

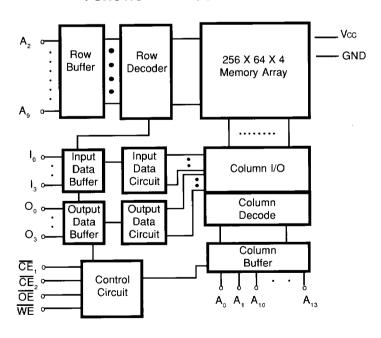
# 16K X 4 HIGH SPEED SEPARATE I/O CMOS STATIC RAM

**AUGUST 1990** 

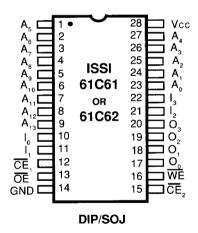
# **FEATURES**

- Very High Speed 15, 20, 25, 30ns (Max.)
- · Fast output enable (tDOE) for cache applications
- · Automatic power-down when chip is deselected
- · CMOS Low Power Operation
  - 400mW (Typical) Operating
  - 55mW (Typical) TTL standby
  - 25μW (Typical) CMOS standby (L-version)
- · TTL compatible interface levels
- Single 5V power supply
- · Fully static operation-no clock refresh required
- · Three state outputs
- Chip enable CE, CE, for simple memory expansion
- The IS61C61: DOUT follows DIN during write cycle when OE is low
- The IS61C62: Output pins stay in high impedance state during write cycle
- Data retention as low as 2V for battery back-up (L-version)

#### **DESCRIPTION**


The ISSI IS61C61 and IS61C62 are very high speed, low power, 16384 words by 4 bit static RAMs. The devices are fabricated using ISSI's high performance CMOS double metal technology. This highly reliable process coupled with innovative circuit design techniques, yields access times as fast as 15ns with low power consumption.

When either one of the Chip Enables ( $\overline{CE}_1$ ,  $\overline{CE}_2$ ) are high the device assumes a standby with low power consumption mode at which the power dissipation can be reduced down to  $25\mu W$  (typical) with CMOS input levels.


Easy memory expansion is provided by using active low Chip Enables,  $(\overline{CE}_1, \overline{CE}_2)$  and three-state drivers. The IS61C61 and IS61C62 have the active low Output Enable  $(\overline{OE})$  feature.

The IS61C61 and IS61C62 are packaged in the JEDEC standard 28 pin, 300 mil DIP and SOJ packages.

#### **FUNCTIONAL BLOCK DIAGRAM**



## **PIN CONFIGURATION**



Integrated Silicon Solution, Inc.

680 Almanor Avenue, Sunnyvale, California 94086 (408) 733-4774 FAX (408) 245-4774

# IS 61C61/62

#### **ABSOLUTE MAXIMUM RATINGS (1)**

| Symbol | Parameter                            | Value        | Unit |
|--------|--------------------------------------|--------------|------|
| VTERM  | Terminal Voltage with Respect to GND | -0.5 to +7.0 | >    |
| TBIAS  | Temperature Under Bias               | -55 to +125  | ô    |
| Тѕтс   | Storage Temperature                  | -65 to +150  | °C   |
| Рт     | Power Dissipation                    | 1.0          | W    |
| Іоит   | DC output Current (low)              | 20           | mΑ   |

#### **OPERATING RANGE**

| Range      | Ambient<br>Temperature | Vcc             |
|------------|------------------------|-----------------|
| Commercial | 0°C to 70°C            | 5V <u>+</u> 10% |
| Industrial | -40°C to 85°C          | 5V <u>+</u> 10% |

<sup>1.</sup> Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**Electrical Characteristics over Operating Range** 

| Symbol                       | Description                             | Test Conditions                                                                                            |      | 15<br>15 |      | 20<br>20 |      | 25<br>25 |      | 30<br>30 | Units |
|------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------|------|----------|------|----------|------|----------|------|----------|-------|
|                              |                                         |                                                                                                            | MIN. | мах.     | MIN. | MAX.     | MIN. | мах.     | MIN. | мах.     |       |
| Vон                          | Output High Voltage                     | Vcc = Min., Ioh = -4.0mA                                                                                   | 2.4  |          | 2.4  |          | 2.4  |          | 2.4  |          | ٧     |
| Vol                          | Output Low Voltage                      | Vcc = Min., lol = 8.0 mA                                                                                   |      | 0.4      |      | 0.4      |      | 0.4      |      | 0.4      | V     |
| VIH                          | Input High Voltage                      |                                                                                                            | 2.2  | Vcc      | 2.2  | Vcc      | 2.2  | Vcc      | 2.2  | Vcc      | ٧     |
| VıL                          | Input Low Voltage (2)                   |                                                                                                            | -0.5 | 0.8      | -0.5 | 8.0      | 0.5  | 0.8      | -0.5 | 0.8      | V     |
| ILI                          | Input Leakage                           | GND ≤ Vin ≤ Vcc                                                                                            | -10  | 10       | -10  | 10       | -10  | 10       | -10  | 10       | μΑ    |
| lLO                          | Output Leakage                          | GND ≤ Vouт ≤ Vcc,<br>Output Disabled                                                                       | -10  | 10       | -10  | 10       | -10  | 10       | -10  | 10       | μА    |
| los                          | Output Short<br>Circuit Current (1)     | Vcc = Max., Vout = GND                                                                                     |      | -150     |      | -150     |      | -150     |      | -150     | mA    |
| Icc <sub>1</sub>             | Vcc Operating Supply Current            | Vcc = Max., IOUT = 0mA,<br>f = 0 (3)                                                                       | _    | 160      |      | 140      |      | 120      |      | 120      | mA    |
| Icc <sub>2</sub>             | Vcc Dynamic Operating<br>Supply Current | Vcc = Max., IOUT = 0 mA,<br>f = fmax. (3)                                                                  |      | 190      |      | 170      |      | 145      |      | 145      | mA    |
| Is <sub>B</sub> <sub>1</sub> | TTL Standby Current (TTL Inputs)        | $\frac{V_{CC} = M_{AX.}, V_{IN} = V_{IH} \text{ OR } V_{IL}}{CE_1 \text{ or } CE_2 \ge V_{IH}, f = 0 (3)}$ |      | 40       |      | 30       |      | 25       |      | 20       | mA    |
| ISB <sub>2</sub>             | CMOS Standby                            | $Vcc = Max., \overline{CE}_1 \text{ or } \overline{CE}_2 \ge Vcc$<br>-0.2V Vin \ge Vcc -0.2V,              |      | 6        |      | 5        |      | 4        |      | 3        | mA    |
| 1002                         |                                         | or Vin $\leq$ 0.2V, f = 0 (3)                                                                              | L    | 100      | L    | 100      | L    | 100      | L    | 100      | μΑ    |

#### Notes:

- 1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
- 2.  $V_{IL} = -3.0V$  for pulse width less than 10ns.
- 3. At f = fmax address and data input are cycling at the maximum frequency, f = 0 means no input lines change.

#### Capacitance (1,2)

| Symbol Parameter |                    | Conditions | Max. | Unit |
|------------------|--------------------|------------|------|------|
| Cin              | Input Capacitance  | VIN = 0V   | 5    | рF   |
| Соит             | Output Capacitance | Vout = 0V  | 7    | pF   |

- 1. This parameter is guaranteed and not tested.
- 2. Test condition: TA = 25°C, f = 1MHz, Vcc = 5.0V

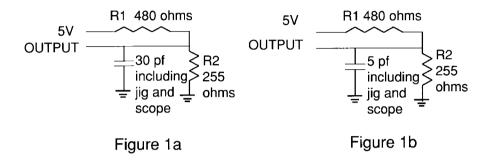
#### **TRUTH TABLE**

| MODE            | WE | CE, | $\overline{\text{CE}}_2$ | ŌE | INPUT | OUTPUT       | V <sub>cc</sub> CURRENT             |
|-----------------|----|-----|--------------------------|----|-------|--------------|-------------------------------------|
| Not Selected    | Х  | Н   | Х                        | Х  | Х     | High Z       | Isb <sub>1</sub> , Isb <sub>2</sub> |
| (Power Down)    | Х  | Х   | Н                        | Х  | Х     | High Z       | ISB <sub>1</sub> , ISB <sub>2</sub> |
| Output Disabled | Н  | L   | L                        | Н  | Х     | High Z       | lcc <sub>1</sub> , lcc <sub>2</sub> |
| Read (61C61/62) | Н  | L   | L                        | L  | Х     | <b>D</b> оит | lcc <sub>1</sub> , lcc <sub>2</sub> |
| Write (61C62)   | L  | L   | L                        | Х  | Din   | High Z       | Icc <sub>1</sub> , Icc <sub>2</sub> |
| Write (61C61)   | L  | L   | L                        | L  | Din   | Follows Din  | lcc <sub>1</sub> , lcc <sub>2</sub> |
| Write (61C61)   | L  | L   | L_                       | Н  | Din   | High Z       | lcc <sub>1</sub> , lcc <sub>2</sub> |

## **Switching Characteristics Over Operating Range (1)**

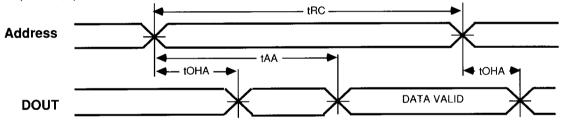
| Oh. a.l   | Description                        |      | /62-15          |         | 1/62-20         |      | 1/62-25<br>/62-L25 | 61C61/62-30<br>61C61/62-L30 |      | Units  |
|-----------|------------------------------------|------|-----------------|---------|-----------------|------|--------------------|-----------------------------|------|--------|
| Symbol    | Description                        | MIN. | /62-L15<br>MAX. | MIN.    | /62-L20<br>MAX. | MIN. | MAX.               | MIN.                        | MAX. | Office |
| READ CY   | CLE                                |      |                 | 1771111 |                 |      |                    |                             |      |        |
| tRC       | Read Cycle Time                    | 15   |                 | 20      |                 | 25   |                    | 30                          |      | ns     |
| tAA       | Address Access Time                |      | 15              |         | 20              |      | 25                 |                             | 30   | ns     |
| tOHA      | Output Hold Time                   | 3    |                 | 3       |                 | 3    |                    | 3                           |      | ns     |
| tACE      | CE Access Time                     |      | 15              |         | 20              |      | 25                 |                             | 30   | ns     |
| tDOE      | OE Access Time                     |      | 7               |         | 7               |      | 9                  |                             | 12   | ns     |
| tLZOE     | OE to Low Z Output                 | 0    |                 | 0       |                 | 0    |                    | 0                           |      | ns     |
| tHZOE(2)  | OE to High Z Output                |      | 8               |         | 10              |      | 12                 |                             | 15   | ns     |
| tLZCE     | CE to Low Z Output                 | 3    |                 | 3       |                 | 3    |                    | 3                           |      | ns     |
| tHZCE(2)  | CE to High Z Output                |      | 8               |         | 10              |      | 12                 |                             | 15   | ns     |
| tPU       | CE to Power Up                     | 0    |                 | 0       |                 | 0    |                    | 0                           |      | ns     |
| tPD       | tPD CE to Power Down               |      | 15              |         | 20              |      | 20                 |                             | 20   | ns     |
| WRITE C'  | YCLE (3)                           |      |                 |         |                 |      |                    |                             |      |        |
| tWC       | Write Cycle Time                   | 15   |                 | 20      |                 | 25   |                    | 30                          |      | ns     |
| tSCE      | CE to Write End                    | 12   |                 | 17      |                 | 22   |                    | 25                          |      | ns     |
| tAW       | Address Set-up Time to Write End   | 12   |                 | 15      |                 | 20   |                    | 25                          |      | ns     |
| tHA       | Address Hold from Write End        | 0    |                 | 0       |                 | 0    |                    | 0                           |      | ns     |
| tSA       | Address Set-up Time                | 0    |                 | 0       |                 | 0    |                    | 0                           |      | ns     |
| tPWE (4)  | WE Pulse Width                     | 10   |                 | 12      |                 | 15   |                    | 18                          |      | _ns    |
| tSD       | Data Set-up to Write End           | 9    |                 | 10      |                 | 12   |                    | 15                          | ļ    | ns     |
| tHD       | Data hold from Write End           | 0_   |                 | 0       |                 | 0    |                    | 0                           |      | ns     |
| tHZWE (2) | WE LOW to High-Z Output            |      | 6               |         | 7               |      | 8                  |                             | 10   | ns     |
| tLZWE     | WE HIGH to LOW-Z Output            | 0    |                 | 0       |                 | 0    |                    | 0                           |      | ns     |
| tADV      | Data Valid to Output Valid (61C61) |      | 15              |         | 20              |      | 25                 |                             | 30   | ns     |
| tAWE      | WE Low to Data Valid (61C61)       |      | 15              | - 4     | 20              |      | 25                 |                             | 30   | ns     |

#### Notes:

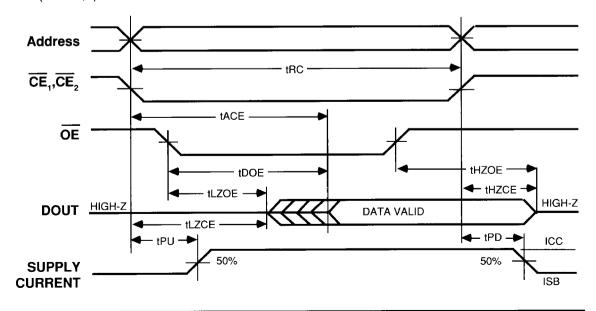

- 1. Test conditions assume signal transition times of 5ns or less, timing reference levels of 1.5V, Input pulse levels of 0 to 3.0V and output loading specified in figure 1a.
- 2. Tested with the load in Figure 1b. Transition is measured ± 500mV from steady state voltage.
- 3. The internal write time is defined by the overlap of  $\overline{CE}_1$ ,  $\overline{CE}_2$  and  $\overline{WE}$  low. All signals must be in valid states to initiate a Write, but anyone can go inactive to terminate the Write. The Data input Setup and Hold timing are referenced to the rising edge of the signal that terminates the write.
- 4. Tested with OE high.
- 5. WE is high for a Read Cycle.
- 6. The device is continuously selected. OE, CE<sub>1</sub>, CE<sub>2</sub> = VIL.
  7. Address is valid prior to or coincident with CE<sub>1</sub>, CE<sub>2</sub> Low transitions.
- 8. Output pin will assume the High-Z state if  $\overline{OE} = VIH$ .

# IS 61C61/62

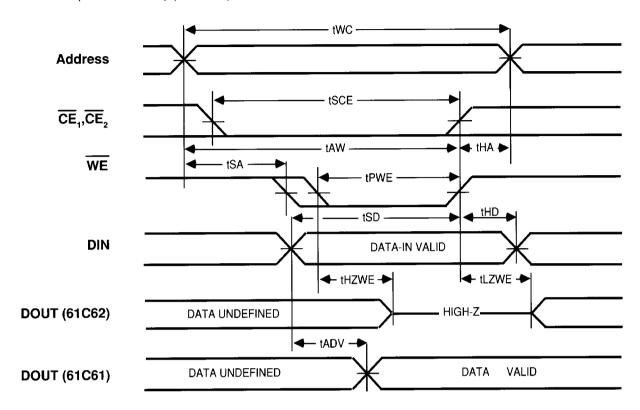
# **AC TEST CONDITIONS**


| Input Pulse Level Input Rise and Fall Times Input and Output Timing and Reference Level | 0V to 3.0V<br>5ns<br>1.5V |
|-----------------------------------------------------------------------------------------|---------------------------|
|-----------------------------------------------------------------------------------------|---------------------------|

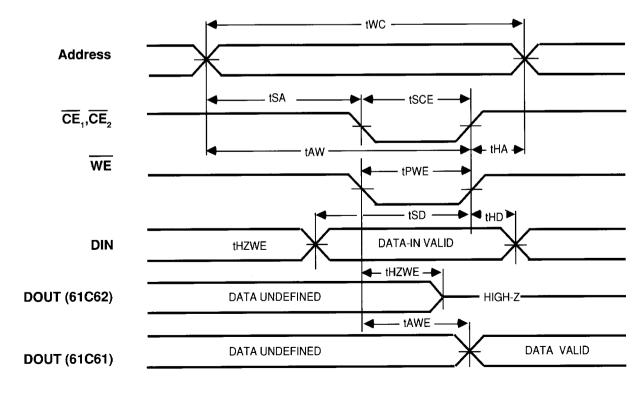
# **AC TEST LOADS**




# **AC WAVEFORMS**


# **READ CYCLE NO. 1** (Note 5,6)

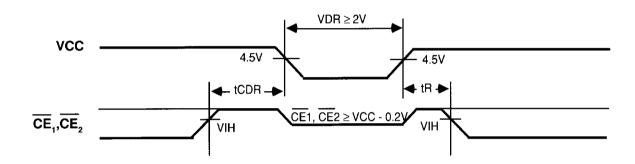



# **READ CYCLE NO. 2** (Note 5,7)



# WRITE CYCLE NO. 1 (WE controlled) (Note 3,8)




# WRITE CYCLE NO. 2 (CE controlled) (Note 3,8)



# DATA RETENTION CHARACTERISTICS (L Version only)

| Parameter | Description                          | Test Conditions      | Min. | Max. | Units |
|-----------|--------------------------------------|----------------------|------|------|-------|
| VDR       | VCC for retention of data            | VCC = 2.0V           | 2.0  |      | >     |
| ICCDR     | Data retention current               | CE,,CE,≥ VCC - 0.2V, |      | 100  | μΑ    |
| tCDR      | Chip deselect to data retention time | CMOS İnputs          | 0    |      | ns    |
| tR        | Operation recovery time              | ·                    | tRC  |      | ns    |
| IL1       | Input leakage current                |                      |      | 2    | μΑ    |

#### **DATA RETENTION WAVEFORM**



#### PIN DESCRIPTIONS

# A<sub>0</sub> - A<sub>13</sub> Address Inputs

These 14 address inputs select one of the 16384 4-bit words in the RAM.

# CE1 and CE2 Chip Enable Input

CE1, CE2 chip enable inputs are active Low. The chip enables must be active to read from or write to the device. If the chip enable is not active, the device is deselected and is in a standby power mode. The output pins will be in the high-impedance state when the device is deselected.

## **OE** Output Enable Input

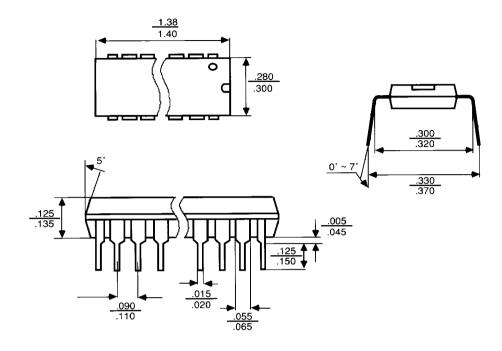
The ouput enable input is active Low. If the output enable is active while the chip is selected and the write enable is inactive, data will be present on the Output pins. The Output pins will be in the high-impedance state when OE is inactive. If the output enable is active while the chip is selected and the write enable is active, data will be present on the output pins same as data input for IS61C61.

# WE Write Enable Input

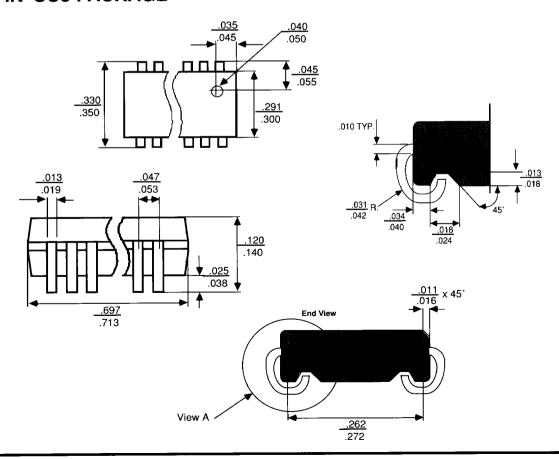
The write enable input is active Low and controls read and write operations. With the chip selected, when  $\overline{WE}$  is Low, Input data present on the Input pins will be written into the selected memory location.

#### L - L

These 4 input pins are used to write data into the RAM.


# $O_0 - O_3$

These 4 output pins are used to read the data from the RAM.


#### **Vcc - Power**

#### **GND** - Ground

# 28 Pin 300 MIL PLASTIC DIP Package



# 28 PIN SOJ PACKAGE



| SPEED (ns) | ORDER<br>PART NUMBER | PACKAGE                 | TEMPERATURE<br>RANGE |
|------------|----------------------|-------------------------|----------------------|
| 15         | IS61C61/62-15N       | Plastic DIP - 300 mil   | 0°C to +70°C         |
| 15         | IS61C61/62-15J       | Plastic Small Outline J | 0°C to +70°C         |
| 15 LOW     | IS61C61/62-L15N      | Plastic DIP - 300 mil   | 0°C to +70°C         |
| 15 POWER   | IS61C61/62-L15J      | Plastic Small Outline J | 0°C to +70°C         |
| 20         | IS61C61/62-20N       | Plastic DIP - 300 mil   | 0°C to +70°C         |
| 20         | IS61C61/62-20J       | Plastic Small Outline J | 0°C to +70°C         |
| 20 LOW     | IS61C61/62-L20N      | Plastic DIP - 300 mil   | 0°C to +70°C         |
| 20 POWER   | IS61C61/62-L20J      | Plastic Small Outline J | 0°C to +70°C         |
| 25         | IS61C61/62-25N       | Plastic DIP - 300 mil   | 0°C to +70°C         |
| 25         | IS61C61/62-25J       | Plastic Small Outline J | 0°C to +70°C         |
| 25 LOW     | IS61C61/62-L25N      | Plastic DIP - 300 mil   | 0°C to +70°C         |
| 25 POWER   | IS61C61/62-L25J      | Plastic Small Outline J | 0°C to +70°C         |
| 30         | IS61C61/62-30N       | Plastic DIP - 300 mil   | 0°C to +70°C         |
| 30         | IS61C61/62-30J       | Plastic Small Outline J | 0°C to +70°C         |
| 30 LOW     | IS61C61/62-L30N      | Plastic DIP - 300 mil   | 0°C to +70°C         |
| 30 POWER   | IS61C61/62-L30J      | Plastic Small Outline J | 0°C to +70°C         |



Integrated Silicon Solution, Inc.
680 Almanor Avenue, Sunnyvale, California 94086 (408) 733-ISSI FAX (408) 245-ISSI