ADVANCED INFORMATION

54F/74F377 Octal D Flip-Flop with Clock Enable

General Description

The 'F377 has eight edge-triggered, D-type flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) input loads all flip-flops simultaneously, when the Clock Enable (CE) is LOW.

The register is fully edge-triggered. The state of each D input, one setup time before the LOW-to-HIGH clock transition, is transferred to the corresponding flip-flop's Q output. The $\overline{\text{CE}}$ input must be stable only one setup time prior to the LOW-to-HIGH clock transition for predictable operation

Features

- Ideal for addressable register applications
- Clock enable for address and data synchronization applications
- Eight edge-triggered D flip-flops
- Buffered common clock
- See 'F273 for master reset version
- See 'F373 for transparent latch version
- See 'F374 for TRI-STATE® version

Logic Symbols

Connection Diagrams

Mode Select-Function Table

Operating Mode	Inputs			Output
	СР	CE	D _n	Qn
Load "1"		1	h	Н
Load "0"		- I	ı	L
Hold (Do Nothing)	X	h H	×	No Change No Change

 $\begin{array}{ll} H \ = \ HIGH \ Voltage \ Level \\ h \ = \ HIGH \ Voltage \ Level \ one \ setup \ time \ prior \ to \\ the \ LOW-to-HIGH \ Clock \ Transition \end{array}$

L = LOW Voltage Level

I = LOW Voltage Level one setup time prior to the LOW-to-HiGH Clock Transition

X = Immaterial

= LOW-to-HIGH Clock Transition

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.