CMOS DUAL-PORT RAM 8K (1K x 8-BIT) IDT7130SA/LA IDT7140SA/LA ### **FEATURES** · High-speed access -Military: 25/30/35/45/55/70/90/100/120ns (max.) -- Commercial: 20/25/30/35/45/55/70/90/100ns (max.) Low-power operation DT7400/IDT74400 —IDT7130/IDT7140SA Active: 325mW (typ.) Standby: 5mW (typ.) —IDT7130/IDT7140LA Active: 325mW (typ.) Standby: 1mW (typ.) MASTER IDT7130 easily expands data bus width to 16-or-more-bits using SLAVE IDT7140 On-chip port arbitration logic (IDT7130 Only) BUSY output flag on IDT7130; BUSY input on IDT7140 INT flag for port-to-port communication · Fully asynchronous operation from either port Battery backup operation—2V data retention TTL-compatible, single 5V ±10% power supply · Military product compliant to MIL-STD-883, Class B Standard Military Drawing #5962-86875 ### DESCRIPTION The IDT7130/IDT7140 are high speed 1K x 8 dual-port static RAMs. The IDT7130 is designed to be used as a stand-alone 8-bit dual-port RAM or as a "MASTER" dual-port RAM together with the IDT7140 "SLAVE" dual-port in 16-bit-or-more word width systems. Using the IDT MASTER/SLAVE dual-port RAM approach in 16-or-more-bit memory system applications results in full-speed, error-free operation without the need for additional discrete logic. Both devices provide two independent ports with separate control, address and I/O pins that permit independent asynchronous access for reads or writes to any location in memory. An automatic power down feature, controlled by $\overline{\text{CE}}$, permits the on chip circuitry of each port to enter a very low standby power mode. Fabricated using IDT's CEMOS™ high-performance technology, these devices typically operate on only 325mW of power at maximum access times as fast as 20ns. Low-power (LA) versions offer battery backup data retention capability, with each dual-port typically consuming 200µw from a 2V battery. The IDT7130/IDT7140 devices are packaged in 48-pin sidebraze or plastic DIPs, 48- or 52-pin LCCs, 52-pin PLCCs, and 48-Lead flatpacks. Military grade product is manufactured in compliance with the latest revision of MIL-STD-883, Class B. #### **FUNCTIONAL BLOCK DIAGRAM** #### NOTES: IDT7130 (MASTER): BUSY is open drain output and requires pullup resistor. IDT7140 (SLAVE): BUSY is input. Open drain output: requires pullup resistor. CEMOS is a trademark of Integrated Device Technology, Inc. 2689 drw 01 **MILITARY AND COMMERCIAL TEMPERATURE RANGES** SEPTEMBER 1990 #### PIN CONFIGUARATIONS 52-PIN LCC/PLCC TOP VIEW # ABSOLUTE MAXIMUM RATINGS (1) | Symbol | Rating | Commercial | Military | Unit | |--------|--------------------------------------|--------------|--------------|------| | VTERM | Terminal Voltage with Respect to GND | -0.5 to +7.0 | -0.5 to +7.0 | V | | TA | Operating
Temperature | 0 to +70 | -55 to +125 | °C | | TBIAS | Temperature
Under Bias | -55 to +125 | -65 to +135 | °C | | TstG | Storage
Temperature | -55 to +125 | -65 to +150 | °C | | юит | DC Output
Current | 50 | 50 | mA | #### NOTE: 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. # RECOMMENDED DC OPERATING CONDITIONS | Symbol | Parameter | Min. | Typ. | Max. | Unit | |--------|--------------------|---------|------|------|-------------| | Vcc | Supply Voltage | 4.5 | 5.0 | 5.5 | V | | GND | Supply Voltage | 0 | 0 | 0 | V | | ViH | Input High Voltage | 2.2 | _ | 6.0 | ٧ | | ViL | Input Low Voltage | -0.5(1) | | 0.8 | > | | NOTE: | • | | | : | 2689 tol 02 | 1. VIL (min.) = -3.0V for pulse width less than 20ns. # RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE | Grade | Ambient
Temperature | GND | Vcc | |------------|------------------------|-----|------------| | Military | -55°C to +125°C | ٥V | 5.0v ± 10% | | Commercial | 0°C to +70°C | οV | 5.0v ± 10% | 2689 tbl 03 2689 to 05 # DC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE (Vcc = 5.0V ±10%) | Symbol | Parameter | Took Conditions | IDT7 | 130SA
140SA | IDT7 | 130LA
140LA | | |--------|--|-----------------------------|------|----------------|------|----------------|------| | Symbol | Lataillarai | Test Conditions | Min. | Max. | Max. | Max. | Unit | | [kij | Input Leakage
Current | Vcc = 5.5V, Vin = 0V to Vcc | _ | 10 | _ | 5 | μА | | lLO | Output Leakage
Current | CE = VIH, VOUT = 0V to VCC | _ | 10 | | 5 | μА | | Vol | Output Low Voltage
(I/Oo-I/O7) | loL = 4.0mA | _ | 0.4 | _ | 0.4 | ٧ | | Vol | Open Drain Output
Low Voltage (BUSY, INT) | loL = 16mA | _ | 0.5 | _ | 0.5 | \ \ | | Vон | Output High Voltage | Юн = -4mA | 2.4 | _ | 2.4 | | V | 2680 thi 04 ## DC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE (1) (Vcc = 5.0V ± 10%) | Symbol | Parameter | Test Conditions | Version | 7140 x
Typ. | (20 ^(2,6)
(20 ^(2,6)
Max. | 7130
7140
Typ. | x 25 ⁶⁾
x 25 ⁶⁾
Max. | 7130
7140
Typ. | x 30 ⁽⁵⁾
x 30 ⁽⁶⁾
Max. | | x 35 ⁽⁷⁾
x 35 ⁽⁷⁾
Max. | | x 45
x 45
Max. | Unit | |--------|--|---|----------------|----------------|--|----------------------|--|----------------------|--|----------------|--|----------------|----------------------|-----------| | lcc | Dynamic Operating
Current (Both Ports | CE = VIL
Outputs Open | Mil. SA | L | 260 | 75
75
75 | 300
220
250 | 75
75
75 | 290
210
240 | 75
75
75 | 280
200
195 | 75
75
75 | 230
185
190 | mA | | ISB1 | Active) | f = fMAX ⁽⁴⁾ CEL and CER ≥ VIH | CONTI.LA | 75_ | 190 | 75
25 | 180
75 | 75
25.0 | 170 | 75
25 | 155
75 | 75
25 | 145
65 | Ш | | ISB1 | Standby Current
(Both Ports - TTL | f - frany (4) | MII. LA |
25 | <u> </u> | 25
25 | 55
65 | 25
25 | 55 | 25
25 | 55
65 | 25
25 | 55
65 | mA | | ISB2 | Level Inputs) Standby Current | CEL or CER ≥ VIH | Com'l.SA
LA | 25 | 45 | 25
50 | 45
180 | 25
46 | | 25
40 | 45
170 | 25
40 | 45
135 | \sqcup | | 1582 | (One Port - TTL | Active Port Outputs | Mil. LA | 50 |
180 | 50
50 | 140
170 | 46 | 135
155 | 40 | 130 | 40 | 110 | mA | | ISB3 | Level Inputs) Full Standby Current | Open, f = fMAX ⁽⁴⁾ Both Ports CEL and | Com I. | 50 | 130 | 50
1,2 | 120 | 46
1.2 | 110 | 1.2 | 95
35 | 1.0 | 85
30 | \square | | 1000 | (Both Ports - Ali
CMOS Level Inputs) | CEn ≥ Vcc -0.2V | Mil. LA | | | 0.4 | 10 | 0.4 | 10 | 0.4 | 10 | 0.2 | 10 | mA | | | OMOS Level IIIpuis) | $VIN \le 0.2V, f = 0^{(5)}$ | Com'l. SA | 1.2
0.4 | 15 /
4 | 1.2
0.4 | 15
4 | 1.2
0.4 | 15
4 | 1.0
0.2 | 15
4 | 1.0
0.2 | 15
4 | | | ISB4 | Full Standby Current
(One Port - All | One Port CEL or
CER ≥ Vcc -0.2V | Mil. SA | 7 | | 50 | 170 | 45 | 160 | 40 | 150 | 40 | 125 | | | | CMOS Level Inputs, f = 0 (5)) | VIN ≥ VCC -0.2V or
VIN ≤ 0.2V | LA
SA | 50 | 160 | 46
50 | 135
150 | 42 | 125
137 | 35
40 | 115 | 35
40 | 95
105 | mA | | | (= 0···) | Active Port Outputs Open, f = fMAX ⁽⁴⁾ | Com'l. LA | 46 | 125 | 46 | 115 | 42 | 105 | 35 | 90 | 35 | 80 | | #### NOTES: - 1. "x" in part numbers indicates power rating (SA or LA). - 2. 0°C to +70°C temperature range only. - 3. -55°C to +125°C temperature range only. - Att = fMAX, address and data inputs (except Output Enable) are cycling at the maximum frequency of read cycle of 1/tnc, and using "AC TEST CONDITIONS" of input levels of GND to 3V. - 5. f = 0 means no address or control lines change. Applies only to inputs at CMOS level standby. - Not available in DIP packages, see 7030/40 data sheet. DIP packages for 0°C to +70°C only, see 7030/40 data sheet. # DC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE⁽¹⁾ (Continued) (Vcc = 5.0V ±10%) | | | | | | x 55 | | x 70 | | x 90 | | | 7130 x
7140 x | | | |--------|---|--|---------------|------------|------------|------------|-------------|------------|------------|------------|------------|------------------|------------|------| | Symbol | Parameter | Test Conditions | Version | Typ. | Max. | Тур. | Max. | Тур. | Max. | Тур. | Max. | Тур. | Max. | Unit | | lcc | Dynamic Operating | CE = VIL | Mil. SA | 65
65 | 230
185 | 65
65 | 225
180 | 65
65 | 200
160 | 65
65 | 190
155 | 65
65 | 190
155 | mA | | | Current (Both Ports
Active) | Outputs Open f = fMAX ⁽⁴⁾ | Com'l.SA | 65
65 | 180
140 | 65
65 | 180
135 | 65
65 | 180
130 | 65
65 | 180
130 | = | | IIIA | | ISB1 | Standby Current | CEL and CER ≥ VIH | Mil. SA | 25
25 | 65
55 | 25
25 | 65
55 | 25
25 | 65
45 | 25
25 | 65
45 | 25
25 | 65
45 | mA | | | (Both Ports - TTL
Level Inputs) | f = fMAX ⁽⁴⁾ | Com'l.SA | | 65
45 | 25
25 | 60
40 | 25
25 | 55
35 | 25
25 | 55
35 | = | _ | '''^ | | ISB2 | Standby Current
(One Port - TTL | CEL or CER ≥ VIH
Active Port Outputs | Mil. SA
LA | 40
40 | 135
110 | 40
40 | 135
_110 | 40
40 | 125
100 | 40
40 | 125
100 | 40
40 | 125
100 | mA | | | Level Inputs) | Open, f = fMAX ⁽⁴⁾ | Com'l.SA | 40
40 | 115
85 | 40
40 | 110
85 | 40
40 | 110
75 | 40
40 | 110
75 | _ | _ | | | ISB3 | Full Standby Current
(Both Ports - All | Both Ports CEι and CEr ≥ Vcc -0.2V | Mil. SA | 1.0
0.2 | 30
10 | | | | CMOS Level Inputs) | VIN ≥ VCC -0.2V or VIN ≤ 0.2V, $f = 0^{(5)}$ | Com'l.SA | 1.0
0.2 | 15
4 | 1.0
0.2 | 15
4 | 1.0
0.2 | 15
4 | 1.0
0.2 | 15
4 | _ | _ | mA | | ISB4 | Full Standby Current | One Port CEL or | Mil. SA | 40 | 120 | 40 | 115 | 40 | 110 | 40 | 110 | 40 | 110 | | | | (One Port - All
CMOS Level Inputs, | CER≥ Vcc-0.2V
Vin≥ Vcc-0.2V or | LA | 35 | 90 | 35 | 85 | 35 | 80 | 35 | 80 | 35 | 80 | | | | f = 0 ⁽⁵⁾) | VIN ≥ VCC -0.2V 07
VIN ≤ 0.2V | Com'l. SA | 40 | 100 | 40 | 100 | 40 | 95 | 40 | 95 | _ | _ | mA | | | · | Active Port Outputs
Open, f = fMAX ⁽⁴⁾ | LA | 35 | 75 | 35 | 75 | 35 | 70 | 35 | 70 | - | | | #### NOTES: - 1. "x" in part numbers indicates power rating (SA or LA). - 2. 0°C to +70°C temperature range only. - 3. -55°C to +125°C temperature range only. - At f = MAX, address and data inputs (except Output Enable) are cycling at the maximum frequency of read cycle of 1/tnc, and using "AC TEST CONDITIONS" of input levels of GND to 3V. - 5. f = 0 means no address or control lines change. Applies only to inputs at CMOS level standby. # **DATA RETENTION CHARACTERISTICS (LA Version Only)** | Symbol | Parameter | Test Conditions | | IDT7130
Min. | LA/IDT714
Typ. | OLA
Max. | Unit | |---------------------|------------------------|-------------------------------|--------|--------------------|-------------------|-------------|------| | VDR | Vcc for Data Retention | | "' | 2.0 | _ | 0 | | | ICCDR | Data Retention Current | | Mil. | T - | 100 | 4000 | μА | | | | Vcc = 2.0V, CE ≥ Vcc -0.2V | Com'l. | T - | 100 | 1500 | μА | | tCDR ⁽³⁾ | Chip Deselect to Data | Vin ≥ Vcc -0.2V or Vin ≤ 0.2V | | 0 | | _ | ns | | | Retention Time | VIN 2 VCC -0.2V OF VIN 5 0.2V | | | | | | | tR(3) | Operation Recovery | | | tRC ⁽²⁾ | | | ns | | | Time | | | | | | | # NOTES: - 1. Vcc = 2V, TA = +25°C - 2. tnc = Read Cycle Time - 3. This parameter is guaranteed but not tested. 2689 tbl 07 # **DATA RETENTION WAVEFORM** # **AC TEST CONDITIONS** | Input Pulse Levels | GND to 3.0V | |-------------------------------|---------------------------| | Input Rise/Fall Times | 5ns | | Input Timing Reference Levels | 1.5V | | Output Reference Levels | 1.5V | | Output Load | See Figures 1, 2, 3 and 4 | 2689 tol 08 Figure 1. Output Load Figure 2. Output Load (for thz, tLz, twz, and tow) Output Load Figure 4. BUSY and iNT Output Load (for 20ns, 25ns and 30ns versions) * Including scope and jig 2689 drw 08 #### AC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE(5) | | | | (20 ^(2,6)
(20 ^(2,6) | | x 25 ⁽⁶⁾
x 25 ⁽⁶⁾ | 7130 x 30 ⁽⁶⁾
7140 x 30 ⁽⁶⁾ | | | | | x 35 ⁽⁷⁾
x 35 ⁽⁷⁾ | | 0 x 45
0 x 45 | | |---------|--|------|--|------|--|--|------|------|------|------|--|------|------------------|--| | Symbol | Parameter | Min. | Max. | Unit | | | | Read Cy | cle | | | | | | | | | | | | | | | tRC | Read Cycle Time | 20 | _ | 25 | | 30 | _ | 35 | _ | 45 | | ns | | | | taa | Address Access Time | | 20 | | 25 | | 30 | _ | 35 | | 45 | ns | | | | tace | Chip Enable Access Time | | 20 | _ | 25 | | ₹ 30 | _ | 35 | | 45 | ns | | | | taoe | Output Enable Access Time | _ | 10 | _ | 12 | <u>***</u> | 15 | | 25 | _ | 30 | ns | | | | toH | Output Hold From Address Change | 0 | _ | | - | 0 | | 0 | _ | 0 | _ | ns | | | | tı.z | Output Low Z Time (1,4) | Ó | | 0 | ·. — | 0 | | 5 | _ | 5 | _ | ns | | | | tHZ | Output High Z Time(1,4) | T | 8 | | 10 | | 12 | 1 | 15 | | 20 | ns | | | | tPU | Chip Enable to Power Up Time(4) | 0 | | 0 | | 0 | _ | 0 | | 0 | _ | ns | | | | tPD | Chip Disable to Power Down Time ⁽⁴⁾ | _ | 50 | | 50 | _ | 50 | _ | 50 | _ | 50 | ns | | | 2689 tol 09 2689 tbi 10 ## AC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE (5) (Continued) | | | | x 55 | 1 | x 70 | | x 90
x 90 | ı | x 100
x 100 | | k 120 ⁽³⁾
k 120 ⁽³⁾ | | |---------|------------------------------------|------|------|------|------|----------|--------------|----------|----------------|-----|--|------| | Symbol | Parameter | Min. | Max. | Min. | Max. | | Max. | Min. | | | Max. | Unit | | Read Cy | cle | | | | | | | | | | | | | tRC | Read Cycle Time | 55 | _ | 70 | | 90 | | 100 | _ | 120 | _ | ns | | taa | Address Access Time | _ | 55 | | 70 | - | 90 | — | 100 | T — | 120 | ns | | tace | Chip Enable Access Time | _ | 55 | _ | 70 | <u> </u> | 90 | _ | 100 | T — | 120 | ns | | tAOE | Output Enable Access Time | _ | 35 | l — | 40 | | 40 | _ | 40 | Γ — | 60 | ns | | ton | Output Hold From Address Change | 0 | | 0 | | 10 | | 10 | | 10 | _ | ns | | tLZ | Output Low Z Time (1,4) | 5 | | 5 | | 5 | | 5 | _ | 5 | - | ns | | tHZ | Output High Z Time(1,4) | _ | 30 | _ | 35 | _ | 40 | — | 40 | T — | 40 | ns | | tPU | Chip Enable to Power Up Time(4) | 0 | | 0 | _ | 0 | | 0 | _ | 0 | _ | ns | | tPD | Chip Disable to Power Down Time(4) | _ | 50 | _ | 50 | | 50 | _ | 50 | _ | 50 | ns | #### NOTES: - Transition is measured ±500mV from low or high impedance voltage with load (Figures 1, 2, 3 and 4). - 2. 0°C to +70°C temperature range only. - -55°C to +125°C temperature range only - 4. This parameter guaranteed but not tested. - 5. "x" in part numbers indicates power rating (SA or LA). - 6. Not available in DIP packages, see 7030/40 data sheet. - 7. DIP packages for 0°C to +70°C only, see 7030/40 data sheet. # TIMING WAVEFORM OF READ CYCLE NO. 1, EITHER SIDE (1, 2, 4) 2689 dry 07 # TIMING WAVEFORM OF READ CYCLE NO. 2, EITHER SIDE (1, 3) - NOTES: 1. R/W is high for Read Cycles. 2. Device is continuously enabled, $\overline{CE} = V_{IL}$. 3. Addresses valid prior to or coincident with \overline{CE} transition low. 4. $\overline{OE} = V_{IL}$. ## AC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE (7) | | | | 7140 x 20 ^(2,8) 7140 x 25 ⁽⁸⁾ 7140 x 30 ⁽⁸⁾ 7 | | | x 35 ⁽⁹⁾
x 35 ⁽⁹⁾ | 7130
7140 | | | | | | |----------|---|------|--|-------------|------|--|------------------|------|------|------|------|------| | Symbol | Parameter | Min. | Max. | Unit | | Write Cy | cle | | | | | | | | | | | | | twc | Write Cycle Time(5) | 20 | _ | 25 | _ | 30 | | 35 | | 45 | | ns | | tew | Chip Enable to End of Write | 15 | | 20 | | 25 | _ | 30 | _ | 35 | | ns | | taw | Address Valid to End of Write | 15 | _ | 20 | _ | 25 🔩 | 300 | 30 | | 35 | | ns | | tas | Address Set-up Time | 0 | _ | 0 | | Q. | , " — | 0 | | 0 | _ | ns | | twp | Write Pulse Width (6) | 15 | _ | 20 | | 25 | _ | 30 | | 35 | | ns | | twn | Write Recovery Time | 0 | _ | 0 | | 0 | _ | 0 | | 0 | | ns | | tow | Data Valid to End of Write | 10 | | 12 | | 15 | _ | 20 | | 20 | | ns | | tHZ | Output High Z Time (1, 4) | - | 8 | | 10 | _ | 12 | | 15 | | 20 | nş | | tDH | Data Hold Time | 0 | | 0 | _ | 0 | _ | 0 | | 0 | _ | ns | | twz | Write Enabled to Output in High Z(1, 4) | | 8 | _ | 10 | | 12 | | 15 | _ | 20 | ns | | tow | Output Active From End of Write (1, 4) | 0 | _ | 0 | _ | 0 | | 0 | | 0 | | ns | 2689 tol 11 # AC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE (7) | | | | | 7130 x 90
7140 x 90 | | | | | | = | | | | |----------|---|------|------|------------------------|------|------|------|------|------|------|------|------|--| | Symbol | Parameter | Min. | Max. | Unit | | | Write Cy | cle | | | | | | | | | | | | | | twc | | | | | | | | | | | | | | | tEW | Chip Enable to End of Write | 40 | _ | 50 | _ | 85 | _ | 90 | | 100 | | ns | | | taw | Address Valid to End of Write | 40 | _ | 50 | _ | 85 | _ | 90 | _ | 100 | _ | ns | | | tas | Address Set-up Time | 0 | _ | 0 | | 0 | | 0 | | 0 | _ | ns | | | twp | Write Pulse Width (6) | 40 | | 50 | | 55 | _ | 55 | | 65 | | ns | | | twn | Write Recovery Time | 0 | | 0 | _ | 0 | | 0 | _ | 0 | | ns | | | tow | Data Valid to End of Write | 20 | _ | 30 | _ | 40 | _ | 40 | _ | 40 | _ | ns | | | tHZ | Output High Z Time (1, 4) | _ | 30 | | 35 | _ | 40 | _ | 40 | | 40 | ns | | | tDH | Data Hold Time | 0 | _ | 0 | | 0 | _ | 0 | | 0 | | ns | | | twz | Write Enabled to Output in High Z ^(1, 4) | | 30 | | 35 | _ | 40 | | 40 | | 50 | ns | | | tow | Output Active From End of Write (1, 4) | 0 | | 0 | _ | 0 | | 0 | _ | 0 | _ | ns | | #### NOTES: - Transition is measured ±500mV from low or high impedance voltage with load (Figures 1, 2, 3 and 4). - 0°C to +70°C temperature range only. - -55°C to +125°C temperature range only - This parameter guaranteed but not tested. For MASTER/SLAVE combination, two = tBAA + twp. - 6. Specified for OE at high (Refer to "Timing Waveform of Write Cycle", Note 7) - "x" in part numbers indicates power rating (SA or LA). - Not available in DIP packages, see 7030/40 data sheet. DIP packages for 0°C to +70°C only, see 7030/40 data sheet. #### CAPACITANCE (TA = +25°C, f = 1.0MHz) | Symbol | Parameter (1) | Conditions | Max. | Unit | |--------|--------------------|------------|------|-----------| | CIN | Input Capacitance | VIN = OV | 11 | ρF | | Соит | Output Capacitance | Vin = 0V | 11 | ρF | | NOTE: | | | 26 | 89 tbl 13 | #### NOTE: 1. This parameter is determined by device characterization but is not production tested. # TIMING WAVEFORM OF WRITE CYCLE NO. 1, (R/W CONTROLLED TIMING)(1,2,3,7) 2689 drw 09 # TIMING WAVEFORM OF WRITE CYCLE NO. 2, (CE CONTROLLED TIMING)(1,2,3,5) #### NOTES: - 1. R/W must be high during all address transitions. - A write occurs during the overlap (tew or twp) of a low CE and a low R/W. twn is measured from the earlier of CE or R/W going high to the end of the write cycle. - During this period, the I/O pins are in the output state and input signals must not be applied. If the CE low transition occurs simultaneously with or after the R/W low transition, the outputs remain in the high impedance state. - 6. Transition is measured ±500mV from steady state with a 5pF load (including scope and jig). - The state of the second of the write cycle, the write pulse width must be larger of two or (twz + tow) to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If OE is high during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp. # AC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE (8) | | | | x 20 ^(1,10)
x 20 ^(1,10) | | | | | | | | 0 x 45
0 x 45 | | |--------|--|--------|--|------|--------|---------|-----------|------|--------|------|------------------|------| | Symbol | Parameter | Min. | Max. | Unit | | BUSY | TIMING (FOR MASTER IDT7130 ONLY) | | | | | | | | | | | | | tBAA | BUSY Access Time to Address | | 20 | - | 25 | _ | 30 | _ | 35 | _ | 35 | ns | | tBDA | BUSY Disable Time to Address | | 18 | | 20 | _ | 25 | _ | 30 | _ | 35 | ns | | 1BAC | BUSY Access Time to Chip Enable | _ | 20 | _ | 20 | _ | 25 | _ | 30 | _ | 30 | ns | | tBDC | BUSY Disable Time to Chip Enable | _ | 18 | | 20 | | ž 25 | _ | 25 | _ | 25 | ns | | twdd | Write Pulse to Data Delay ⁽³⁾ | \Box | 45 | | 50 | - | 55 | _ | 60 | _ | 70 | ns | | tooo | Write Data Valid to Read Data Delay ⁽³⁾ | _ | 30 | _ | 33 | <u></u> | 33 | _ | 35 | _ | 45 | ns | | taps | Arbitration Priority Set-up Time (4) | 5 | | 5 | | 5 | - | 5 | | 5 | _ | ns | | tBDD | BUSY Disable to Valid Data ⁽⁵⁾ | _ | Note 5 | | Note 5 | _ | Note 5 | _ | Note 5 | _ | Note 5 | ns | | BUSY | INPUT TIMING (FOR SLAVE IDT7140 O | NLY) | A 100 G | 199 | | | | | | | | | | twB | Write to BUSY Input ⁽⁶⁾ | 0 | | 0 | _ | 0 | | Ö | _ | 0 | _ | ns | | twH | Write Hold After BUSY ⁽⁷⁾ | 12 | | 15 | | 20 | _ | 20 | _ | 20 | | ns | | twbb | Write Pulse to Data Delay ⁽⁹⁾ | _ | 45 | | 50 | _ | 55 | _ | 60 | _ | 70 | ns | | tDDD | Write Data Valid to Read Data Delay (9) | _ | 30 | | 35 | _ | 35 | _ | 35 | _ | 45 | ns | 2680 thi 14 # AC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE (8) | • • • • • • • • • • • • • • • • • • • | TING TEMPENATORE AND S | <u> </u> | | | <u> </u> | | • | | | | | | |---|--|----------|--------|------|----------|------|--------|------|--------|--------|----------------------|------| | | | 713 | 0 x 55 | 713 | 0 x 70 | 713 | 0 x 90 | 7130 | x 100 | 7130 : | k 120(2) | | | | | 714 | 0 x 55 | 714 | 0 x 70 | 714 | 0 x 90 | 7140 | x 100 | 7140 : | K 120 ⁽²⁾ | | | Symbol | Parameter | Min. | Max. | Unit | | BUSY | TIMING (FOR MASTER IDT7130 ONLY) | | | | | | | _ | - | | | | | tBAA | BUSY Access Time to Address | _ | 45 | | 45 | | 45 | _ | 50 | | 60 | ns | | tBDA | BUSY Disable Time to Address | _ | 40 | _ | 40 | | 45 | | 50 | _ | 60 | ns | | tBAC | BUSY Access Time to Chip Enable | _ | 35 | _ | 35 | _ | 45 | | 50 | _ | 60 | ns | | tBDC | BUSY Disable Time to Chip Enable | | 30 | _ | 30 | | 45 | | 50 | _ | 60 | ns | | twoo | Write Pulse to Data Delay(3) | I | 80 | - | 90 | | 100 | | 120 | _ | 140 | ns | | tDDD | Write Data Valid to Read Data Delay ⁽³⁾ | _ | 55 | _ | 70 | _ | 90 | _ | 100 | _ | 120 | ns | | taps | Arbitration Priority Set-up Time ⁽⁴⁾ | 5 | _ | 5 | | 5 | _ | 5 | _ | 5 | | ns | | tBDD | BUSY Disable to Valid Data ⁽⁵⁾ | _ | Note 5 | _ | Note 5 | _ | Note 5 | | Note 5 | _ | Note 5 | ns | | BUSY | INPUT TIMING (FOR SLAVE IDT7140 O | VLY) | | | | | | | | | | | | twB | Write to BUSY Input ⁽⁶⁾ | 0 | | 0 | | 0 | _ | 0 | | 0 | _ | ns | | twH | Write Hold After BUSY ⁽⁷⁾ | 20 | | 20 | | 20 | | 20 | _ | 20 | _ | ns | | twoo | Write Pulse to Data Delay ⁽⁹⁾ | | 80 | | 90 | _ | 100 | _ | 120 | _ | 140 | ns | | tDDD | Write Data Valid to Read Data Delay (9) | _ | 55 | | 70 | | 90 | | 100 | | 120 | ns | #### NOTES: - 1. 0°C to +70°C temperature range only. - 2. -55°C to +125°C temperature range only. - 3. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Read With BUSY (For Master IDT7130 only)". - 4. To ensure that the earlier of the two ports wins. - 5. tado is a calculated parameter and is the greater of 0, twoo-twp (actual) or todo-tow (actual). - To ensure that the write cycle is inhibited during contention. - To ensure that a write cycle is completed after contention. - "x" in part numbers indicates power rating (SA or LA). - Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Read With Port-to-Port Delay (For Slave IDT7140 Only)". - 10. Not available in DIP packages, see 7030/40 data sheet. - 11. DIP packages for 0°C to +70°C only, see 7030/40 data sheet. # TIMING WAVEFORM OF READ WITH BUSY (1,2,3) (FOR MASTER IDT7130 ONLY) #### NOTES: - 1. To ensure that the earlier of the two ports wins. - 2. Write Cycle parameters should be adhered to in order to ensure proper writing. Device is continously enabled for both ports. OE at LO for the reading port. 2689 drw 11 # TIMING WAVEFORM OF READ WITH PORT-TO-PORT DELAY (1,2,3) (FOR SLAVE IDT7140 ONLY) - Assume BUSY input at HI for the writing port, and OE at LO for the reading port. Write Cycle parameters should be adhered to in order to ensure proper writing. 3. Device is continuosly enabled for both ports. #### 2689 drw 12 ### TIMING WAVEFORM OF WRITE WITH BUSY INPUT (FOR SLAVE IDT7140 ONLY) # TIMING WAVEFORM OF CONTENTION CYCLE NO. 1, CE ARBITRATION ## **CEL VALID FIRST:** # **CER VALID FIRST:** 2689 dow 15 # TIMING WAVEFORM OF CONTENTION CYCLE NO. 2, ADDRESS VALID ARBITRATION⁽¹⁾ #### RIGHT ADDRESS VALID FIRST: NOTE: 1. CEL = CER = VIL # AC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE (3) | Symbol | Parameter | | 20 (1,4)
20 ^(1,4)
Max. | 7130 x
7140 x
Min. | | | x 30 ⁽⁴⁾
x 30 ⁽⁴⁾
Max. | | x 35 ⁽⁵⁾
x 35 ⁽⁵⁾
Max. | 7140 |) x 45
) x 45
Max. | Unit | |----------|----------------------|-----|---|--------------------------|----------------------|----------|--|---|--|------|--------------------------|------| | Interrup | t Timing | | | | | A Samuel | 1 | | | | | | | tas | Address Set-up Time | 0 | - | 0 | u co n ii | 0 | \$ | ō | | 0 | | ns | | twn | Write Recovery Time | 0 | | 0 | 14 | ੌο | | 0 | _ | 0 | | ns | | tins | Interrupt Set Time | — « | 20 | <u> </u> | 25 | | 30 | | 35 | _ | 40 | ns | | tinn | Interrupt Reset Time | % | 20 | _ | 25 | _ | 30 | _ | 35 | | 40 | ns | # **AC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE** | Symbol | Parameter | 7130
7140
Min. | x 55
x 55
Max. | | 0 x 70
0 x 70
Max. | 7130
7140
Min. | | | x 100
x 100
Max. | | x 120 ⁽²⁾
x 120 ⁽²⁾
Max. | | |----------|----------------------|----------------------|----------------------|---|--------------------------|----------------------|----|----------|------------------------|----------------|--|-------------| | Interrup | t Timing | | | | | | | • | | · | | | | tas | Address Set-up Time | 0 | _ | 0 | _ | 0 | _ | Ō | _ | 0 | _ | ns | | twn | Write Recovery Time | 0 | | 0 | _ | 0 | - | 0 | _ | 0 | _ | ns | | tins | Interrupt Set Time | | 45 | _ | 50 | | 55 | <u> </u> | 60 | | 70 | ns | | tinn | Interrupt Reset Time | _ | 45 | _ | 50 | | 55 | | 60 | _ | 70 | ns | | NOTES: | | | | | | • | | • | | • | | 2689 tbi 17 | NOTES: - 0°C to +70°C temperature range only. - 2. -55°C to +125°C temperature range only. - 3. "x" in part numbers indicates power rating (SA or LA). - 4. Not available in DIP packages, see 7030/40 data sheet. - 5. DIP packages for 0°C to +70°C only, see 7030/40 data sheet. # TIMING WAVEFORM OF INTERRUPT MODE (1, 2) tins - 2669 drw 18 NOTES: INTR CEL = CER = VIL INTL and INTR are reset (high) during power up. # TIMING WAVEFORM OF INTERRUPT MODE(1, 2) ### RIGHT SIDE SETS INTL: 2689 drw 20 #### LEFT SIDE CLEAR INTL: NOTES: 1. CEL = CER = VIL 2. INTR and INTL are reset (high) during power up. #### 16-BIT MASTER/SLAVE DUAL-PORT MEMORY SYSTEMS NOTE: 1. No arbitration in IDT7140 (SLAVE). BUSY-IN inhibits write in IDT7140 (SLAVE). # 7 #### FUNCTIONAL DESCRIPTION: The IDT7130/IDT7140 provides two ports with separate control, address and I/O pins that permit independent access for reads or writes to any locations in memory. The IDT7130/IDT7140 has an automatic power down feature controlled by $\overline{\text{CE}}$. The $\overline{\text{CE}}$ controls on-chip power down circuitry that permits the respective port to go into a standby mode when not selected ($\overline{\text{CE}}$ high). When a port is enabled, access to the entire memory array is permitted. Each port has its own Output Enable control ($\overline{\text{OE}}$). In the read mode, the port's $\overline{\text{OE}}$ turns on the output drivers when set LOW. Noncontention READ/WRITE conditions are illustrated in Table 1. The interrupt flag (INT) permits communication between ports or systems. If the user chooses to use the interrupt function, a memory location (mail box or message center) is assigned to each port. The left port interrupt flag (INTL) is set when the right port writes to memory location 3FE (HEX). The left port clears the interrupt by reading address location 3FE. Likewise, the right port interrupt flag (INTR) is set when the left port writes to memory location 3FF (HEX) and to clear the interrupt flag (INTR), the right port must read the memory location 3FF. The message (8-bits) at 3FE or 3FF is user defined. If the interrupt function is not used, address locations 3FE or 3FF are not used as mailboxes, but as part of the random access memory. Refer to Table II for the interrupt operation. # ARBITRATION LOGIC FUNCTIONAL DESCRIPTION: The arbitration logic will resolve an address match or a chip enable match down to 5ns minimum and determine which port has access. In all cases, an active BUSY flag will be set for the delayed port. The BUSY flags are provided for the situation when both ports simultaneously access the same memory location. When this situation occurs, on-chip arbitration logic will determine which port has access and sets the delayed port's BUSY flag. BUSY is set at speeds that permit the processor to hold the operation and its respective address data. It is important to note that the operation is invalid for the port that has BUSY set LOW. The delayed port will have access when BUSY goes inactive. Contention occurs when both left and right ports are active and both addresses match. When this situation occurs, the on-chip arbitration logic determines access. Two modes of arbitration are provided: (1) if the addresses match and are valid before \overline{CE} , on-chip control logic arbitrates between \overline{CEL} and \overline{CER} for access; or (2) if the \overline{CES} are low before an address match, on-chip control logic arbitrates between the left and right addresses for access (refer to Table II). In either mode of arbitration, the delayed port's \overline{BUSY} flag is set and will reset when the port granted access completes its operation. # DATA BUS WIDTH EXPANSION MASTER/SLAVE DESCRIPTION: Expanding the data bus width to sixteen-or-more-bits in a dual-port RAM system implies that several chips will be active at the same time. If each chip includes a hardware arbitrator, and the addresses for each chip arrive at the same time, it is possible that one will activate its BUSYL while another activates its BUSYR signal. Both sides are now busy and the CPUs will wait indefinitely for their port to become free. To avoid the "Busy Lock-Out" problem, IDT has developed a MASTER/SLAVE approach where only one arbitrator, in the MASTER, is used. The SLAVE has BUSY inputs which allow an interface to the MASTER with no external components and with a speed advantage over other systems. When expanding dual-port RAMs in width, the writing of the SLAVE RAMs must be delayed, until after the BUSY input has settled. Otherwise, the SLAVE chip may begin a write cycle during a contention situation. Conversely, the write pulse must extend a hold time past BUSY to ensure that a write cycle takes place after the contention is resolved. This timing is inherent in all dual-port memory systems where more than one chip is active at the same time. The write pulse to the SLAVE should be delayed by the maximum arbitration time of the MASTER. If, then, a contention occurs, the write to the SLAVE will be inhibited due to $\overline{\text{BUSY}}$ from the MASTER. #### TRUTH TABLES ## TABLE I - NON-CONTENTION **READ/WRITE CONTROL (4)** | L | ft Or | Right | Port (1) | | | | | | | | | | | |-----|-------|-------|----------|-------------------------------------|--|--|--|--|--|--|--|--|--| | R/W | CE | ŌĒ | Do-7 | Function | | | | | | | | | | | Х | Н | X | Z | Port Disabled and in Power | | | | | | | | | | | | | | | Down Mode ISB2 or ISB4 | | | | | | | | | | | Х | Н | Х | Z | CER = CEL = H, Power Down | | | | | | | | | | | | | | | Mode, ISB1 or ISB3 | | | | | | | | | | | L | L | Х | DATAIN | Data on Port Written into Memory(2) | | | | | | | | | | | Н | L | L | DATAOUT | Data in Memory Output on Port(3) | | | | | | | | | | | H | L | H | Ž | High Impedance Outputs | | | | | | | | | | #### NOTES: 2600 to 16 - NOTES: 1. AoL-AoR-AoR 2. If BUSY = L, data is not written 3. If BUSY = L, data may not be valid, see two and too timing. 4. H = HIGH, L = LOW, X = DON'T CARE, Z = HIGH IMPEDANCE # TABLE II - INTERRUPT FLAG(1, 4) | Left Port | | | | | | | | | | | |-----------|-----|-----|---------|------------------|------|-----|-----|---------|------------------|-----------------------| | R/WL | CEL | ŌĒL | AoL-AgL | ĪNTL | R/Wa | CER | ÖÉR | AoL-Agr | INTR | Function | | L | L | Х | 3FF | Х | Х | X | Х | Х | L(2) | Set Right NTR Flag | | Х | X | Х | X | Х | Х | Ĺ | L | 3FF | H ⁽³⁾ | Reset Right INTR Flag | | Х | X | Х | Х | [(3) | L | L | Х | 3FE | Х | Set Left INTL Flag | | Х | L | L | 3FE | H ⁽²⁾ | Х | Х | X | Х | Х | Reset Left INTL Flag | #### NOTES: 1. Assumes BUSYL = BUSYR = H. 2. If BUSYL = L, then NC. - 3. If BUSYR = L, then NC. - 4. H = HIGH, L = LOW, X = DON'T CARE, NC = NO CHANGE #### TABLE III - ARBITRATION (2) | Left Port | | Righ | t Port | Flag | s (1) | | |----------------|---------------------|-----------------|------------|-------|--------------|----------------------| | CEL | Aol-Agl | CER | Aor-Agr | BUSYL | BUSYR | Function | | Н | Х | Н | X | H | Н | No Contention | | L | Any | Н | X | Н | Н | No Contention | | Н | X | L | Any | Н | н | No Contention | | L | ≠ Aor-Agr | L | ≠ AoL-A9L | Н | Н | No Contention | | Address Arb | itration With CE Lo | ow Before Add | ress Match | | | | | Ĺ | LV5R | L | LV5R | Н | L | L-Port Wins | | L | RV5L | L | RV5L | L | Н | R-Port Wins | | L | Same | L | Same | Н | L | Arbitration Resolved | | L | Same | L | Same | L | Н | Arbitration Resolved | | CE Arbitration | on With Address M | latch Before Cl | Ē | | • | • | | LL5R | = AoR-AgR | LL5R | = AoL-AgL | Н | L | L-Port Wins | | RL5L | = AoR-AgR | RL5L | = AoL-AgL | L | Н | R-Port Wins | | LW5R | = AoR-AgR | LW5R | = Aol-Agl | Н | L | Arbitration Resolved | | LW5R | = AoR-AgR | LW5R | = AoL-A9L | Ļ | Н | Arbitration Resolved | ### NOTES: 1. INT Flags Don't Care. X = DON'T CARE, L = LOW, H = HIGH LV5R = Left Address Valid ≥ 5ns before right address. RV5L = Right Address Valid ≥ 5ns before left address. Same = Left and Right Addresses match within 5ns of each other. LL5R = Left CE = LOW ≥ 5ns before Right CE. RL5L = Right CE = LOW ≥ 5ns before Left CE. LW5R = Left and Right CE = LOW within 5ns of each other. 2689 tol 20 ## **ORDERING INFORMATION** 2689 drw 23