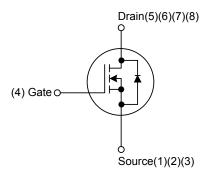
UNA03R085M

Preliminary

Power MOSFET

13.3A, 30V N-CHANNEL POWER MOSFET

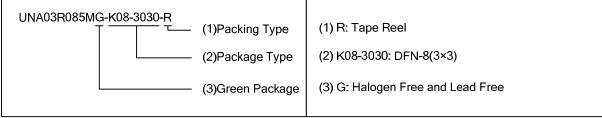
■ DESCRIPTION

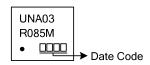

The UTC **UNA03R085M** is an N-channel MOSFET, it uses UTC's advanced technology to provide the customers with a minimum on state resistance, high switch speed and low gate charge.

The UTC **UNA03R085M** is suitable for notebook battery power management and DC-DC buck converters.

■ FEATURES

- * $R_{DS(ON)}$ < 8.5m Ω @ V_{GS} =10V, I_{D} =13.3A $R_{DS(ON)}$ < 14m Ω @ V_{GS} =4.5V, I_{D} =10.6A
- * High switch speed
- * Low gate charge


■ SYMBOL


■ ORDERING INFORMATION

Ordering Number	Package	Pin Assignment							Dooking	
		1	2	3	4	5	6	7	8	Packing
UNA03R085MG-K08-3030-R	DFN-8(3×3)	S	S	S	G	D	D	D	D	Tape Reel

Note: Pin Assignment: G: Gate D: Drain S: Source

MARKING

1 translation of the second of

<u>www.unisonic.com.tw</u> 1 of 6

■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C, unless otherwise specified)

PARAMETER		SYMBOL RATINGS		UNIT
Drain-Source Voltage	ge	V _{DSS} 30		V
Gate-Source Voltag	e	V_{GSS}	±20	V
Drain Current	Continuous (Package limited) T _C =25°C		16	Α
	Continuous T _A =25°C (Note 1a)	I _D	13.3	Α
	Pulsed	I_{DM}	40	Α
Single Pulse Avalan	che Energy (Note 2)	E _{AS}	DINI -	
Power Dissipation	T _C =25°C	ר	29	W
	T _A =25°C (Note 1a)	P_D	2.3	W
Junction Temperatu	re	T_J	-55~+150	°C
Storage Temperatur	re Range	T _{STG}	-55~+150	°C

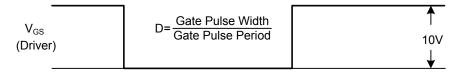
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

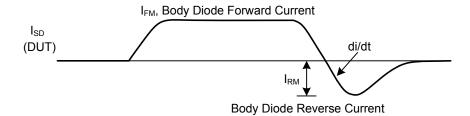
■ THERMAL RESISTANCES CHARACTERISTICS

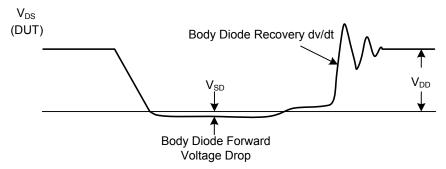
PARAMETER	SYMBOL	RATINGS	UNIT		
Junction to Ambient (Note 1a)	θ_{JA}	53	°C/W		
Junction-to-Case	θ _{JC}	4.3	°C/W		

Notes: 1. θ_{JA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. θ_{JC} is guaranteed by design while θ_{CA} is determined by the user's board design.

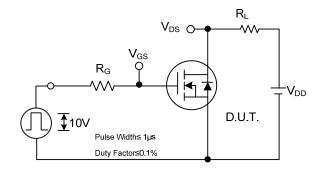

- a. 50°C/W when mounted on a 1 in² pad of 2 oz copper.
- b.125°C/W when mounted on a minimum pad of 2 oz copper.
- 2. E_{AS} of 58mJ is based on starting T_J =25°C, L=1mH, I_{AS} =10.8A, V_{DD} =27V, V_{GS} =10V. 100% test at L=0.1mH, I_{AS} =21A.

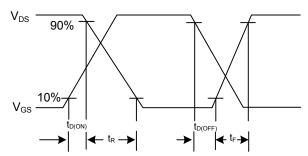

■ **ELECTRICAL CHARACTERISTICS** (T_J=25°C, unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	BV _{DSS}	I _D =1mA, V _{GS} =0V	30			V
Breakdown Voltage Temperature Coefficient	$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	I _D =250uA, Referenced to 25°C		16		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =24V, V _{GS} =0V			1	μA
		V _{DS} =24V, V _{GS} =0V, T _J =125°C			250	μΑ
Gate-Source Leakage Current Forward	I _{GSS}	V_{GS} =20V, V_{DS} =0V			100	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250uA$	1.2	1.9	3.0	V
Gate Threshold Voltage Temperature Coefficient	$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	I _D =250uA, Referenced to 25°C		-6		mV/°C
Static Drain-Source On-State Resistance	В	V _{GS} =10V, I _D =13.3A		7.2	8.5	mΩ
	R _{DS(ON)}	V _{GS} =4.5V, I _D =10.6A		9.5	14	mΩ
Forward Transconductance	g fs	V_{DD} =5V, I_{D} =13.3A		60		S
DYNAMIC PARAMETERS						
Input Capacitance	C _{ISS}			1260	1680	pF
Output Capacitance	Coss	V_{GS} =0V, V_{DS} =15V, f=1.0MHz		480	635	pF
Reverse Transfer Capacitance	C_{RSS}			65	100	pF
Gate Resistance	R_G			0.9	2.4	Ω
SWITCHING PARAMETERS						
Total Gate Charge	Q_{G}			4	10	nC
Gate to Source Charge	Q_GS	V _{GS} =0V~4.5V, V _{DD} =15V, I _D =13.3A		21	33	nC
Gate to Drain Charge	Q_GD			3	10	nC
Turn-ON Delay Time	t _{D(ON)}	V_{GS} =10V, V_{DD} =15V, I_{D} =13.3A, R_{GEN} =6 Ω		9	18	ns
Rise Time	t _R			4	10	ns
Turn-OFF Delay Time	t _{D(OFF)}			21	33	ns
Fall-Time	t⊧			3	10	ns
SOURCE- DRAIN DIODE RATINGS AND	CHARACTE	RISTICS				
Maximum Body-Diode Continuous Current (Note)	Is				1.9	Α
Source to Drain Diode Forward Voltage		V _{GS} =0V, I _S =13.3A (Note 2)		0.86	1.2	V
	V_{SD}	V _{GS} =0V, I _S =1.9A (Note 2)		0.75	1.2	V
Reverse Recovery Time	t _{rr}	·		24	38	ns
Reverse Recovery Charge	Q _{rr}	I _F =13.3A, di/dt=100A/μs		7	14	nC

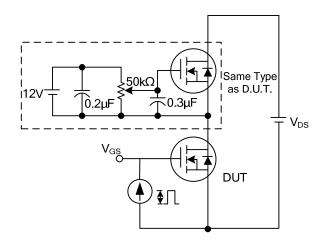

Note: Pulse Test: Pulse width < $300\mu s$, Duty cycle < 2.0%.

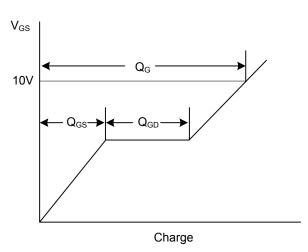
■ TEST CIRCUITS AND WAVEFORMS



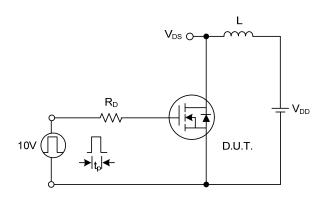


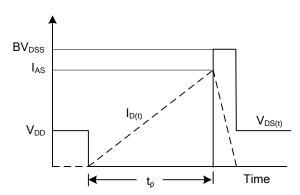
Peak Diode Recovery dv/dt Test Circuit and Waveforms


■ TEST CIRCUITS AND WAVEFORMS (Cont.)



Switching Test Circuit


Switching Waveforms



Gate Charge Test Circuit

Gate Charge Waveform

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

