SN54196, SN54197, SN54LS196, SN54LS197, SN54S196, SN54S197, SN74196, SN74197, SN74LS196, SN74LS197, SN74S196, SN74S197, SN74S1

SDLS077

OCTOBER 1976-REVISED MARCH 1988

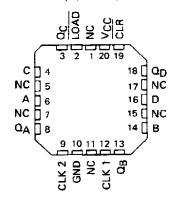
- Performs BCD, Bi-Quinary, or Binary Counting
- Fully Programmable
- Fully Independent Clear Input
- Input Clamping Diodes Simplify System Design
- Output Q_A Maintains Full Fan-out Capability In Addition to Driving Clock-2 Input

TYPES	GUARAI COUNT FRI		TYPICAL
	CLOCK 1	CLOCK 2	POWER DISSIPATION
'196, '197	0-50 MHz	0-25 MHz	240 mW
'LS196, 'LS197	0-30 MHz	0-15 MHz	80 mW
'\$196, 'S197	0-100 MHz	0-50 MHz	375 mW

description

These high-speed monolithic counters consist of four d-c coupled, master-slave flip-flops, which are internally interconnected to provide either a divide-by-two and a divide-by-five counter ('196, 'LS196, 'S196) or a divide-by-two and a divide-by-eight counter ('197, 'LS197, 'S197). These four counters are fully programmable; that is, the outputs may be preset to any state by placing a low on the count/load input and entering the desired data at the data inputs. The outputs will change to agree with the data inputs independent of the state of the clocks.

During the count operation, transfer of information to the outputs occurs on the negative-going edge of the clock pulse. These counters feature a direct clear which when taken low sets all outputs low regardless of the states of the clocks.


These counters may also be used as 4-bit latches by using the count/load input as the strobe and entering data at the data inputs. The outputs will directly follow the data inputs when the count/load is low, but will remain unchanged when the count/load is high and the clock inputs are inactive.

All inputs are diode-clamped to minimize transmission-line effects and simplify system design. These circuits are compatible with most TTL logic families. Series 54, 54LS, and 54S circuits are characterized for operation over the full military temperature range of -55° C to 125°C; Series 74, 74LS, and 74S circuits are characterized for operation from 0°C to 70°C.

SN54196, SN54LS196, SN54S196, SN54197, SN54LS197, SN64S197...J OR W PACKAGE SN74196, SN74197...N PACKAGE SN74LS196, SN74S196, SN74LS197, SN74S197...D OR N PACKAGE (TOP VIEW)

LOAD I	U14D VCC
$\mathbf{a}_{\mathbf{C}} \square^2$	13 CLR
C □3	12 QD
A □4	ם 🕽 וי
Q⊿ 🗖 5	10ДВ
CLK 2 6	эДов
GND 🔯 7	8 CLK 1

\$N54L\$196, \$N54\$196, \$N54L\$197, \$N54\$197...FK PACKAGE (TOP VIEW)

NC - No internal connection

logic symbols[†]

'197, 'LS197, 'S197 '196, 'LS196, 'S196 LOAD (1) CLR (13) CLR 1131 CT - 0 CLK1 (8) (8) DIV2 CLK1 A (4) A (4) QA 10 10 CLK2 (6) (6) (9) B (10) -Qa -QR (10) (2) 121 -Qc (3) -ac an. ·Ωn (11)

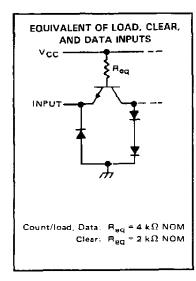
Pin numbers shown are for D, J, N, and W packages.

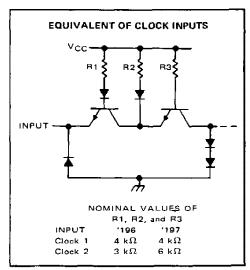
[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

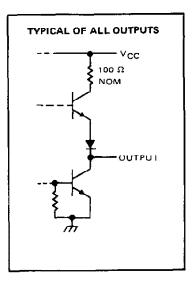
SN54196, SN54197, SN54LS196, SN54LS197, SN54S196, SN54S197, SN74196, SN74197, SN74LS196, SN74LS197, SN74S196, SN74S197, SN74S1

typical count configurations

'196, 'LS196, and 'S196 typical count configurations and function tables are the same as those for '176.


'197, 'LS197, and 'S197 typical count configurations and function tables are the same as those for '177.


logic diagrams


'196, 'L\$196, and '\$196 logic diagrams are the same as those for '176.

'197, 'LS197, and 'S197 logic diagrams are the same as those for '177.

schematics of inputs and outputs

SN54196, SN54197, SN74196, SN74197 50-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) .									-							7 V
Input voltage															. 6	5.5 V
Interemitter voltage (see Note 2) .																5.5 V
Operating free-air temperature range:	SN54196,	SN5	4197	' Cire	uits							-5	i5°	C t	o 1	25°C
	SN74196,															
Storage temperature range , .																

NOTES: 1. Voltage values are with respect to network ground terminal.

2. This is the voltage between two emitters of a multiple-emitter transistor. For this circuit, this rating applies between the Clear and Load inputs.

recommended operating conditions

		SN54	4196, SN	54197	SN74	196, SN7	4197	
		MIN	NOM	MAX	MIN	NOM	MAX	רואט
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH				-800			-800	μА
Low-level output current, IOL				16			16	mA
0	Clock-1 input	0		50	0		50	
Count frequency	Clock-2 input	0		25	0		25	MH:
	Clock-1 input	10			10			
B. C. C. C.	Clock-2 input	20			20			1
Pulse width, t _w	Clear	15			15		•	ns
	Load	20			20			
lance baddelen a dear Alexa 21	High-level data	tw(load)			tw(load)			
Input hold time, th (see Nate 3)	Low-level data	t _{w(load)}			tw(foad)			ns
January and January 1	High-level data	10			10			
Input setup time, t _{su} (see Note 3)	Low-level data	15			15			ns
Count enable time, ten (see Note 4)		20			20			ns
Operating free-air temperature, TA		-55		125	0		70	,°C

- NOTES: 3. Setup and hold times are with respect to the falling edge of the load input.
 - Minimum count enable time is the interval immediately preceding the negative-going edge of the clock pulse during which
 interval the count/load and clear inputs must both be high to ensure counting.

SN54196, SN54197, SN74196, SN74197 50-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	1	TEST CONDITIO	NICT	SN54	196, SN	74196	SN54	197, SN	74197	
	TATIONIL TEL		TEST CONDITIO	149,	MIN	TYP‡	MAX	MIN	TYP‡	MAX	רומט
v_{IH}	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.8			0.8	V
VIK	Input clamp voltage		V _{CC} = MIN, I _I = -12	пА			-1.5	1		-1.5	V
νон	High-level output voltage	e	V _{CC} = MIN, V _{IH} = 2 V V _{IL} = 0.8 V, I _{OH} = -8		2,4	3.4		2.4	3.4		v
VoL	Low-level output voltage	!	V _{CC} = MIN, V _{1H} = 2 \ V _{1L} = 0.8 V, I _{OL} = 16			0.2	0.4		0.2	0.4	V
Ч	Input current at maximu	m input voltage	V _{CC} = MAX, V ₁ = 5.5 \	/	1		1			1	mΑ
		Data, Load					40	 		40	
lін	High-level input current	Clear, clock 1	VCC = MAX, VI = 2.4 \	/			80			80	μА
		Clack 2					120			80	
	_	Data, Load					-1.6		****	-1.6	
1	Law law line in a contract	Clear],, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				-3.2			-3.2	1
ΊL	Low-level input current	Clock 1	VCC = MAX, VI = 0.4 \	,			-4.8			-4.8	mΑ
		Clock 2	7				-6.4			-3.2	l
laa	Short-circuit output curr	ant 8	V	SN54'	-20		-57	-20		-57	
os	Short-circuit output curr	ents	VCC = MAX	SN74'	-18		57	-18		-57	mΑ
Icc_	Supply current		VCC = MAX, See Note	5		48	59		48	59	mΑ

NOTE 5: ICC is measured with all inputs grounded and all outputs open.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER#	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	ı	N5419 N7419		1	N5419		UNIT
	(1141 01)	10011 017		MIN	TYP	MAX	MIN	TYP	MAX	1
fmax	Clock 1	QA		50	70		50	70		MHz
tPLH	Clock 1	Q _A			7	12		7	12	
^t PHL	GIOCK !	<u> </u>			10	15		10	15	ns
₹PLH	Clock 2	ΩB			12	18		12	18	
^t PHL	GIOLK 2	GB			14	21		14	21	ns
tPLH .	Clock 2	00			24	36		24	36	
tPHL	CIOCK 2	Q _C	$C_L = 15 \text{pF},$		28	42		28	42	ns
†PLH	Clock 2	QD	$R_L = 400 \Omega$		14	21		36	54	
^t PHL	Clock 2	40	See Note 6		12	18		42	63	ns
tpLH	A, B, C, D	α _A , α _B , α _C , α _D			16	24		16	24	
t _{PHL}	7, 5, 0, 5	αχ, αβ, αC, αδ			25	38		25	38	กร
†PLH	Load	Any			22	33		22	33	
tPHL	2080	Evily .			24	36		24	36	ns
^t PHL	Clear	Any			25	37		25	37	ns

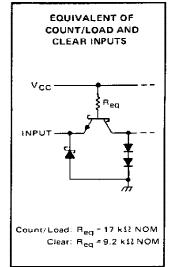
 $^{\#}f_{\text{max}} = \text{maximum count frequency.}$

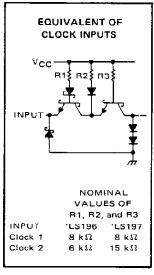
NOTE 6: Load circuit, input conditions, and voltage waveforms are the same as those shown for the '176, '177 except that testing f_{max}, V_{IL} = 0.3 V.

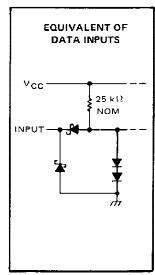
[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

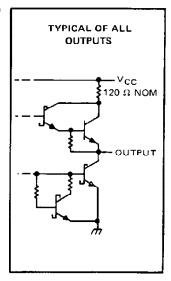
[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$.

[§]Not more than one output should be shorted at a time.


¹⁰A outputs are tested at I_{OL} = 16 mA plus the limit value of I_{IL} for the clock-2 input. This permits driving the clock-2 input while fanning out to 10 Series 54/74 loads.


tp_H = propagation delay time, low-to-high-level output.


tpHL ≡ propagation delay time, high-to-low-level output.


SN54LS196, SN54LS197, SN74LS196, SN74LS197 30-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)			7 V
Input voltage			5.5 V
Operating free-air temperature range:	SN54LS196, SN54LS197	Circuits	-55°C to 125°C
•	SN74LS196, SN74LS197	Circuits	0°C to 70°C
Storage temperature range			-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			SN54LS1	96, SN5	4LS197	SN74LS1	96, SN7	4LS197	UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	٧
IOH	High-level output current			-	-400			-400	μА
loL	Low-level output current				4			В	mΑ
	Count frequency	Clock-1 input	0		30	0		30	
	Count frequency	Clock-2 input	0		15	0		15	MHz
		Clock-1 input	20			20			
	Pulse width	Clock-2 input	30			30			
t _w	Fulse Width	Clear	15			15			ns
		Load	20			20	•		
	Input hold time, (see Note 3)	High-level data	tw(loai	d)		tw(loa	d)		
th	imput noid time, isee Note 3/	Low-level data	tw(load	1)		tw(loa	d١		пs
	1	High-level data	10		*****	10	•		
^t su	Input setup time, (see Note 3)	Low-level data	15			15			ns
		Clock 1	30			30		1	
[†] enable	Count enable time, (see Note 4)	Clock 2	50	•		50			ns
Тд	Operating free-air temperature	•	55		125	0		70	°C

NOTES: 3. Setup and hold times are with respect to the falling edge of the load input.

4. Minimum count enable time is the interval immediately preceding the negative-going edge of the clock pulse during which interval the count/load and clear inputs must both be high to ensure counting.

SN54LS196, SN54LS197, SN74LS196, SN74LS197 30-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					·	Sħ	154LS1	96	SM	174LS1	96	
	PARAMI	ETER	TES	ST CONDITIONS	S†	Sħ	154LS1	97	Sh	174LS1	97	UNIT
						MIN	TYP‡	MAX	MIN	TYP‡	MAX	
Vitt	High-level input v	oltage				2	·		_ 2			٧
VIL	Low-level input v	oitage	-					0.7			8.0	٧
v_{IK}	Input clamp volta	age	V _{CC} = MIN,	I _I = -18 mA				-1.5			−1.5	٧
VOH	High-level output	voltage	V _{CC} = MIN,			2.5	3.4		2,7	3,4		v
	· · · · · · · · · · · · · · · · · · ·			بر _{OH} = -400 س								
Voi	Low-level output	voltage	VCC = MIN,		IOL = 4 mA		0,25	0.4		0.25	0.4	l v
	·	-	VIL = VIL max		IOL = 8 mA [©]					0.35	0.5	
	Input current	Data, Load	!					0.1			0.1	
l ₁	at maximum	Clear, clock 1	VCC - MAX,	Vi = 5.5 V				0,2			0.2	mΑ
- 1	input voltage	Clock 2 of 'LS196	1.00	.,		_		0.4			0.4	
		Clock 2 of 'LS197						0.2			0.2	
		Data, Load						20			20	
1	High-level	Clear, clock 1	V _{CC} = MAX,	V ₁ = 2.7.V				40			40	μΑ
ΉН	input current	Clock 2 of 'LS196	VCC - IWAA,	V] - 2.7 V				80			80	μ
		Clock 2 of 'LS197						40			40	
		Data, Load						-0.4			-0.4	
	Low-level	Clear						-0.8			-0.8	
HL	Input current	Clock 1	VCC = MAX,	V _j = 0.4 V				-2.4			-2.4	mΑ
	inpat carrent	Clock 2 of 'LS196						-2.8			-2.8	
		Clock 2 of 'LS197					-	-1.3			-1.3	
los	Short-circuit outp	out current§	VCC = MAX			-20		-100	-20	, and the second	-100	mΑ
Icc	Supply current		V _{CC} = MAX,	See Note 5			16	27		16	27	mΑ

 $^{^\}dagger$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 5. I_{CC} is measured with all inputs grounded and all outputs open.

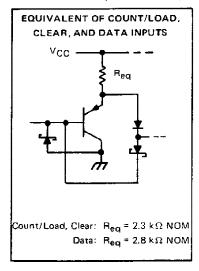
switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

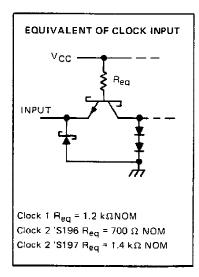
PARAMETER#	FROM (INPUT)	то (оитрит)	TEST CONDITIONS	·	154LS1 174LS1		I	154 LS1 174 LS1		דומט
	(HVPO1)	(0017017		MIN	TYP	MAX	MIN	TYP	MAX	1
f _{max}	Clock 1	Q _A		30	40		30	40		MHz
t P LH	Clock 1	QA			8	15		8	15	ns
†PHL	CIOCK	υд			13	20		14	21	
^t PLH	Clock 2	u _B			16	24		12	19	ns
tPHL.	01002				22	33		23	35	113
[†] PLH	Clock 2	0-	C _L = 15 pF,		38	57		34	51	п\$
^t PHL	CIOCK 2	QC			41	62		42	63	113
[†] PLH	Clock 2	0-	R _L = 2 kΩ, See Note 6		12	18		55	78	
^t PH↓	CIOCK 2	g _D	See Note 6		30	45		63	95	ns
ФLH					20	30		18	27	
tPHL	A, B, C, D	QA, QB, QC QD			29	44		29	44	ns
^t PLH	Load	Any			27	41		26	39	
tPHL	LOAG	Any			30	45		30	45	ns.
tpH L	Clear	Any			34	51		34	51	ns

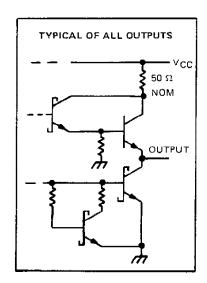
[#]f_{max} ≡ maximum count frequency.

NOTE 6: Load circuit, input conditions, and voltage waveforms are the same as those shown for the '176, '177 except that $t_f \le 15$ ns, $t_f \le 6$ ns, and $V_{ref} = 1.3$ V (as opposed to 1.5 V).

 $^{^{\}ddagger}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25^{\circ}\text{C}$.


^{\$}Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.


^{*} QA outputs are tested at specified IQL plus the limit value of I_|L for the clock-2 input. This permits driving the clock-2 input while maintaining full fan-out capability.


tp_{LH} ≡ propagation delay time, low-to-high-level output, tp_{HL} ≡ propagation delay time, high-to-low-level output.

SN54S196, SN54S197, SN74S196, SN74S197 100-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)																			7 V
Input voltage																			
Operating free-air temperature range	: SN	N54	519	6,	SNS	54S	197	' Cir	cuit	5						-55	°C to	12	25°C
	SI	V74 3	S19	6,	SN:	74S	197	' Cir	cuit	5							o°C	to 7	O°C
Storage temperature range											-					65	°C to	15	o°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN54	S196, SN5	4S197	SN745	S196, SN7	4\$197	דומט
		MIN	MOM	MAX	MIN	NOM	MAX	וואט ך
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-1			-1	mA
Low-level output current, IOL				20			20	mA
Clark former	Clock-1 input	0		100	0		100	MHz
Clock frequency	Clock-2 input	0		50	0		50	IVITIZ
	Clock-1 input	5			5			
8.1	Clack-2 input	10			10]
Pulse width, t _W	Clear	30			30		•	ns
	Load	5			5			1
leant bald disease of the News 20	High-level data	31			31			
Input hold time, th (see Note 3)	Low-level data	31			31			ns
January Simo & Jana Nata 2)	High-level data	61			61			
Input setup time, t _{su} (see Note 3)	Low-level data	61			61			ns
Count enable time, ten (see Note 4)		12			12			ns
Operating free-air temperature, TA		-55		125	0		70	°c

- NOTES: 3. Setup and hold times are with respect to the falling edge of the load input.
 - 4. Minimum count enable time is the interval immediately preceding the negative-going edge of the clock pulse during which interval the count/load and clear inputs must both be high to ensure counting.

SN54S196, SN54S197, SN74S196, SN74S197 100-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted).

PARAMETER		TEST CONDITIONS †					SN54S196, SN74S196			SN54S197, SN74S197		
			MIN TYP\$ MAX		MAX	MIN	TYP#	MAX	1			
V _{fH}						2			2			V
VIL								0.8			0.8	V
Vik		V _{CC} = MIN,	I _I = -18 mA					-1.2			-1.2	V
Voн		VCC = MIN,	V _{IH} = 2 V,		548	2.5	3.4		2.5	3.4		,,
νон	•	V ₁ L = 0.8 V,	IOH = -1 mA		745	2.7	3.4		2.7	3.4		٧
VOL		V _{CC} = MIN, I _{OL} = 20 mA ¢	V _{IH} = 2 V,	V _{IL} = ().8 V.			0.5			0.5	٧
1 ₁		V _{CC} = MAX,	V _I ≈ 5.5 V			1		1			1	mA
ЧН	Clock 1, clock 2	V _{CC} = MAX,	V ₁ = 2.7 V					150			150	
·1H	All other inputs] *CC !!!/#/X,	V - 2.5 V					50			50	μΑ
L.	Data, Load Clear	V _{CC} = MAX,	V 0 EV					-0.75		-	- 0.75	mΑ
IIL	Clock 1	VCC - MAA,	V - 0.5V					-8			8	mΑ
	Clock 2]						-10			-6	mΑ
105§	* * * *	V _{CC} = MAX				-30		-110	-30		-110	mA
lcc		V _{CC} = MAX,	See Note 5		54S		75	110		75	110	A
		VCC MAX,			74\$	75 120				75	120	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions,

NOTE 5: ICC is measured with all input grounded and all outputs open.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER#	(FROM	TO (OUTPUT)	TEST CONDITIONS	SN54S196, SN74S196			SN54S197, SN74S197			UNIT
_	(INFUT)			MIN	TYP	MAX	MIN	TYP	MAX	1
fmax	Clock 1	a _A		100	140		100	140	٠	MHz
^t PLH	Clack 1	l 0. 7			5	10		5	10	ns
^t PHL	CIOCK	Q _A		[6	10		6	10	
[†] P L H	Clock 2	QΒ			5	10		5	10	
^t PHL	GIOCK 2				8	12		8	12	ns
^t PLH	Clock 2	00			12	18		12	18	
^t PHL	CIOCK Z	Q _C	R_L = 280 Ω , C_L = 15 pF,		16	24		15	22	ns
tPLH	Clock 2	a _D	See Note 7		5	10		18	27	
^t PHL	CIOCK 2	-0			8	12		22	33	ns
[†] PLH	A,B,C,D	a_A, a_B, a_C, a_D			7	12		7	12	
[†] PHL	A,0,0,0	AM'AR'ACAD			12	18		12	18	ns
^t PLH	Load	Any			10	18	i	10	18	
^t PHL	wau				12	18		12	18	ns
^t PHL	Clear	Any			26	37		26	37	ns

 $^{\#}f_{max} = maximum count frequency.$

NOTE 7: Load circuit, input conditions, and voltage waveforms are the same as those shown in Section 1.

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

¶ Q_A outputs are tested at $I_{OL} = 20 \text{ mA}$ plus the limit value of I_{IL} for the clock-2 input. This permits driving the clock-2 input while fanning out to 10 Series 54S/74S loads.

[§] Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

 $t_{PLH} \equiv propagation delay time, low-to-high-level output.$

tpHL = propagation delay time, high-to-low-level output.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated

PRODUCT FOLDER | PRODUCT INFO: FEATURES | DESCRIPTION | DATASHEETS | PRICING/AVAILABILITY/PKG APPLICATION NOTES | USER GUIDES | MORE LITERATURE

PRODUCT SUPPORT: TRAINING

SN54LS197, 50/30/100-Mhz Presettable Decade OR Binary Counters/Latches

DEVICE STATUS: ACTIVE

PARAMETER NAME SN54LS197
Voltage Nodes (V) 5

FEATURES ▲Back to Top

- Performs BCD, Bi-Quinary, or Binary Counting
- Fully Programmable
- · Fully Independent Clear Input
- · Input Clamping Diodes Simplify System Design
- Output Q_A Maintains Full Fan-out Capability In Addition to Driving Clock-2 Input

DESCRIPTION ▲Back to Top

These high-speed monolithic counters consist of four d-c coupled, master-slave flip-flops, which are internally interconnected to provide either a divide-by-two and a divide-by-five counter ('196, 'LS196, 'S196) or a divide-by-two and a divide-by-eight counter ('197, 'LS197, 'S197). These four counters are fully programmable; that is, the outputs may be preset to any state by placing a low on the count/load input and entering the desired data at the data inputs. The outputs will change to agree with the data inputs independent of the state of the clocks.

During the count operation, transfer of information to the outputs occurs on the negative-going edge of the clock pulse. These counters feature a direct clear which when taken low sets all outputs low regardless of the states of the clocks. These counters may also be used as 4-bit latches by using the count/load input as the strobe and entering data at the data inputs. The outputs will directly follow the data inputs when the count/load is low, but will remain unchanged when the count/load is high and the clock inputs are inactive.

All inputs are diode-clamped to minimize transmission-line effects and simplify system design. These circuits are compatible with most TTL logic families. Series 54, 54LS, and 54S circuits are characterized for operation over the full military temperature range of -55° C to 125° C; Series 74, 74LS, and 74S circuits are characterized for operation from 0° C to 70° C.

TECHNICAL DOCUMENTS

▲Back to Top

To view the following documents, Acrobat Reader 4.0 is required.

To download a document to your hard drive, right-click on the link and choose 'Save'.

DATASHEET

▲Back to Top

Full datasheet in Acrobat PDF: sn54ls197.pdf (443 KB) (Updated: 03/01/1988)

APPLICATION NOTES

▲Back to Top

View Application Notes for <u>Digital Logic</u>

- Designing With Logic (Rev. C) (SDYA009C Updated: 06/01/1997)
- Designing with the SN54/74LS123 (Rev. A) (SDLA006A Updated: 03/01/1997)
- Evaluation of Nickel/Palladium/Gold-Finished Surface-Mount Integrated Circuits (SZZA026 Updated: 06/20/2001)
- Input and Output Characteristics of Digital Integrated Circuits (SDYA010 Updated: 10/01/1996)
- Live Insertion (SDYA012 Updated: 10/01/1996)
- TI IBIS File Creation, Validation, and Distribution Processes (SZZA034 Updated: 08/29/2002)

• Understanding and Interpreting Texas Instruments Standard-Logic Products Data Sh (Rev. A) (SZZA036A - Updated: 02/27/2003)

MORE LITERATURE

- Enhanced Plastic Portfolio Brochure (SGZB004, 387 KB Updated: 08/19/2002)
- Logic Reference Guide (SCYB004, 1032 KB Updated: 10/23/2001)
- MicroStar Junior BGA Design Summary (SCET004, 167 KB Updated: 07/28/2000)
- Military Brief (SGYN138, 803 KB Updated: 10/10/2000)
- Overview of IEEE Std 91-1984, Explanation of Logic Symbols Training Booklet (Rev. A) (SDYZ001A, 138 KB Updated: 07/01/1996)
- Palladium Lead Finish User's Manual (SDYV001, 2041 KB Updated: 11/01/1996)
- QML Class V Space Products Military Brief (Rev. A) (SGZN001A, 257 KB Updated: 10/07/2002)

USER GUIDES ▲Back to Top

• LOGIC Pocket Data Book (SCYD013, 4837 KB - Updated: 12/05/2002)

PRICING/AVAILABILITY/PKG ▲Back to Top													
DEVICE INFORMATION Updated Daily								TI INVENTORY STATUS As Of 09:00 AM GMT, 17 Apr 2003			REPORTED DISTRIBUTOR INVENTORY As Of 09:00 AM GMT, 17 Apr 2003		
ORDERABLE DEVICE	<u>STATUS</u>	PACKAGE TYPE PINS	TEMP (°C)	DSCC NUMBER	PRODUCT CONTENT	BUDGETARY PRICING QTY \$US	STD PACK QTY	IN STOCK	IN PROGRESS QTY DATE	LEAD TIME	DISTRIBUTOR COMPANY REGION	IN STOCK	PURCHASE
7601501CA	ACTIVE	<u>CDIP</u> (<u>J)</u> 14	-55 TO 125		View Contents	1KU 2.43	1	<u>0</u> *	215 06 May	6 WKS	<u>Avnet</u> Americas	96	BUY NOW
									1461 20 May				
7601501DA	ACTIVE	<u>CFP</u> (W) 14	-55 TO 125		View Contents	1KU 8.08	1	<u>37</u> *	1494 20 May	6 WKS	None Reported <u>View Distributors</u>		
SN54LS197J	ACTIVE	<u>CDIP</u> (<u>J)</u> 14	-55 TO 125		View Contents	1KU 2.06	1	<u>10</u> *	1444 20 May	6 WKS	None Reported <u>View Distributors</u>		
SNJ54LS197FK	ACTIVE	LCCC (FK) 20	-55 TO 125		View Contents	1KU 7.87	1	<u>0</u> *	1330 20 May	6 WKS	None Reported <u>View Distributors</u>		
SNJ54LS197J	ACTIVE	<u>CDIP</u> (J) 14	-55 TO 125	7601501CA	View Contents	1KU 2.43	1	<u>143</u> *	1379 20 May	6 WKS	EBV Electronik	25	BUY NOW
SNJ54LS197W	ACTIVE	<u>CFP</u> (W) 14	-55 TO 125	7601501DA	View Contents	1KU 8.08	1	<u>0</u> *	1412 20 May	6 WKS	None Reported <u>View Distributors</u>		

Table Data Updated on: 4/17/2003