Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note: Mitsubishi Electric will continue the business operations of high frequency & optical devices Not record and power devices.

Renesas Technology Corp. Customer Support Dept. April 1, 2003

4194304-BIT (524288-WORD BY 8-BIT) CMOS STATIC RAM

DESCRIPTION

The M5M5408B is a family of 4-Mbit static RAMs organized as 524,288-words by 8-bit, fabricated by Mitsubishi's high-performance 0.25 μ m CMOS technology.

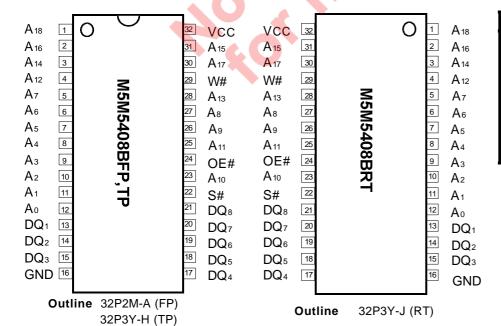
The M5M5408B is suitable for memory applications where a simple interfacing , battery operating and battery backup are the important design objectives.

M5M5408B is packaged in 32-pin plastic SOP, 32-pin plastic TSOP. Two types of TSOPs are available, M5M5408BTP (normal-lead-bend TSOP) , M5M5408BRT (reverse-lead-bend TSOP). These two types TSOPs are suitable for a surface mounting on double-sided printed circuit boards.

From the point of operating temperature, the family is divided into two versions; "Standard" and "I-version". Those are

FEATURES

- · Single +5V power supply
- Small stand-by current: 0.4µA(3V,typ.)
- · No clocks, No refresh
- · Data retention supply voltage=2.0V to 5.5V
- · All inputs and outputs are TTL compatible.
- · Easy memory expansion by S#
- · Common Data I/O
- · Three-state outputs: OR-tie capability
- · OE# prevents data contention in the I/O bus
- · Process technology: 0.25µm CMOS
- · Package:


M5M5408BFP: 32 pin 525 mil SOP M5M5408BTP/RT: 32 pin 400 mil TSOP(II)

PART NAME TABLE

Version,	Part name	_	Access	Stand	l-by currer	nt Icc(PD),	Vcc=3.0V	Active
Operating	(## stands for	Power	time	ty pical *		imits (ma	x.)	current Icc1
temperature	"FP","TP",and "RT")	Supply	max.	25°C	25°C	70°C	85°C	(5.0V, typ.*)
Standard	M5M5408B## -55E	5.0)/	55ns		44	454		50mA
0 ~ +70°C	M5M5408B## -70E	5.0V	70ns	0.4μΑ	1µA	15µA		(10MHz)
I-v ersion	M5M5408B## -55H	5.0)/	55ns	0.4µA	1µA	15uA	30µA	25mA
-40 ~ +85°C	M5M5408B## -70H	5.0V	70ns	υ. - μ/	ιμΛ	ισμα	σομΑ	(1MHz)

*Typical values are sampled, and are not 100% tested.

PIN CONFIGURATION (TOP VIEW)

Pin	Function
A0 ~ A18	Address input
DQ1 ~ DQ8	Data input / output
S# (S)	Chip select input
W# (W)	Write control input
OE# (OE)	Output inable input
Vcc	Power supply
GND	Ground supply

4194304-BIT (524288-WORD BY 8-BIT) CMOS STATIC RAM

FUNCTION

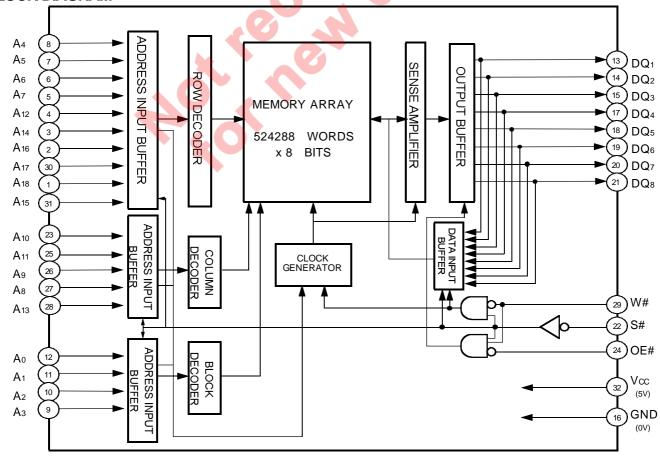
The M5M5408BFP,TP,RT is organized as 524,288-words by 8-bit. These devices operate on a single +5.0V power supply, and are directly TTL compatible to both input and output. Its fully static circuit needs no clocks and no refresh, and makes it useful.

A write operation is executed during the S# low and W# low overlap time. The address(A0~A18) must be set up before the write cycle

A read operation is executed by setting W# at a high level and OE# at a low level while S# are in an active state (S#=L).

When setting S# at a high level, the chips are in a non-selectable mode in which both reading and writing are disabled. In this mode, the output stage is in a high-impedance state, allowing OR-tie with other chips. Setting the OE# at a high level,the output stage is in a high-impedance state, and the data bus contention problem in the write cycle is eliminated.

The power supply current is reduced as low as $0.4\mu A$ (25°C, typical), and the memory data can be held at +2V power supply, enabling battery back-up operation during power failure or power-down operation in the non-selected mode.


FUNCTION TABLE

-						
Ì	S#	W#	OE#	Mode	DQ	lcc
	Н	Χ	Χ	Non selection	High-impedance	Standby
	L	L	Χ	Write	Data input (D)	Activ e
	L	Н	L	Read	Data output (Q)	Activ e
	L	Н	Н	Read	High-impedance	Activ e

Pin	Function
A0 ~ A18	Address input
DQ1 ~ DQ8	Data input / output
S# (S)	Chip select input
W# (W)	Write control input
OE# (OE)	Output inable input
Vcc	Power supply
GND	Ground supply

note: "H" and "L" in this table mean VIH and VIL, respectively.
"X" in this table should be "H" or "L".

BLOCK DIAGRAM

4194304-BIT (524288-WORD BY 8-BIT) CMOS STATIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Units
Vcc	Supply voltage	With respect to GND	-0.3* ~ +7	
Vı	Input voltage	With respect to GND	-0.3* ~ Vcc + 0.3	V
Vo	Output voltage	With respect to GND	0 ~ Vcc	
Pd	Power dissipation	Ta=25°C	700	mW
Ta	Operating	Standard	0 ~ +70	
I d	temperature	I-v ersion	-40 ~ +85	°C
Tstg	Storage temperature		-65 ~ +150	°C

^{* -3.0}V in case of AC (Pulse width ≤ 30ns)

DC ELECTRICAL CHARACTERISTICS

(Vcc= 5V ±10%, unless otherwise noted)

Symbol	Parameter	Conditions			Limits		Llmita
Cymbol	Parameter	Conditions		Min	Тур.	Max	Units
VIH	High-lev el input v oltage			2.2		Vcc+0.3V	
VIL	Low-lev el input v oltage			-0.3 *		0.8	
V _{OH1}	High-level output voltage 1	Iон= -1mA	6	2.4			V
V_{OH2}	High-level output voltage 2	Iон= -0.1mA		Vcc-0.5V			
Vol	Low-lev el output v oltage	IoL=2mA				0.4	
Iı	Input leakage current	Vı=0 ~ Vcc	7			±1	μA
lo	Output leakage current	S# = VIH or $OE# = VIH$, $VI/O = 0 \sim VC$	С			±1	μΛ
lood	Active supply current	S# ≤ 0.2V, output-open	f=10MHz	-	50	80	
lcc1	(CMOS-lev el input)	Other inputs $\leq 0.2V$ or $\geq Vcc-0.2V$	f=1MHz	-	25	30	A
	Active supply current	S# =VIL, output-open	f=10MHz	-	60	90	mA
lcc2	(TTL-lev el input)	Other inputs= Vін or Vіь	f=1MHz	-	30	40	
10	Stand by supply current	Vcc =5.5V, max.	Standard	-	1.0	30	^
Icc3	(CMOS-lev el input)	S# ≥ Vcc-0.2V,other inputs=0~Vcc	I-v ersion	-	1.0	60	μA
Icc4	Stand by supply current (TTL-level input)	S# =VIH, other inputs= 0 ~ Vcc		-	-	3	mA

Note 1: Direction for current flowing into IC is indicated as positive (no mark).

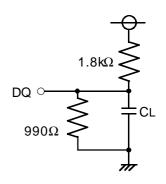
CAPACITANCE

(Vcc=5.0V±10%, unless otherwise noted)

Course le se l	Parameter			Limits		
Symbol	Farameter	Conditions	Min	Тур.	Max	Units
Сі	Input capacitance	Vi=GND, Vi=25mVrms, f=1MHz			8	_
Со	Output capacitance	Vo=GND,Vo=25mVrms, f=1MHz			10	pF

^{* -3.0}V in case of AC (Pulse width ≤30ns)

Note 2: Typical values are sampled at Vcc=5.0V and Ta=25°C, and are not 100% tested.


4194304-BIT (524288-WORD BY 8-BIT) CMOS STATIC RAM

AC ELECTRICAL CHARACTERISTICS

(Vcc=5.0V±10%, unless otherwise noted)

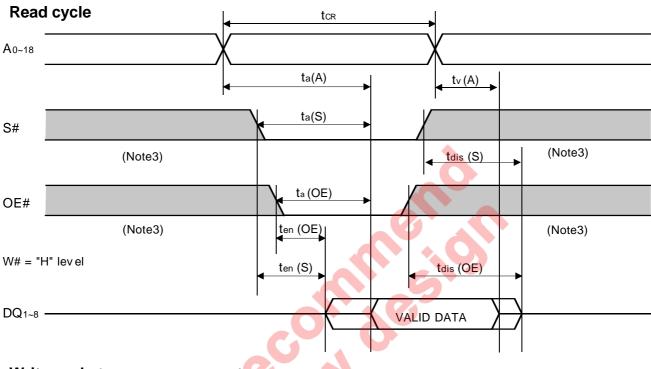
(1) TEST CONDITIONS

-	
Supply voltage	5.0V
Input pulse	VIH=2.4V,VIL=0.6V (-70H, -70HI) VIH=3.0V,VIL=0V (-55H, -55HI)
Input rise time and fall time	5ns
Reference level	VOH=VOL=1.5V
	Transition is measured ±500mV from
	steady state voltage for ten and tdis.
Output loads	Fig.1, CL=100pF (-70H, -70HI)
	CL=30pF (-55H, -55HI)
	CL=5pF (for ten,tdis)

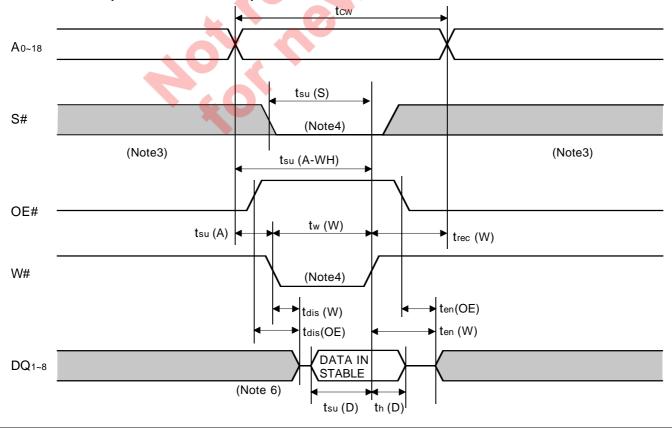
CL Includes scope and jig capacitance

Fig.1 Output load

(2) READ CYCLE

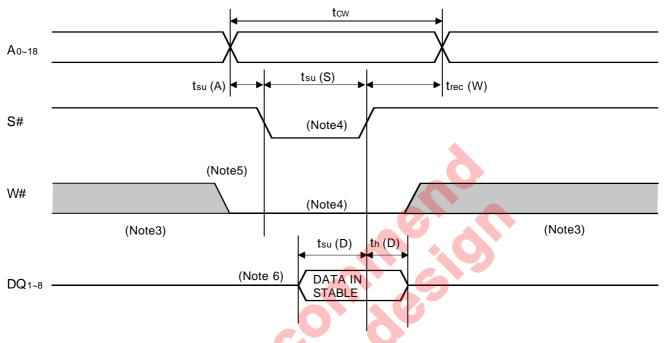

			Limits				
Symbol	Parameter	-55H, -55HI		-70H,	Units		
		Min	Max	Min	Max		
t CR	Read cycle time	55		70		ns	
ta(A)	Address access time		55		70	ns	
ta(S)	Chip select access time		55		70	ns	
ta(OE)	Output enable access time		25		35	ns	
tdis(S)	Output disable time after S# high		20		25	ns	
tdis(OE)	Output disable time after OE# high		20		25	ns	
ten(S)	Output enable time after S# low	10		10		ns	
ten(OE)	Output enable time after OE# low	5		5		ns	
t∨(A)	Data valid time after address	10		10		ns	

(3) WRITE CYCLE


			Limits				
Symbol	Parameter	-55H,	-55HI	-70H	-70HI	Units	
		Min	Max	Min	Max		
tcw	Write cycle time	55		70		ns	
t _w (W)	Write pulse width	40		50		ns	
tsu(A)	Address set up time	0		0		ns	
tsu(A-WH)	Address set up time with respect to W# high	50		60		ns	
tsu(S)	Chip select set up time	50		60		ns	
tsu(D)	Data set up time	25		30		ns	
th(D)	Data hold time	0		0		ns	
trec(W)	Write recovery time	0		0		ns	
tdis(W)	Output disable time after W# low		20		25	ns	
tdis(OE)	Output disable time after OE# high		20		25	ns	
t _{en} (W)	Output enable time after W# high	5		5		ns	
ten(OE)	Output enable time after OE# low	5		5		ns	

4194304-BIT (524288-WORD BY 8-BIT) CMOS STATIC RAM

(4)TIMING DIAGRAMS



Write cycle (W# control mode)

4194304-BIT (524288-WORD BY 8-BIT) CMOS STATIC RAM

Write cycle (S# control mode)

Note 3: Hatching indicates the state is "don't care".

Note 4: A Write occurs during the overlap of a low S# and a low W#.

Note 5: If W goes low simultaneously with or prior to S#, the output remains in the high impedance state.

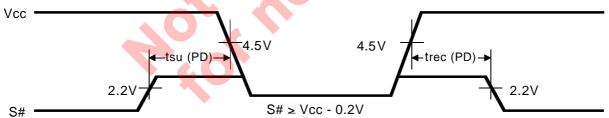
Note 6: Don't apply inverted phase signal externally when DQ pin is in output mode.

4194304-BIT (524288-WORD BY 8-BIT) CMOS STATIC RAM

POWER DOWN CHARACTERISTICS

(1) ELECTRICAL CHARACTERISTICS

0 1	Б	- .	Test conditions			Limits		
Symbol	Parameter	Test				Ty pical	Max	Units
Vcc (PD)	Power down supply voltage					-	-	
VI (S#)	Chip select input S#	$Vcc(PD) \ge 2.2V$			2.2	-	1	V
V1 (S#)	Onip select input o#	2.2V ≥ Vcc(PD) ≥ 2.0V			-	Vcc(PD)	-	
			I-version	85°C	ı	-	30	
		Vcc=3.0V,	Standard,	70°C	-	-	15	
ICC (PD)	Power down supply current	S# ≥ Vcc-0.2V,	I-version	40°C	-	1*	3	μΑ
		Other input =0 ~ Vcc	Standard	0~ 25°C		0.4*	1	
		_0 ~ vCC	I-version	-40~ 25°C		0.4*	1	


^{*}Ty pical values are sampled, and are not 100% tested.

(2) TIMING REQUIREMENTS

		41.8		Limits	3	
Symbol	Parameter	Test conditions	Min	Тур	Max	Units
tsu (PD)	Power down set up time		0			ns
trec (PD)	Power down recovery time		5			ms

(3) TIMING DIAGRAM

4194304-BIT (524288-WORD BY 8-BIT) CMOS STATIC RAM

	Revi	sion	Histo	rv
--	------	------	-------	----

Revision No.	<u>History</u>	<u>Date</u>	
K0.1e	The first edition	Jul.30, '98	Preliminary
K0.2e	1) lcc3 limit revised	Jun. 3, '99	Preliminary
	2) Icc(PD) limit revised		
	3) lcc1,lcc2 conditions revised		
K0.3e	1) Vcc Level in the Block Diagram revised	Jun.28, '99	Preliminary
	2) lcc3 limit (typ) revised	λ	
K1.0e	The first product version	Oct.12, '99	
K1.1e	Product lineup revised	Oct.21, '99	
2.0e	1) Product lineup revised	Feb.12, '02	
	2) Symbol notations revised:		
	S̄ -> S#, ₩-> W#, OĒ -> OE#		
	3) Icc(PD) conditions revised	,	
	Hotrech		
	. 40		

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.

Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com).

When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

