54/74177 610585 ## PRESETTABLE BINARY COUNTER CONNECTION DIAGRAM PINOUT A **DESCRIPTION** — The 1777 is a presettable modulo-16 ripple counter partitioned into divide-by-two and divide-by-eight sections, with a separate clock input for each section. In the counting mode, state changes are initiated by the falling edge of the clock. A LOW signal on the Master Reset ($\overline{\text{MR}}$) input overrides all other inputs and forces the outputs LOW. A LOW signal on the Parallel Load ($\overline{\text{PL}}$) input overrides the clocks and causes the Q outputs to assume the state of their respective Parallel Data ($\overline{\text{Pn}}$) inputs. For detail specifications, please refer to the '176 data sheet. ORDERING CODE: See Section 9 | ORDERING CODE: See Section 9 | | | | | | | | |------------------------------|------------|--|---|-------------|--|--|--| | PKGS | PIN
OUT | COMMERCIAL GRADE | MILITARY GRADE | PKG
TYPE | | | | | | | $V_{CC} = +5.0 \text{ V } \pm 5\%,$
$T_A = 0^{\circ}\text{C to } +70^{\circ}\text{C}$ | $V_{CC} = +5.0 \text{ V} \pm 10\%,$
$T_A = -55^{\circ} \text{ C} \text{ to } +125^{\circ} \text{ C}$ | | | | | | Plastic
DIP (P) | А | 74177PC | | 9A | | | | | Ceramic
DIP (D) | А | 74177DC | 54177DM | 6A | | | | | Flatpak
(F) | Α | 74177FC 54177FM | | 31 | | | | ## LOGIC SYMBOL V_{CC} = Pin 14 GND = Pin 7 ## INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions | PIN NAMES | DESCRIPTION | 54/74 (U.L.)
HIGH/LOW | | |--|---|--------------------------|--| | DP ₀
DP ₁
MR | ÷2 Section Clock Input (Active Falling Edge) | 2.0/3.0 | | | 沪 ₁ | ÷8 Section Clock Input (Active Falling Edge) | 2.0/3.0 | | | | Asynchronous Master Reset Input (Active LOW) | 2.0/2.0 | | | P <u>0</u> P3
PL | Parallel Data Inputs | 1.0/1.0 | | | <u> </u> | Asynchronous Parallel Load Input (Active LOW) | 1.0/1.0 | | | $Q_0 - Q_3$ | Flip-flop Outputs* | 20/10 | | $^{{}^{\}star}Q_0$ is guaranteed to drive \overline{CP}_1 in addition to the full rated load. **FUNCTIONAL DESCRIPTION**—The '177 is an asynchronously presettable binary ripple counter partitioned into divide-by-two and divide-by-eight sections. In the counting modes, state changes are initiated by the HIGH-to-LOW transition of the clock signals. State changes of the Q outputs, however, do not occur simultaneously because of the internal ripple delays. When using external logic to decode the Q_n outputs, designers should bear in mind that the unequal delays can lead to decoding spikes and thus a decoded signal should not be used as a clock or strobe. The $\overline{CP_0}$ input serves the Q_0 flip-flop while the $\overline{CP_1}$ input serves the divide-by-eight section. The Q_0 output is designed and specified to drive the rated fan-out plus the $\overline{CP_1}$ input. With the input frequency connected to $\overline{CP_0}$ and with Q_0 driving $\overline{CP_1}$, the '177 forms a straightforward modulo-16 counter, with Q_0 the least significant output and Q_3 the most significant output. The '177 has an asynchronous active LOW Master Reset input (\overline{MR}) which overrides all other inputs and forces all outputs LOW. The counters are also asynchronously presettable. A LOW on the Parallel Load input (\overline{PL}) overrides the clock inputs and loads the data from Parallel Data $(P_0 - P_3)$ inputs into the flip-flops. While \overline{PL} is LOW, the counters act as transparent latches and any change in the P_n inputs will be reflected in the outputs. #### MODE SELECT TABLE | | INPU | JTS | RESPONSE | | |--------|------|-----|---|--| | MR | PL | СP | TIEST SHOE | | | L
H | X | X | Qn forced LOW | | | Н | Н | ^_ | P _n → Q _n
Count Up | | H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial #### STATE DIAGRAM ### **LOGIC DIAGRAM**