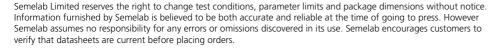

SILICON EPITAXIAL PLANAR DIODE

1N4148DLCC2

- Low Leakage
- Fast Switching
- Low Forward Voltage
- Hermetic Ceramic Surface Mount Package
- Suitable for general purpose, switching applications.
- Space Level and High-Reliability Screening Options Available

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise stated)


V _{BR}	Breakdown Voltage		100V
V_{RWM}	Working Peak Reverse Voltag	75V	
$IO_{(1)}$	Average Rectified Output Cui	200mA	
IFSM	Surge Current, half sine wave	2A	
$PD^{(1)}$	Total Power Dissipation at	$T_A = 75^{\circ}C$	385mW
		Derate Above 75°C	3.08mW/°C
P_{D}	Total Power Dissipation at	$T_{SP} = 75^{\circ}C$	1.042W
	(In	Derate Above 75°C	8.33mW/°C
Тј	Junction Temperature Range	-65 to +200°C	
T _{stg}	Storage Temperature Range		-65 to +200°C

THERMAL PROPERTIES

Symbols	Parameters	Min.	Тур.	Мах.	Units
R _{0JA} (PCB) ⁽¹⁾	Thermal Resistance, Junction To Ambient, On PCB			325	°C/W
R _{0JSP}	Thermal Resistance, Junction To Solder Pads			120	°C/W

Notes

PCB = FR4 - 0.0625 Inch (1.59mm), 1 Layer, 1.0-Oz Cu, horizontal, in still air. R_{AJA} with a defined PCB thermal resistance condition included, is measured at $I_{O} = 200$ mA.

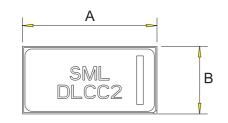
Website: http://www.semelab-tt.com

SILICON EPITAXIAL PLANAR DIODE 1N4148DLCC2

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise stated)

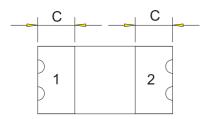
Symbols	Parameters	Test Conditions	Min.	Тур	Max.	Units	
V _{BR}	Breakdown Voltage	I _R = 100μA	100				
	Forward Voltage	I _F = 10mA			0.8	V	
V _F (2)		I _F = 100mA			1.2		
		$I_F = 10 \text{mA}$ $T_A = 150 ^{\circ}\text{C}$			0.8		
		$I_F = 100 \text{mA}$ $T_A = -55 ^{\circ} \text{C}$			1.3		
I _R	Reverse Current	V _R = 20V		40	25	- 0	
		V _R = 75V		A STATE OF THE STA	500	→ nA	
		$V_{R} = 20V$ $T_{A} = 150^{\circ}C$		1000	35		
		V _R = 75V		K	75	μΑ	

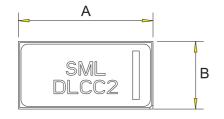
DYNAMIC CHARACTERISTICS


C	Capacitance	V _R = 0V	f = 1.0MHz		4	nΕ
C	Сараспансе	V _R = 1.5V	1 – 1.000112	7	2.8	p⊦
t	Reverse Recovery Time	$I_F = IR = 10mA$	$R_L = 100\Omega$		5	ns
۲rr	Neverse Necovery Time	I _{REC} = 1.0mA			ر	113

Notes

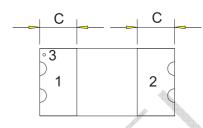
(2) Pulse Width \leq 300us, $\delta \leq$ 2%

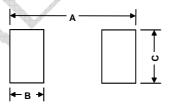

MECHANICAL DATA



DLCC2 Variant A (D2A)

PAD 1	ANODE	
PAD 2	CATHODE	
DIMENSION	mm	Inches
Α	5.00 ±0.10	0.197 ±0.004
В	2.51 ±0.10	0.099 ±0.004
C	1.08 ±0.10	0.043 ±0.004
D	1.76 ±0.10	0.069 ±0.004





DLCC2 Variant B (D2B)

400	₩			
PAD 1	ĀNODE			
PAD 2	CATHODE			
PAD 3	LID CONTACT TO ANODE*			
DIMENSION	mm	Inches		
А	5.00 ±0.10	0.197 ±0.004		
В	2.51 ±0.10	0.099 ±0.004		
C	1.08 ±0.10	0.043 ±0.004		
D	1.76 ±0.10	0.069 ±0.004		

SOLDER PAD LAYOUT MELF-B

DIMENSION	mm	Inches
А	6.25	0.246
В	1.70	0.067
C	2.67	0.105

Website: http://www.semelab-tt.com

Other Package Outlines may be available – Contact Semelab Sales to Enquire

^{*} The additional contact provides a connection to the lid in the application. Connecting the metal lid to a known electrical potential stops deep dielectric discharge in space applications; see the Space Weather link www.semelab.co.uk/mil/lcc1_4 on the Semelab web site. Package variant to be specified at order.

SILICON EPITAXIAL PLANAR DIODE 1N4148DLCC2

SCREENING OPTIONS

Space Level (JQRS/ESA) and High Reliability options are available in accordance with the <u>High Reliability and Screening Options Handbook</u> available for download from the from the TT electronics Semelab web site.

ESA Quality Level Products are based on the testing procedures specified in the generic ESCC 5000 and in the corresponding part detail specifications.

Semelabs QR216 and QR217 processing specifications (JQRS), in conjunction with the companies ISO 9001:2000 approval present a viable alternative to the American MIL-PRF-19500 space level processing.

QR217 (Space Level Quality Conformance) is based on the quality conformance inspection requirements of MIL-PRF-19500 groups A (table V), B (table VIa), C (table VII) and also ESA / ESCC 5000 (chart F4) lot validation tests.

QR216 (Space Level Screening) is based on the screening requirements of MIL-PRF-19500 (table IV) and also ESA /ESCC 5000 (chart F3).

JQRS parts are processed to the device data sheet and screened to QR216 with conformance testing to Q217 groups A and B in accordance with MIL-STD-750 methods and procedures.

Additional conformance options are available, for example Pre-Cap Visual Inspection, Buy-Off Visit or Data Packs. These are chargeable and must be specified at the order stage (See Ordering Information). Minimum order quantities may apply.

Alternative or additional customer specific conformance or screening requirements would be considered. Contact Semelab sales with enquires.

MARKING DETAILS

Parts can be laser marked with approximately 7 characters on two lines and always includes cathode identification. Typical marking would include part or specification number, week of seal or serial number subject to available space and legibility.

Customer specific marking requirements can be arranged at the time of order.

Example Marking:

ORDERING INFORMATION

Part numbers are built up from Type, Package Variant, and screening level. The part numbers are extended to include the additional options as shown below.

Type – See Electrical Stability Characteristics Table Package Variant – See Mechanical Data Screening Level – See Screening Options (ESA / JQRS)

Additional Options:

Customer Pre-Cap Visual Inspection	.CVP
Customer Buy-Off visit	.CVB
Data Pack	.DA
Solderability Samples	.SS
Scanning Electron Microscopy	.SEM
Radiography (X-ray)	.XRAY
Total Dose Radiation Test	.RAD
MIL-PRF-19500 (QR217)	
Group B charge	.GRPB
Group B destructive mechanical samples	.GBDM (12 pieces)
Group C charge	.GRPC
Group C destructive electrical samples	.GCDE (12 pieces)
Group C destructive mechanical samples	.GCDM (6 pieces)
ESA/ESCC	
Lot Validation Testing (subgroup 1) charge	.LVT1
LVT1 destructive samples (environmental)	.L1DE (15 pieces)
LVT1 destructive samples (mechanical)	.L1DM (15 pieces)
Lot Validation Testing (subgroup 2) charge	.LVT2
LVT2 endurance samples (electrical)	.L2D (15 pieces)
Lot Validation Testing (subgroup 3) charge	.LVT3
LVT3 destructive samples (mechanical)	.L3D (5 pieces)
A 1899 - 1 G 07 - 14 A	

Additional Option Notes:

- 1) All 'Additional Options' are chargeable and must be specified at order stage.
- 1) All Additional Options are chargeable and must be specified at order stage.
 2) When Group B,C or LVT is required, additional electrical and mechanical destructive samples must be ordered
- 3) All destructive samples are marked the same as other production parts unless otherwise requested.

Example ordering information:

The following example is for the 1N4148 part with package variant A, JQRS screening, additional Group C conformance testing and a Data pack.

Part Numbers:

1N4148D2A-JQRS (Include quantity for flight parts)
1N4148D2A-JQRS.GRPC (chargeable conformance option)
1N4148D2A-JQRS.GCDE (charge for destructive parts)
1N4148D2A-JQRS.GCDM (charge for destructive parts)
1N4148D2A-JQRS.DA (charge for Data pack)

Customers with any specific requirements (e.g. marking or screening) may be supplied with a similar alternative part number (there is maximum 20 character limit to part numbers). Contact Semelab sales with enquiries

Website: http://www.semelab-tt.com

High Reliability and Screening Options Handbook link: http://www.semelab.co.uk/pdf/misc/documents/hirel_and_screening_options.pdf