.4 V to 3.6 V	V _{CC} -0.	2		
		$I_{OHS} = -2 \text{ mA},$	V _{IH} = 0.91 V	1.4 V	1.05			
۷он		$I_{OHS} = -4 \text{ mA},$	V _{IH} = 1.07 V	1.65 V	1.2			V
		$I_{OHS} = -8 \text{ mA},$	VIH = 1.7 V	2.3 V	1.75		MAX 0.2 0.4 0.45 0.55 0.7 ±2.5 	
		$I_{OHS} = -12 \text{ mA},$	V _{IH} = 2 V	3 V	2.3			
		I _{OLS} = 100 μA		1.4 V to 3.6 V			0.2	
		I _{OLS} = 2 mA,	V _{IL} = 0.49 V	1.4 V		1.75 2.3 0.2 0.4 0.45 0.55 0.7 ±2.5 25 45 75 -25 -45 -75 200 300 500 200 300		
VOL		I _{OLS} = 4 mA,	V _{IL} = 0.57 V	1.65 V			0.4 0.45 0.55 1.7 ±2.5	V
		I _{OLS} = 8 mA,	V _{IL} = 0.7 V	2.3 V			0.55	
		I _{OLS} = 12 mA,	V _{IL} = 0.8 V	3 V			0.7	
Ιį	Control inputs	V _I = V _{CC} or GND		3.6 V			±2.5	μA
		V _I = 0.57 V		1.65 V	25			
^I BHL [‡]	ŧ	V _I = 0.7 V		2.3 V	45			μA
		V _I = 0.8 V	V _I = 0.8 V 3 V					
		VI = 1.07 V		1.65 V	-25			
Івнн	§	V _I = 1.7 V	2.3 V	-45			μA	
		V _I = 2 V		3 V	-75			
				1.95 V	200			
BHLO	D _D	$V_I = 0$ to V_{CC}		2.7 V	300	-	0.4 0.45 0.55 0.7 ±2.5	μA
				3.6 V	500	-		
				1.95 V	-200			
Івнн	o [#]	$V_I = 0$ to V_{CC}		2.7 V	-300			μA
				3.6 V	-500			
loff		VI or VO = 3.6 V		0			±10	μA
IOZ∥		$V_{O} = V_{CC}$ or GND		3.6 V			±12.5	μA
ICC		$V_I = V_{CC}$ or GND,	IO = 0	3.6 V			40	μA
	O and track in the			2.5 V				
Ci	Control inputs	$V_I = V_{CC}$ or GND		3.3 V				pF
~				2.5 V				_
Cio	A or B ports	$V_{O} = V_{CC} \text{ or } GND$		3.3 V				pF

[†] Typical values are measured at $T_A = 25^{\circ}C$.

[‡] The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to VIL max.

§ The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to VCC and then lowering it to VIH min.

 \P An external driver must source at least I_{BHLO} to switch this node from low to high.

[#] An external driver must sink at least I_{BHHO} to switch this node from high to low.

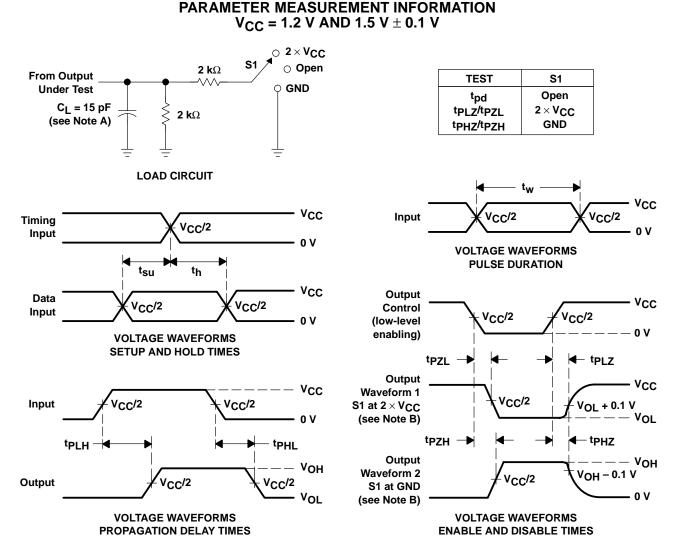
|| For I/O ports, the parameter IOZ includes the input leakage current.

SN74AVCH245 **OCTAL BUS TRANSCEIVER** WITH 3-STATE OUTPUTS

SCES264D - APRIL 1999 - REVISED FEBRUARY 2000

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 2 through 5)

PARAMETER	FROM (INPUT)		V _{CC} = 1.2 V	V _{CC} = 1.5 V ± 0.1 V		V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		UNIT	
				TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	^t pd	A or B	B or A										ns
	t _{en}	OE	A or B										ns
	^t dis	ŌĒ	A or B										ns

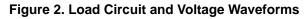

operating characteristics, $T_A = 25^{\circ}C$

PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V	= 1.8 V V _{CC} = 2.5 V V _{CC}		UNIT	
	TARAMETER		TEST CONDITIONS	TYP	TYP		
	Power dissipation	Outputs enabled	C _I = 0. f = 10 MHz				ρF
Cpd	capacitance	Outputs disabled	$C_L = 0$, $f = 10 MHz$				рг

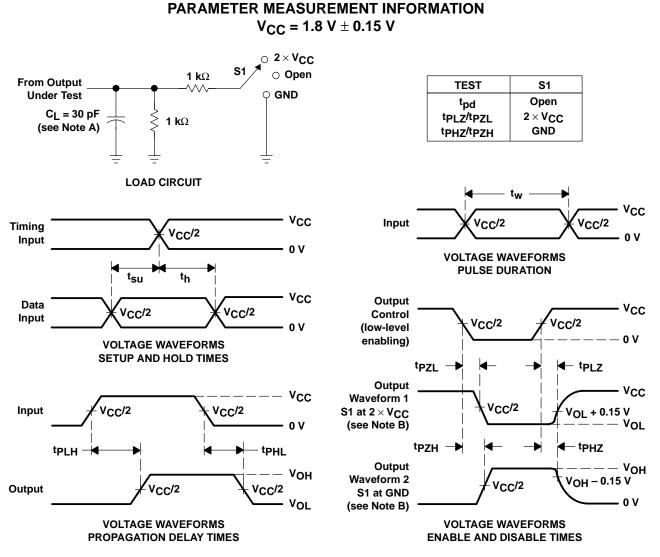
SN74AVCH245 OCTAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS

SCES264D – APRIL 1999 – REVISED FEBRUARY 2000

NOTES: A. CL includes probe and jig capacitance.

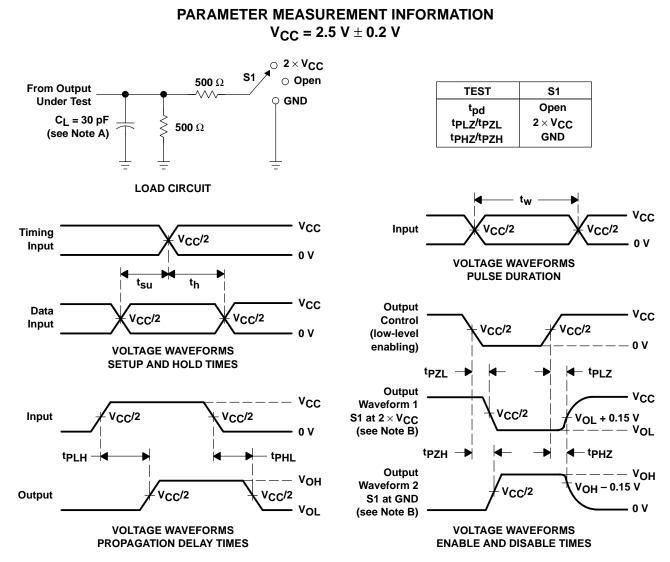

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
 Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 All input pulses are supplied by apparenters beying the following characteristics: PRP < 10 MHz, Zo = 50.0, t < 2 ns, t < 2

C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2 ns, t_f \leq 2 ns.


- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .

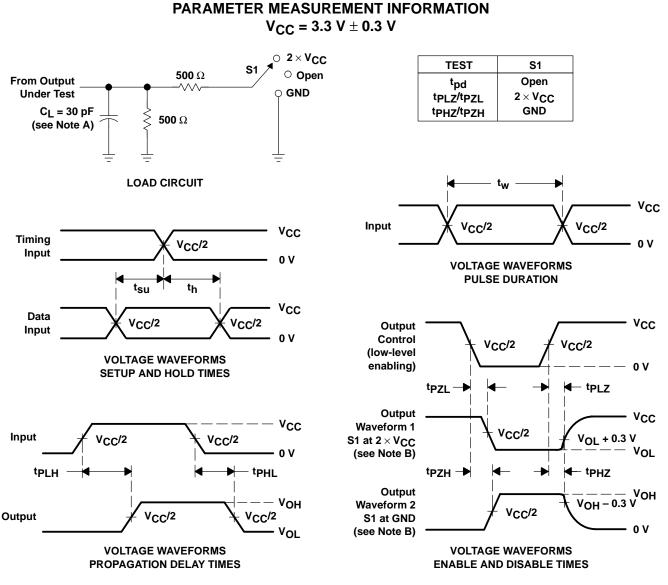
F. t_{PZL} and t_{PZH} are the same as t_{en} .

G. tPLH and tPHL are the same as tpd.



- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω, t_f ≤ 2 ns, t_f ≤ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. tpzL and tpzH are the same as t_{en} .
 - G. tp_I H and tp_{HI} are the same as t_{pd} .

Figure 3. Load Circuit and Voltage Waveforms



- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_O = 50 Ω, t_f ≤ 2 ns, t_f ≤ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tPLZ and tPHZ are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 4. Load Circuit and Voltage Waveforms

- NOTES: A. $C_{\mbox{L}}$ includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2 ns, t_f \leq 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tPLZ and tPHZ are the same as tdis.
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. tpLH and tpHL are the same as tpd.

Figure 5. Load Circuit and Voltage Waveforms

