

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

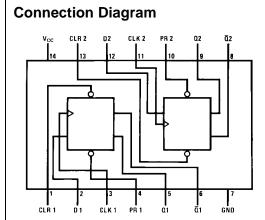
The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

August 1986 Revised March 2000

DM74LS74A Dual Positive-Edge-Triggered D Flip-Flops with Preset, Clear and Complementary Outputs

General Description

FAIRCHILD


SEMICONDUCTOR

This device contains two independent positive-edge-triggered D flip-flops with complementary outputs. The information on the D input is accepted by the flip-flops on the positive going edge of the clock pulse. The triggering occurs at a voltage level and is not directly related to the transition time of the rising edge of the clock. The data on the D input may be changed while the clock is LOW or HIGH without affecting the outputs as long as the data setup and hold times are not violated. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

Ordering Code:

Order Number	Package Number	Package Description
DM74LS74AM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow
DM74LS85ASJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
DM74LS74AN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Function Table

Inputs				Outputs			
PR	CLR	CLK	D	Q	Q		
L	Н	Х	Х	Н	L		
Н	L	Х	Х	L	Н		
L	L	Х	Х	H (Note 1)	H (Note 1)		
н	н	\uparrow	Н	н	L		
н	н	\uparrow	L	L	н		
Н	н	L	Х	Q ₀	\overline{Q}_0		

H = HIGH Logic Level X = Either LOW or HIGH Logic Level

L = LOW Logic Level

↑ = Positive-going Transition

 Q_0 = The output logic level of Q before the indicated input conditions were established.

Note 1: This configuration is nonstable; that is, it will not persist when either the preset and/or clear inputs return to their inactive (HIGH) level.

DS006373

© 2000 Fairchild Semiconductor Corporation

www.fairchildsemi.com

Absolute Maximum Ratings(Note 2)

Supply Voltage	7V
Input Voltage	7\/
Operating Free Air Temperature Range	0°C to +70°C
Storage Temperature Range	–65°C to +150°C

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parame	Min	Nom	Max	Units	
/ _{cc}	Supply Voltage		4.75	5	5.25	V
VIH	HIGH Level Input Voltage		2			V
V _{IL}	LOW Level Input Voltage				0.8	V
ОН	HIGH Level Output Curre	ent			-0.4	mA
l _{OL}	LOW Level Output Current				8	mA
f CLK	Clock Frequency (Note 3)		0		25	MHz
f CLK	Clock Frequency (Note 4)		0		20	MHz
t _W	Pulse Width	Clock HIGH	18			
	(Note 3)	Preset LOW	15			ns
		Clear LOW	15			
t _W	Pulse Width	Clock HIGH	25			
	(Note 4)	Preset LOW	20			ns
		Clear LOW	20			
tsu	Setup Time (Note 3)(Note 5)		20↑			ns
su	Setup Time (Note 4)(Not	ie 5)	25↑			ns
Н	Hold Time (Note 5)(Note 6)		0↑			ns
T _A	Free Air Operating Temperature		0		70	°C

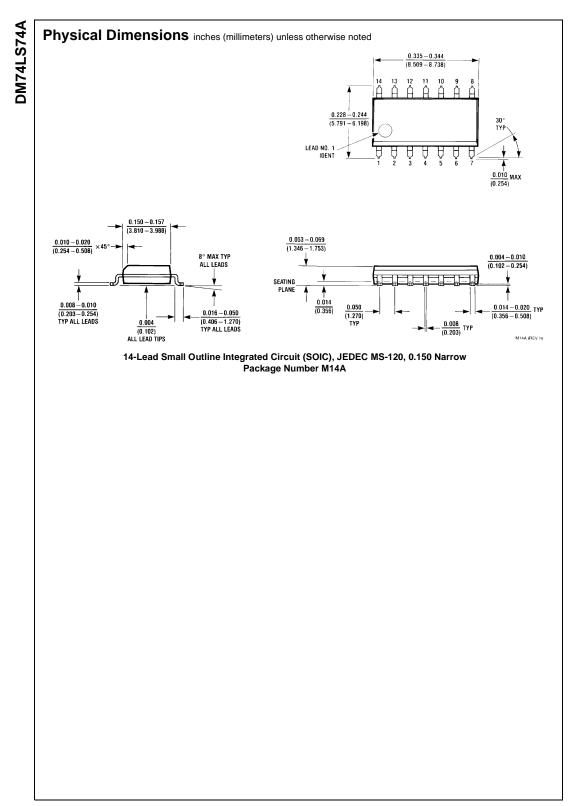
Note 3: $C_L = 15 \text{ pF}, R_L = 2 \text{ k}\Omega, T_A = 25^{\circ}\text{C}, \text{ and } V_{CC} = 5\text{V}.$ **Note 4:** $C_L = 50 \text{ pF}, R_L = 2 \text{ k}\Omega, T_A = 25^{\circ}\text{C}, \text{ and } V_{CC} = 5\text{V}.$

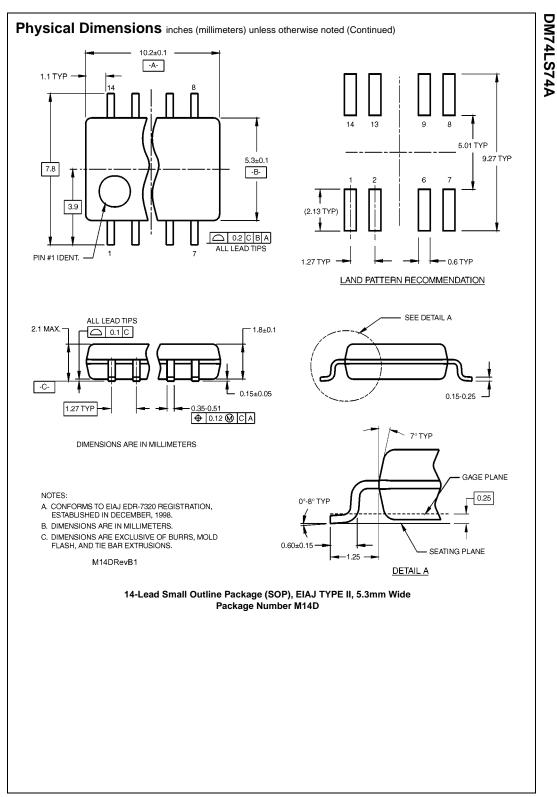
Note 4. $O_{C} = 30 \text{ pr}$, $N_{C} = 2 \text{ Ns2}$, $N_{A} = 23 \text{ O}$, and $V_{CC} = 30$.

Note 5: The symbol (\uparrow) indicates the rising edge of the clock pulse is used for reference.

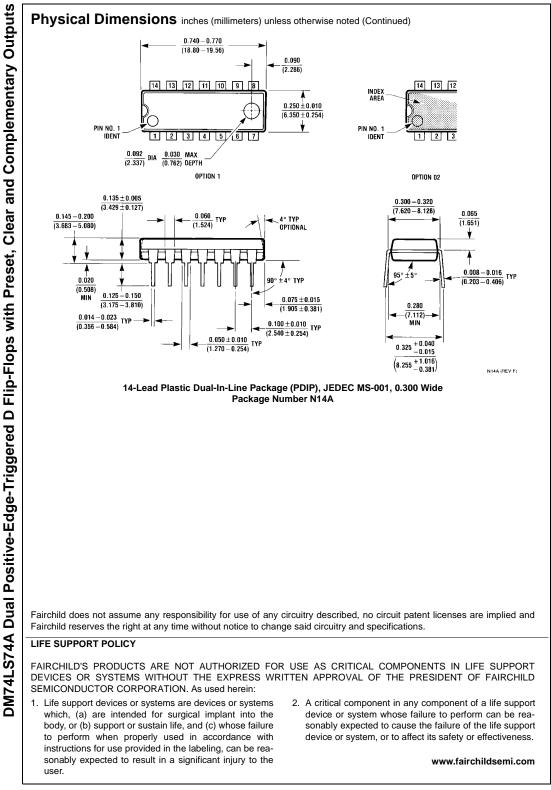
Note 6: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

Symbol	Parameter	Conditions		Min	Typ (Note 7)	Мах	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 mA$			-1.5	V	
V _{ОН}	HIGH Level Output Voltage	$V_{CC} = Min, I_{OH} = Max$ $V_{IL} = Max, V_{IH} = Min$	2.7	3.4		V	
V _{OL}	LOW Level Output Voltage	$V_{CC} = Min, I_{OL} = Max$ $V_{IL} = Max, V_{IH} = Min$			0.35	0.5	V
		$I_{OL} = 4 \text{ mA}, V_{CC} = \text{Min}$			0.25	0.4	
I _I	Input Current @ Max	V _{CC} = Max	Data			0.1	
	Input Voltage	$V_1 = 7V$	Clock			0.1	mA
			Preset			0.2	IIIA
			Clear			0.2	
I _{IH}	HIGH Level	V _{CC} = Max	Data			20	
	Input Current	$V_{1} = 2.7V$	Clock			20	
			Clear		1	40	μA
			Preset		1 1	40	
IIL	LOW Level	V _{CC} = Max	Data			-0.4	
	Input Current	$V_I = 0.4V$	Clock			-0.4	mA
			Preset			-0.8	mA
			Clear			-0.8	
I _{OS}	Short Circuit Output Current	V _{CC} = Max (Note 8)	1	-20	1	-100	mA
I _{CC}	Supply Current	V _{CC} = Max (Note 9)			4	8	mA


Note 7: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.


Note 8: Not more than one output should be shorted at a time, and the duration should not exceed one second. For devices, with feedback from the outputs, where shorting the outputs to ground may cause the outputs to change logic state an equivalent test may be performed where $V_0 = 2.125V$ with the minimum and maximum limits reduced by one half from their stated values. This is very useful when using automatic test equipment. **Note 9:** With all outputs OPEN, I_{CC} is measured with CLOCK grounded after setting the Q and \overline{Q} outputs HIGH in turn.

Switching Characteristics


at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$

Symbol		From (Input) To (Output)					
	Parameter		C _L = 15 pF		C _L = 50 pF		Units
			Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency		25		20		MHz
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Clock to Q or \overline{Q}		25		35	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Clock to Q or \overline{Q}		30		35	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Preset to Q		25		35	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Preset to \overline{Q}		30		35	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Clear to \overline{Q}		25		35	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Clear to Q		30		35	ns

www.fairchildsemi.com

www.fairchildsemi.com